室温氧化气氛下金属改性的锆系超强酸催化氧化环己烷反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来环境问题引起了人们的高度重视。固体酸代替液体酸催化有机反应是实现环境友好的一条重要途径,符合绿色化学的发展方向。而SO_4~(2-)/M_xO_y型固体超强酸在多种重要的烷烃催化反应中都显示出了很高的活性,而且具有易于分离、易再生、不腐蚀反应器、环境污染少及热稳定性好等优点,是一种非常有应用前景的催化剂。
     已有研究表明,在还原条件下,SO_4~(2-)/M_xO_y型固体超强酸对烷烃的异构化、烷基化反应具有很好的催化活性。相比之下,在氧化条件下,对此类催化剂催化烷烃反应研究的不多。本课题就是在此基础上提出的。即以SO_4~(2-)/ZrO_2-CuO、SO_4~(2-)/ZrO_2-Co_2O_3和SO_4~(2-)/ZrO_2-V_2O_5三类固体超强酸为例,研究SO_4~(2-)/M_xO_y型固体超强酸在温和氧化气氛中(室温,以空气作氧化剂)对烷烃的催化反应情况,以开发经济环保的含氧衍生物的合成方法。
     本论文的实验中用共沉淀方法和沉淀--浸渍法分别制备了SO_4~(2-)/ZrO_2-CuO、SO_4~(2-)/ZrO_2-Co_2O_3和SO_4~(2-)/ZrO_2-V_2O_5三种催化剂,并应用于室温空气氧化的温和条件下对环己烷催化氧化反应的研究。产物的定性和定量分析通过UV-vis分光光度计和GC-MS表征获得。实验结果表明,与单纯金属氧化物组分的SO_4~(2-)/ZrO_2催化结果相比,添加第二金属氧化物组分CuO和Co_2O_3的SO_4~(2-)/ZrO_2-CuO和SO_4~(2-)/ZrO_2-Co_2O_3二元金属氧化物固体超强酸对催化环烷烃直接合成邻苯二甲酸二丁酯有很好的效果。而且对于SO_4~(2-)/ZrO_2-Co_2O_3催化剂来说,产物中酯的种类,除了邻苯二甲酸二丁酯,还有乙二酸环己基十三烷基酯,但酯的总体产率低于SO_4~(2-)/ZrO_2-CuO。从而开发了一种由环烷烃直接制备芳香酯的环保经济方法。而SO_4~(2-)/ZrO_2-V_2O_5催化环己烷反应的主产物是C_(14)-C_(28)的直链烷烃,酯类产物含量不高。在常温条件下环烷烃直接转化成长直链烃反应的实现,不仅对提高十六烷值,推进清洁柴油的生产具有十分重要的意义,而且对石油形成过程的研究提供了很有价值的实验依据。此外,本论文还对上述三种催化剂的表面性质进行了系统的表征。反应前的催化剂采用X-射线衍射仪(XRD)、傅立叶变换红外光谱仪(FT-IR)进行表征。通过XRD分析可知,经过高温锻烧后的催化剂的晶型由无定型转变为四方晶型,形成的活性中心并具有较强的催化活性,并且CuO、Co2O_3和V_2O_5在催化剂中处于高度分散状态。通过红外光谱分析表明其存在O=S=O,具有酸中心,且催化剂易吸水。反应后的催化剂表面特征通过XPS光电子能谱进行表征,得出催化剂中除加入的改性金属氧化物略有价态变化外,其他元素基本没有什么变化,这也说明通过适当的活化处理后,本实验所制备的催化剂具有很好的重复使用性。
In recent years, environmental problem has drawn increasing attention. Solid acid catalyst instead of liquid acid is one of the most important ways with the direction of the development of green chemistry. The SO_4~(2-)/M_xO_y solid acid has been proved to be a useful and active catalyst in many kinds of important catalytic reaction of alkane. Furthermore, the kind of catalyst, that has several advantages such as easy separation, good reusability of the catalyst, non corrosion to the reactor and usage of environmental friendly, play an important role in the chemical and petroleum industries.
     From the prevenient studies by other researchers, many large volume applications based on SO_4~(2-)/M_xO_y solid acid are reported in the literature, especially in the petroleum industry for alkylation and isomerization reactions in the reductive ambience. In the contrast, the effect of the kind of catalysts on oxidation of alkane under mild condition has been paid little attention. The content of this subject study is presented on the basis of the status. In the thesis, SO_4~(2-)/ZrO_2-CuO, SO_4~(2-)/ZrO_2-Co_2O_3 and SO_4~(2-)/ZrO_2-V_2O_5 were synthesized and their application in the oxidation of cyclohexane under mild condition (room temperature and atmospheric pressure) was investigated. The aim to the study was for the development of the synthetical methods to oxygenous ramification, which was economical and environmentally friendly.
     In the paper, the catalytical activity to the samples of SO_4~(2-)/ZrO_2-CuO, SO_4~(2-)/ZrO_2-Co_2O_3 and the sample of SO_4~(2-)/ZrO_2-V_2O_5, which prepared by precipitation method and precipitation-impregnation method, respectively, were investigated in the oxidation of cyclohexane under mild condition (room temperature, air as the oxidant). Qualitative and quantitative analysis of each product was performed by UV-vis spectra and gas chromatography-mass spectrometry (GC-MS) system. The results show that, compared to non-metal oxide modified sulfate zirconia, the yield of ester obviously increased at overall products when the metal oxide CuO and Co_2O_3 were added to solid acid. The main products to the sample of SO_4~(2-)/ZrO_2-CuO were dibutyl phthalate. And another kind of ester, except for phthalate ester, named cyclohexyl triclecyl oxalate, was found in the products solvent to the sample of SO_4~(2-)/ZrO_2-Co_2O_3. But the yield of the ester with SO_4~(2-)/ZrO_2-Co_2O_3 was lower than that of SO_4~(2-)/ZrO_2-CuO. The one-step esterification reaction, that offers several advantages such as economical and environmental friendly, is necessary for ester chemosynthesis industry from the environment standpoint. In the case of SO_4~(2-)/ZrO_2-V_2O_5, the main products were long line alkane, and the content of ester in the overall products was low. The realization of direct transformation from cyclohexane into long line alkane was very significant, not only for the production of environmentally friendly diesel oil in high octane number, but also for the research of the petroleum forming process. Otherwise, the three kinds of catalysts were well characterized in this work. The catalyst before the reaction was characterized by means of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD analysis shows that after the high-temperature burning, catalyst ZrO_2 changed from amorphous to crystalline quartet, formed an active site and had strong catalytic activity. CuO Co_2O_3 and V_2O_5 was in the highly fragmented state in catalyst. Solid acid catalyst can not be product without burning. IR spectra show the existence of O=S=O, acid center and catalyst which is easy-absorbent. The catalysts after the reaction was investigated by means of X-ray photoelectron spectroscopy (XPS), the result displayed that the binding energies of all of the elements are almost unchanged after the reaction, except C element, indicating the stability of the structure of the modified catalyst and also suggesting that the solid acid may be recycling applied after appropriate activation.
引文
[1]贾义霞,高健荣,黄敏,俞开新.环己烷催化氧化反应及工艺的研究进展[J].化 工纵横,2001,2(3):8-13.
    
