猪圆环病毒2型检测新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪圆环病毒2型(PCV2)可以引起很多疾病尤其是断奶仔猪多系统衰竭综合症,这种病给世界养猪业造成了巨大的经济损失。现有的PCV2的检测方法虽然对该病的诊断起到了重要作用,但难以满足现场实时快速检测的要求。因此,发展和建立PCV2早期检测新方法对于该病的检测和诊断具有重要意义。本论文结合化学发光免疫分析技术(CLIA)、乳胶凝集技术及荧光显微镜技术,采用金标单克隆抗体探针、乳胶抗体复合物探针和量子点荧光探针研究了PCV2的检测新方法,主要研究内容及结果如下:
     1.合成了金纳米粒子并制备了金标单克隆抗体,对二者进行了紫外、透射电镜的表征,研究了纳米金溶解及化学发光的条件,建立了一种超灵敏、简便、快速、特异性强、重复性好的Au3+增强的CLIA检测PCV2,检测限达到2.67×102copy/mL。与PCR相比,通过检测36份临床血清样本,CLIA检测PCV2显示出了高的灵敏度和可靠性,在临床分析和控制疾病传播方面显示出了更好的前景。
     2.合成了带有磺酸基的三元聚合物乳胶微球,通过静电相互作用,将PCV2单克隆抗体吸附到乳胶微球表面形成乳胶抗体复合物诊断试剂。乳胶抗体复合物诊断试剂表面抗体与病毒表面抗原发生特异性反应,促使分散的乳胶微球凝集在一起,出现肉眼可见的凝集现象,而与去离子水、磷酸缓冲液、猪圆环病毒1型、猪繁殖与呼吸障碍综合症病毒、猪细小病毒、猪传染性胃肠炎病毒不出现凝集现象。在最优化条件下,病毒浓度检测范围为3.1×105 copy/mL-8.00×107 copy/mL,检测限达到1.0×105 copy/mL。用建立的方法与PCR方法检测了34份临床血清样本,结果表明该方法可用于临床血清样品的检测,是一种简单、快速、灵敏的PCV2可视化检测方法。
     3.合成了CdTe量子点,并构建了CdTe-PCV2单克隆抗体荧光探针。通过荧光光谱、紫外-可见吸收光谱、动态光散射、琼脂糖凝胶电泳、荧光显微镜等表征手段证明量子点荧光探针具有量子点的荧光特性和单克隆抗体的生物特异性。研究结果表明CdTe-PCV2单克隆抗体荧光探针在PK15细胞中可以特异性识别PCV2。
     本研究将纳米探针用于PCV2检测新方法的研究,不仅提供了高灵敏、简便快速、可视化的PCV2检测方法,还为PCV2检测试剂盒的制备、PCV2致病机理的研究以及纳米探针用于其他重大动物疾病的研究提供了重要参考依据。
Porcine circovirus type 2 (PCV2) is associated with many diseases especially postweaning multisystemic wasting syndrome (PMWS), which has brought huge economic loss to the swine industry worldwide. The mainly used methods for detection of PCV2 are various kinds of biology methods. But these methods have some limits. It has great significance to develop and establish new methods for early detection of PCV2. This paper combines the chemiluminescence immunoassay, latex agglutination technique and fluorescence microscopy, using gold nanoparticle-monoclonal antibody conjugate, latex-antibody compound and quantum dot fluorescent probe for the research of detection methods and mechanism of PCV2. The main concents and results are listed as following:
     1. Gold nanoparticles and gold nanoparticle-monoclonal antibody conjugate were synthetized and characterized them using UV-vis absorption spectra and TEM image. We developed a facile, rapid and ultrasensitive method for detection of PCV2 based on gold(III) enhanced chemiluminescence immunoassay (CLIA). The limit of detection was as low as 2.67×102 copy/mL. Compared with conventional polymerase chain reaction (PCR), the proposed method has good sensitivity and reliability in 36 serum samples analysis, and showed great potential in virus assay.
     2. Ternary polymer latex particles with sulfonic acid group were synthesized, then we connected the monoclonal antibody of PCV2 with latex particles to obtain latex-antibody compound using electrostatic interactions. The specific reaction of monoclonal antibody and virus showed visible agglutination phenomenon in the presence of a certain concentration of virus. Latex-antibody compound didn't react with deionized water, phosphoric acid buffer, porcine circovirus type 1, porcine reproductive and respiratory syndrome virus, porcine parvovirus and porcine transmissible gastroenteritis virus. Under the optimized experimental conditions, the detection range of PCV2 was from 3.1×103 copy/mL to 8.00×107 copy/mL, and the detection limit was 1.0x105 copy/mL. Compared with PCR, the proposed method has good efficiency, sensitivity and specificity in 34 serum samples analysis. Results show that it can be used in the detection of the clinical samples and provided a great promising future for detection of PCV2 in clinical analysis.
     3. CdTe quantum dots and CdTe-PCV2 monoclonal antibody fluorescent probe were synthesized and characterized them using UV-vis absorption spectra, fluorescence spectroscopy, dynamic light scattering, agarose gel electrophoresis and fluorescence microscopy. The results show that CdTe-PCV2 monoclonal antibody fluorescent probe can recognize PCV2.
     In conclusion, nanoprobers were used for detection methods of PCV2. The new methods hold promising potential for sensitive, simple, rapid and visual detection of PCV2, also offers important references for the development of the detection kit and the application on the diagnostics and determination for other major animal desease of nanoprobers.
引文
1.陈东焕.表达猪2型圆环病毒Cap蛋白重组沙门氏菌的构建及鉴定.武汉:华中农业大学图书馆,2009
    2.储昭琴,李村成,孔明光等.金纳米颗粒、纳米片的制备及电镜观察.电子显微学报),2005,24:253-256
    3.郭焕成,席进,李江南等.高致病性猪繁殖与呼吸综合征病毒Nsp2缺失变异株与经典美洲型毒株基因芯片鉴别方法的建立.中国生物制品学杂志,2010,23:1254-1259
    4.郭振光.猪2型圆环病毒ORF2基因的原核表达及其在PCV2抗体检测ELISA方法建立和单克隆抗体制备中的应用.扬州大学,2007
    5.韩鹤友,崔华,林祥钦.化学发光分析法应用新进展.光谱实验室,2002,19(1):39-45
    6.胡德红,马玉琴,董飞等.纳米金兔抗猪IgG化学发光探针的制备及表征.分析科学学报,2008,24:254-258
    7.何启盖,陈焕春,吴斌等.检测猪细小病毒血清抗体乳胶凝集实验方法的建立及初步应用.中国预防兽医学报,1999,21:457-459
    8.黄文艺,郭鹏峰,颜红等.纳米金淀积的多孔硅靶增强样品的激光解吸/电离质谱信号.无机化学学报,2009,25:641-645
    9.朗洪武,张广川,吴发权.断奶猪多系统衰弱综合征血清抗体检测.中国兽医科技,2000,30(3):3-5
    10.郎洪武,王力,张广力等.猪圆环病毒分离鉴定及猪断奶多系统衰弱综合征的诊断.中国兽医科技,2001,31(3):3-5
    8.林珍,王栩,任世奇等.化学发光酶免疫法测定游离三碘甲腺原氨酸.分析化学,2008,36:609-613
    9.宋云峰,肖少波,金梅林等.猪2型圆环病毒核酸疫苗免疫效应研究.畜牧兽医学报,2005,36(10):1049-1054
    11.魏巍,杨汉春,郭鑫等.猪2型圆环病毒ORF2重组蛋白单克隆抗体的制备及鉴定.中国兽医杂志,2007,43(11):9-11
    12.武红敏,韩鹤友,金梅林等CdSe/ZnS量子点探针用于检测猪链球菌2型MRP 抗原的新方法研究.化学学报,2009,67:1087-1092
    13.邢谮.纳米基因芯片在微生物学分子诊断中的应用.西部医学,2003,1:70-74
    14.杨丽丽.编码微球微流控芯片检测禽流感病毒方法的建立.长春,吉林农业大学,2007
    15.杨丽丽,王振国,王明泰等.新城疫病毒流式微球免疫检测新方法.分析化学,2008,36(1):29-33
    16.杨凌露,丛海林,曹维孝.无皂乳液聚合法制备P-St-MMA-SPMAP-单分散乳胶颗粒.高分子学报,2005,2:223-225
    17. Ai K L, Liu Y L, Lu L H. A novel strategy for making soluble graphene sheets cheaply by adopting an endogenous reducing agent. J Am Chem Soc,2009,131, 9496-9497
    18. Aldeek F, Balan L, Medjahdi G et al. Enhanced Optical Properties of Core/Shell/Shell CdTe/CdS/ZnO Quantum Dots Prepared in Aqueous Solution. J Phys Chem C,2009,113:19458-19467
    19. Allan G M, McNeilly F, Kennedy S et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest,1998a, 10:3-10
    20. Allan G M, McNeilly F, Walker I W et al. Serological evidence for pneumovirus infections in pigs. Vet Rec,1998b,142,8-12
    21. Allan G M, Meehan B, Todd D et al. Novel porcine circoviruses from pigs with wasting disease syndromes. Vet Rec,1998c,142:467-468