    [2]张丽芳,陈赤阳,项志军.环己烷氧化制备环己酮和环己醇工艺研究进展[J].北 京石油化工学院学报,2004,12(2):39-43.
    
    [3]张惠玲.绿色氧化技术合成环己酮[D].大庆:大庆石油学院,2007.
    
    [4]曾书韦.溶胶--凝胶法制备复合氧化物固体超强酸催化剂[D].兰州:兰州理工 大学,2007.
    
    [5]田京城,缪娟.固体超强酸催化剂的应用与发展[J].焦作大学学报,2005,4(2): 49-51.
    
    [6]梁日忠,常洁云,权英.SO_4~(2-)/M_xO_y型固体超强酸催化剂的发展和应用[J].华 北工学院学报,1997,18(4):324-327.
    
    [7]刘金龙.SO_4~(2-)/ZrO_2固体超强酸催化剂研究进展[J].精细石油化工进展,2002, 3(2):31-34.
    
    [8]石文平,崔波.固体超强酸的改性研究[J].精细石油化工进展,2001,2(1): 43-46.
    
    [9]谢何融.纳米磁性固体酸催化剂和生物柴油的制备研究[D].南昌:南昌大学, 2007.
    
    [10]毛东森,卢冠忠,陈庆龄,卢文奎.固体酸催化材料的研究进展[J].石油化工, 2001,30(2),152-153.
    
    [11]周国斌,陈慧宗,徐景士.固体超强酸及其催化的有机化学反应[J].江西化工, 2001,1(1):3-8.
    
    [12]许静玉,林欣荣,金松林.多酸催化反应的研究进展[J].上海化工,2000,1(15): 20-24.
    
    [13]彭振山,陈亚中,蔡铁军.固体酸催化材料的研究进展[J].贵州大学学报,2001, 18(3):212-217.
    
    [14]李金麟.硅钨杂多酸催化合成马来酸醋的研究[J].天津化工,2003,17(4):21-22.
    