    22. Allan G M, McNeilly F, Meehan B M et al. Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark, and Northern Ireland. Veterinary Microbiology,1999,66:115-123
    23. Allan G M, Ellis J A. Porcine circovirus:a review. J Vet Diagn Invest,2000,12:3-14
    24. Authier L, Grossiord C, Brossier P. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem,2001,73:4450-4456
    25. Blanchard P, Mahe D, Cariolet R et al. An ORF2 protein-based ELISA for porcine circovirus type 2 antibodies in post-weaning multisystemic wasting syndrome. Vet Microbiol,2003,66,183-194
    26. Bakalova R, Zhelev Z, Ohba H et al. An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells. J Am Chem Soc,2005,127: 11328-11335
    27. Bae Y, Myung N, Bard A J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles. Nano Lett,2004,4:1153-1161
    28. Bakalova R, Zhelev Z, Ohba H et al. Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences. J Am Chem Soc,2005,127: 11328-11335
    29. Bruchez M J, Moronne M, Gin P et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281:2013-2015
    30. Byrne S J, Corr S A, Rakovich T Y et al. Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. J Mater Chem, 2006,16:2896-2902
    31. Chae C. A review of porcine circovirus 2-associated syndromes and diseases. The Veterinary Journal,2005,169:326-336
    32. Chang E, Thekkek N, Yu W W et al. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small,2006,2:1412-1417
    33. Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281:2016-2018
    34. Chan W C W, Maxwell D J, Gao X H et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech,2002,13:40-46
    35. Chemseddine A, Weller H. Highly Monodisperse Quantum Sized CdS Particles by Size Selective Precipitation. Ber Bunsen-Ges Phys Chem,1993,97:636-637
    36. Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem,2002,74:5132-5138
    37. Chen S J, Chang H T. Red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal Chem,2004,76:3727-3734
    38. Choi J, Stevenson G W, Kiupel M et al. Sequence analysis of old and new strains of porcine circovirus associated with congenital tremors in pigs and their comparison with strains involved with postweaning multisystemic wasting syndrome. Can J Vet Res,2002,66:217-224
    39. Choi H S, Liu W, Misra P et al. Renal clearance of quantum dots. Nat Biotechnol, 2007,25:1165-1170
    40. Clapp A R, Medintz I L, Mattoussi H. Forster Resonance Energy Transfer Investigations Using Quantum Dot Fluorophores. Chem Phys Chem,2006,7:47-57
    41. Claudia T, Alessandra Q, Angela T et al. Synthesis and Biological Assay of GSH Functionalized Fluorescent Quantum Dots for Staining Hydra vulgaris. Bioconjugate Chem,2007,18:829-835
    42. Cuzzubbo A J, Endy T P, Nisalak A et al. Use of recombinant envelope proteins for serological diagnosis of Dengue virus infection in an immunochromatographic assay. Clin Diagn Lab Immunol,2001,8:1150-1155
    43. Cheung A K, Lager K M, Kohutyuk O I et al. Detection of two porcine circovirus type 2 genotypic groups in United States swine herds. Arch Virol,2007,152: 1035-1044
    44. Dabbousi B O, Rodriguez V J, Mikulec F V et al. (CdSe)ZnS core shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B,1997,101:9463-9475
    45. Dai Q, Liu X, Coutts J et al. A one-step highly sensitive method for DNA detection using dynamic light scattering. J Am Chem Soc,2008,130,8138-8139
    46. Dequaire M, Degrand C, Limoges B. Electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem,2000,72:5521-5528
    47. Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. A review. Talanta,2000,51:415-439
    48. Duan C F, Yu Y Q, Cui H et al. Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst,2008,133,1250-1255
    49. Eastman P S, Ruan W M, Doctolero M et al. Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett,2006,6:1059-1064
    50. Ellis J, Krakowka S, Lairmore M et al. Reproduction of lesions of postweaning multisystemic wasting syndrome in gnotobiotic piglets. J Vet Diagn Invest,1999,11: 3-14
    51. Fan A P, Lau C W, Lu J Z. Magnetic bead-based chemiluminescent metalimmunoassay with a colloidal gold label. Anal Chem,2005,77:3238-3242
    52. Fan A P, Cao Z J, Li H et al. Chemiluminescence platforms in immunoassay and DNA analyses. Anal Sci,2009,25:587-597
    53. Faulk W P, Taylor G M. An immunocolloid method for the electron microscope. Immunochemistry,1971,8:1081-1083
    54. Fenaux M, Opriessnig T, Halbur PG et al. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo. J Virol,2004,78(24):13440-13446
    55. Fu A H, Micheel C M, Cha J et al. Discrete nanostructures of quantum dots/Au with DNA. JAm Chem Soc,2004,126:10832-10833
    56. Gao X, Cui Y, Levenson R M et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol,2004,22:969-976
    57. Gaponik N, Talapin D V, Rogach A L et al. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes. J Phys Chem B,2002,106: 7177-7185
    58. Georges J, Arnaud N, Parise L. Limitations arising from optical saturation in fluorescence and thermal lens spectrometries using pulsed laser excitation: application to the determination of the fluorescence quantum yield of rhodamine 6G. Appl Spectrosc,1996,50(12):1505-1511
    59. Gerion D, Chen F Q, Kannan B et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem,2003,75:4766-4772
    60. Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed,2008,47:7602-7625
    61. Gilpin D F, McCullough K, Meehan B M et al. In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet Immunol Immunopathol,2003,94:149-161
    62. Goldman E R, Anderson G P, Tran P T et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem,2002a,74:841-847
    63. Goldman E R, Balighian E D, Mattoussi H et al. Avidin:A natural bridge for quantum dot-antibody conjugates. JAm Chem Soc,2002b,124:6378-6382
    64. Gupta S, Huda S, Kilpatrick P K et al. Characterization and optimization of gold nanoparticle-based silver-enhanced immunoassays. Anal Chem,2007,79:3810-3120
    65. Han H Y, Cai Y W, Liang J G et al. Interactions between water-soluble CdSe quantum dots and gold nanoparticles studied by UV-Visible absorption spectroscopy. Anal Sci, 2007,23:651-654
    66. Han H Y, Sheng Z H, Liang J G. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. Anal Chim Acta,2007b,596:73-78
    67. Han M, Gao X, Su J Z et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol,2001,19:631-635
    68. He Y Q, Liu S P, Kong L et al. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta Part A,2005,61,2861-2866
    69. Herr A E, Throckmorton D J, Davenport A A et al. On-chip native gel electrophoresis-based immunoassays for tetanus antibody and toxin. Anal Chem, 2005,77:585-590
    70. Hu D H, Han H Y, Zhou R et al. Gold(III) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of Actinobacillus pleuropneumoniae. Analyst,2008,133:768-773
    71. Ikegami T, Yamamot M, Sekiya K et al. The development of luminomaster, a fully automated chemiluminescent enzyme immunoassay system. J Biolumin Chemilumin,1995,10:219-227
    72. Jaiswal J K, Mattoussi H, Mauro J M et al. Long-term multiple color imaging of live cells using quantum dot biocon-jugates. Nat Biotechnol,2003,21:47-51