    [15]魏雨,郑学忠,刘晓林.均分散异形微粉α-Fe_2O_3的研究[J].科学通报,1996,41(4): 315-317.
    
    [16]王君,张密林,郑崇辉.磁性纳米固体超强酸的制备研究[J].应用科技,2005, 32(1):59-61.
    
    [17]刘全夫.正构烷烃异构化固体超强酸催化剂的研究[D].大庆:大庆石油学院, 2007.
    
    [18] W. M. Hua, Y. D. Xia, Y. H. Yue. Promoting Effect of Al on SO_4~(2-)/M_xO_y (M=Zr, Ti, Fe) Catalysts. J. Catal. 2000,196(1): 104-114.
    
    [19]申延明,戎梅竹,刘宏伟.SO_4~(2-)/ZrO_2固体超强酸的制备及其催化合成ETBE的 研究[J].石油炼制与化工,2006,37(8):12-15.
    
    [20] Y. Hua, R. Lu, J. Z. Zhao. Sulfated Binary Oxide Solid Superacids. Mater. Chem. Phys. 2003, 80(1): 68-72.
    
    [21]陈彤云,万宝玉,刘菊红.低温陈化法制备SO_4~(2-)/ZrO_2-Sm_2O_3固体超强酸及表 征[J].无机化学学报,2003,18(3):164-167.
    
    [22]曾成华,李珲.SO_4~(2-)/M_xO_y固体超强酸研究进展[J].攀枝花学院学报,2006, 23(6):103-106.
    
    [23]王忠华,姜廷顺,赵谦.固体超强酸TiO_2/SO_4~(2-)催化合成水杨酸异戊酯[J].精 细石油化工,2006,23(1):6-8.
    
    [24]蒋平平,王琪.固体超强酸SO_4~(2-)/ZrO_2催化合成偏苯三酸三(2-乙基)己酯[J].精 细化工,1996,13(5):36-39.
    
    [25]王忠华,姜廷顺,赵谦.复合固体超强酸TiO_2/SO_4~(2-)-Al_2O_3催化合成DOP的研究 [J].精细化工,1996,13(6):46-48.
    
    [26]田景芝,赵光,荆涛.固体超强酸SO_4~(2-)/ZrO_2-TiO_2催化合成富马酸二甲酯[J].齐 齐哈尔大学学报,2001,17(2):12-14.
    
    [27]朱志庆,吕自红,刘亚涛.固体酸催化合成乙酸芳樟酯[J].华东理工大学学报, 2004,30(3):343-345.
    
    [28] S. Vijay, E. E. Wolf. A Highly Active and Stable Platinum-modified SulfatedZirconia Catalyst 1. Preparation and Activity for N-pentane Isomerization. Appl.Catal. A: Gen. 2004,264(1): 117-124.
    
    [29] R. Ahmad, J. Melsheimer, F. C. Jentoft, R. Schlogl. Isomerization of N-butane andof N-pentane in the Presence of Sulfated Zirconia: Formation of Surface DepositsInvestigated by in Situ UV-vis Diffuse Reflectance Spectroscopy. J. Catal. 2003,218(2): 365-374.
    
    [30]J. H. Wang, C. Y. Mou, Catalytic Behavior of Nanostructured Sulfated ZirconiaPromoted by Alumina: Butane Isomerization. Catal. Today. 2008,131(1): 162-172.
    
    [31] S. Vijay, E. E. Wolf, J. T. Miller. A Highly Active and Stable Platinum-modifiedSulfated Zirconia Catalyst Part 2. EXAFS Studies of the Effect of Pretreatment on??the State of Platinum. Appl. Catal. A: Gen. 2004, 264(1): 125-130.
    
    [32] W. Wang, J. H. Wang, C. L. Chen. N-Pentane Isomerization over Promoted SZ/MCM-41 Catalysts. Catal. Today. 2004, 97(4): 307-313.
    
    [33]王知彩,孙康,刘九玲.SO_4~(2-)/ZrO_2-TiO_2催化苯与1-十二烯烷基化合成十二烷 基苯[J].分子催化,2007,21(1):38-42.
    
    [34] G. D. Yadav, G. S. Pathre. Novel Mesoporous Solid Superacids for Selective C-alkylation of M-cresol with Tert-butanol, Microporous Mesoporous Mater. 2008, 89(1-3): 16-24.
    
    [35]王春华,纪春暖,曲荣君.稀土La~(3+)掺杂固体超强酸SO_4~(2-)/TiO_2催化合成二芳基 乙烷的研究[J].化学研究与应用,2005,17(1):78-80.
    