    73. Jiang X Y, Jessamine M K N, Stroock A D et al. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J Am Chem Soc,2003,125: 5294-5295
    74. Jie G F, Huang H P, Sun X L et al. Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens Bioelectron,2008a,23: 1896-1899
    75. Jie G F, Zhang J J, Wang D C et al. Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Anal Chem,2008b,80:4033-4039
    76. Jin W J, Fernandez A M T, Costa F J M et al. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem Commun,2005, 21(7):883-885
    77. Juzenas P, Chen W, Sun Y P et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Delivery Rev,2008,60:1600-1614
    78. Klostranec J M, Chan W C W. Quantum dots in biological and and Biomedical research:recent progress and present challenges. Adv Mater,2006,18:1953-1964
    79. Kim T, Toan N T, Seo J et al. Bordetella bronchiseptica aroA mutant as a live vaccine vehicle for heterologous porcine circovirus type 2 major capsid protein expression. Veterinary Microbiology,2009,138:318-324
    80. Lefebvre D J, Costers S, Doorsselaere J V et al. Antigenic differences among porcine circovirus type 2 strains, as demonstrated by the use of monoclonal antibodies. J Gen Virol,2008,89(1):177-187
    81. Li L, Li B, Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst,2009,134:1361-1365
    82. Li Z P, Wang Y C, Liu C H et al. Development of chemiluminescence detection of gold nanoparticles in bioconjugates for immunoassay. Anal Chim Acta,2005,551: 85-91
    83. Li Z P, Liu C H, Fan Y S et al, Chemiluminescent detection of DNA hybridization using gold nanoparticles as labels. Anal Bioanal Chem,2007,387:613-618
    84. Liang R Q, Li W, Li Y et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Research,2005,33(2):e17
    85. Liao H W, Hafner J H. Gold nanorod bioconjugates. Chem Mater,2005,17: 4636-4641
    86. Liu Q, Wang L, Willson P et al. Quantitative, competitive PCR analysis of porcine circovirus DNA in serum from pigs with postweaning multisystemic wasting syndrome. JClin Microbiol,2000,38:3474-3477
    87. Liu X, Dai Q, Austin L et al. A one-step homogeneous immunoassay for cancer biomarker. J Am Chem Soc,2008,130:2780-2782
    88. Liu Y M, Mei L, Liu L J et al. Sensitive chemiluminescence immunoassay by capillary electrophoresis with gold nanoparticles. Anal Chem,2011,83(3): 1137-1143
    89. Lyoo K S, Kim H B, Joo H S. Evaluation of a nested polymerase chain reaction assay to differentiate between two genotypes of Porcine circovirus-2. J Vet Diagn Invest, 2008,20(3):283-288
    90. Matsunaga T, Kawasaki M, Yu X et al. Magnetic separation of melanoma-specific cytotoxic T lymphocytes from a vaccinated melanoma patient's blood using MHC/peptide complex-conjugated bacterial magnetic particles. Anal Chem,1996,68: 3551-3554
    91. Michalet X, Pinaud F F, Bentolila L A et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307:538-544
    92. Nawagitgul P, Harms P A, Morozov I et al. Modified indirect porcine circovirus (PCV) type 2-based and recombinant capsid protein (ORF2)-based enzyme-linked immunosorbent assays for detection of antibodies to PCV. Lab Immunol,2002,9: 33-40
    93. Olesen C E, Mosier J, Voyta J C et al. Chemiluminescent immunodetection protocols with 1,2-dioxetane substrates 4. Methods Enzymol,2000,305:417-427
    94. Peng D P, Hu S S, Hua Y et al. Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays. Vet Immunol Immunopathol,2007,117:17-25
    95. Peng Z F, Chen Z P, Jiang J H et al. A novel immunoassay based on the dissociation of immunocomplex and fluorescence quenching by gold nanoparticles. Anal Chim Acta,2007,583:40-44
    96. Pringle C R. Virus Taxonomy at the Ⅺth International Congress of Virology. Arch Virol,1999,144:2065-2070
    97. Roda A, Manetta A C, Piazza F et al. A rapid and sensitive 384-microtitter wells format chemiluminescent enzyme immunoaasay for clenbuterol. Talanta,2000,52: 311-318
    98. Sato K, Tokeshi M, Kimura H et al. Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis. Anal Chem,2001,73:1213-1218
    99. Seiji T, Agus S, Yoshihiro S et al. Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen-antibody interaction. Biosensors and Bioelectronics,2005,21:201-205
    100.Shaikh K A, Ryu K S, Goluch E D et al. A modular microfluidic architecture for integrated biochemical analysis. Proc Natl Acad Sci,2005,102:9745-9750
    101.Shang S B, Li Y F, Guo J Q et al. Development and validation of a recombinant capsid protein-based ELISA for detection of antibody to porcine circovirus type 2. Res Vet Sci,2008,84:150-157
    102.Shen J Z, Xu F, Jiang H Y et al. Characterization and application of quantum dot nanocrystal-monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay. Anal Bioanal Chem,2007,389(7-8):2243-2250
    103.Sheng Z H, Han H Y, Hu D H et al. Quantum dots-gold(III)-based indirect fluorescence immunoassay for high-throughput screening of APP.Chem Commun, 2009,18:2559-2561
    104.Shyu R H, Shyu H F, Liu H W et al. Colloidal goldbased immunochromatographic assay for detection of ricin. Toxicon,2002,40:255-258
    105.Song Y, Jin M, Zhang S et al. Generatin and immunogenicity of a recombinant pseudorabies virus expressing cap protein of porcine circovirus type 2. Vet Microbio, 2007,119(2-4):97-104
    106.Tischer I, Gelderblom H, Vettermann W et al. A very small porcine virus with circular single-stranded DNA. Nature,1982,295:64-66
    107.Toshio W, Yuichi O, Hidekazu M et al. Development of a simple whole blood panel test for detection of human heart-type fatty acid-binding protein. Clin Biochem,2001, 34:257-263
    108.Walker I W, Konoby C A, Jewhurst V A et al. Development and application of a competitive enzyme-linked immunosorbent assay for the detection of serum antibodies to porcine circovirus type 2. J Vet Diagn Investig,2000,12:400-405
    109. Wang C G, Irudayaraj J. Gold nanorod probes for the detection of multiple pathogens. Small,2008,4,2204-2205
    110.Wang X W, Jiang W M, Jiang P et al. Construction and immunogenicity of recombinant adenovirus expressing the capsid protein of porcine circovirus 2 (PCV-2) in mice. Vaccine,2006,24:334-338
    111.Yang M H, Kostov Y, Bruck H A et al. Biological semiconductor based on electrical percolation. Anal Chem,2008,80:8532-8537
    112.Yu W W, Qu L H, Guo W Z et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater,2003,15(14): 2854-2860
    113.Wang Z P, Li J, Liu B et al. CdTe nanocrystals presented enhancing chemiluminescence and the application for immunoassay. Talanta,2009,77: 1050-1056
    114.Zhang B B, Liu X H, Li D N et al. Preparation of multi-color quantum dots and its application to immunohistochemical analysis. Chin Sci Bull,2008,53:2077-2083
    115.Zhao L X, Sun L, Chu X G et al. Chemiluminescence immunoassay. Trends Anal Chem,2009,28:404-415
    116.Zhou J Y, Shang S B, Gong H et al. Inviro expression, monoclonal antibody and bioactivity for capsid protein of porcine circovirus type Ⅱ without nuclear localization signal. J Biotechnol,2005,118(2):201-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700