    [36]张强,矫庆泽,闵恩泽.固体超强酸SO_4~(2-)/ZrO_2的异丁烷/1-丁烯烷基化反应性 能和失活研究[J].高等学校化学学报,2005,26(6):1130-1132.
    
    [37]张国华,贾海虹,孙少飞.环己醇催化脱水制备环己烯[J].应用化工,2003, 32(6):31-32.
    
    [38]王燕,黎先财,曹小华.水热改性SO_4~(2-)/TiO_2-WO_3催化环己醇脱水合成环己烯 [J].南昌大学学报,2007,31(4):361-364.
    
    [39]于世涛,刘福胜,解从霞.SO_4~(2-)/SiO_2-ZrO_2复合固体超强酸催化α-蒎烯水合反 应[J].精细化工,2004,21(3):178-184.
    
    [40] H. Matsuhashi, M. Tanaka, H. Nakamura, K. Arata, Formation of Acid Sites in Ordered Pores of FSM-16 by Modification with Sulfated Zirconia. Appl. Catal. A: Gen. 2001, 208(1-2): 1-5.
    
    [41] B. M. Reddy, P. M. Sreekanth, Y. Yamada, T. Kobayashi. Surface Characterization and Catalytic Activity of Sulfate-, Molybdate- and Tungstate-promoted Al_2O_3-ZrO_2 Solid Acid Catalysts. J. Mol.Catal. A: Chem. 2005, 227(1-2): 81-89.
    
    [42]王知彩.SO_4~(2-)/ZrO_2催化氯化苄与苯烷基化反应的气相色谱-质谱法分析[J].分 析化学研究简报,2006,34(2):219-222.
    
    [43] G. Colon, M. C. Hidalgo, G. Munuera. Structural and Surface Approach to theEnhanced Photocatalytic Activity of Sulfated TiO_2 Photocatalys. Appl. Catal. B:Environ. 2006, 63(1): 45-59.
    
    [44] A. Nakajima, H. Obata, Y. Kameshima. Photocatalytic Estruction of GaseousToluene by Sulfated TiO_2 Powder. Catal. Commun. 2006, 6(11): 716-720.
    
    [45]X. C. Wang, I. C. Yu, Liu P. Probing of Photocatalytic Surface Ites on SO_4~(2-)/TiO_2Solid Acids by in Situ FT-IR Spectroscopy Andpyridine Adsorption. J. Photochem.??Photobiol.A.2006,179(3):339-347.
    
    [46]丁正新,王绪绪,付贤智.TiO基固体超强酸及其在光催化空气净化中的应用 [J].化工进展,2003,22(12):1278-1283.
    
    [47] F. Croce, L. Settimi, B. Scrosati. Superacid ZrO_2-added Composite PolymerElectrolytes with Improved Transport Properties. Electrochem. Commun. 2006,8(2): 364-368.
    
    [48] Yin H L, Z. Y. Tan, Y, T, Liao. Application of SO_4~(2-)/TiO_2 Solid Superacid inDecontaminating Radioactive Pollutants. J. Environ. Radioact. 2006, 87(2):227-233.
    
    [49]J. Pasel, V. Speer, C. Albrecht, F. Richter, H. Papp. Metal Doped Sulfated ZrO_2 asCatalyst for the Selective Catalytic Reduction (SCR) of NO with Propane, Appl.Catal. B: Environ. 2000, 25(2): 105-113.
    
    [50]陈同云,万玉宝,刘菊红.低温陈化法制备SO_4~(2-)/ZrO_2-Sm_2O_3固体超强酸及表 征[J].无机化学学报,2003,19(2):164-167.
    
    [51]T. Yamaguchi. Recent Progress in Solid Superacids. Appl Catal. 1990, 61(1): 1-25.
    
    [52] M. M. Yung, E. M. Holmgreen, U. S. Ozkan. Cobalt-based Catalysts Supported onTitania and Zirconia for the Oxidation of Nitric Oxide to Nitrogen Dioxide. J. Catal.2007, 247(2): 356-367.
    
    [53] J. Fung, I. Wang, the Reaction Mechanism of C_6Hydrocarbons over Acid-BaseBifunctional Catalysts, TiO_2-ZrO_2. J. Catal. 1996,164(1): 166-172.
    
    [54] A. L. Kustov, M. Yu. Kustova, R. Fehrmann, P. Simonsen. Vanadia onSulphated-ZrO_2, a Promising Catalyst for NO Abatement with Ammonia in AlkaliContaining Flue Gases. Appl. Catal. B: Environ. 2005, 58(1-2): 97-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700