生物表面活性剂及其在沉积物重金属污染修复中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物表面活性剂(Biosurfactant)是由微生物产生的具有高表面活性的生物分子。相对于化学合成的表面活性剂,生物表面活性剂对生态系统的毒性较低,且可生物降解。目前,虽然对微生物产生生物表面活性剂已经有较多的研究,但是这些研究都是通过筛选得到生物表面活性剂生产菌,进而对其各种性质进行研究,而针对已鉴定出的各种微生物进行生物表面活性剂生产能力的研究,以及研究它们产生生物表面活性剂能力差异的根本原因却未见报道。
     本文通过对从中国典型培养物保藏中心(CCTCC)购得的4株铜绿假单胞菌(Pseudomonas aeruginosa)和2株枯草芽孢杆菌(Bacillus subtilis)的研究发现,它们产生生物表面活性剂的能力有很大的差异,其中有2株铜绿假单胞菌和1株枯草芽孢杆菌具有生物表面活性剂的生产能力。实验通过正交实验等方法对微生物生长的碳源、氮源以及生长因子等因素进行了研究,确定了两种细菌生产生物表面活性剂的最佳条件,并对制得的生物表面活性剂进行了鉴定,因此本实验在方法上具有一定的创新性。
     目前,沉积物的重金属污染已经引起了国内外学者的重视,有关河流沉积物重金属污染的生态风险研究、沉积物中有机质含量和重金属污染的相关性、沉积物中重金属的释放规律等研究已经成为一个研究热点,但有关沉积物重金属污染的修复的研究在国内还未见有报道,在国际上也是一个新的研究领域。有关对沉积物中重金属去除的研究仅有Mulligan C N等人的少量报道。
     本文通过铜绿假单胞菌产生的鼠李糖脂生物表面活性剂对沉积物中重金属的去除作用的研究表明,鼠李糖脂对沉积物中的Cd、Pb有明显的去除作用,在鼠李糖脂溶液的pH值为10.0的条件下对重金属的去除效率最好,而且当鼠李糖脂在沉积物上的吸附达到饱和时去除效率达到最大;通过连续萃取对提取前和提取后的沉积物样品中重金属的形态进行了分析,发现鼠李糖脂对重金属的去除效率和重金属的形态有关,对可交换态的去除效率最大,在碱性条件下对有机结合态也有较好的去除效率;通过4次连续的提取,使Cd和Pb的去除效率分别达到80.1%和36.5%;沉积物中重会属是通过和鼠李糖脂生物表面活性剂的胶术结合而得到去除的,当胶术破坏后,鼠李糖脂不再具有和重金属结合的能力。
Biosurfactant is a high surface-active agent synthesized by microorganism. Compared with chemical surfactant, biosurfactant has a low toxicity to ecological system of Earth and can be biodegraded by microorganism. There are a lot of researches on biosurfactants and their producers, but most researches are focused on microorganisms that are screened for producing biosurfactant. The researches on the biosurfactant-producing ability of microorganisms that have been identified and the reasons for the difference in their ability have not been reported.
    Four Pseudomonas aeruginosa and two Bacillus subtilis obtained from China Center for Typical Culture Collection (CCTCC) were studied in this research. The results show that there was a great difference in their ability to produce biosurfactant and only two Pseudomonas aeruginosa and one Bacillus subtilis can produce biosurfactant. The optimal nitrogen sources, carbon sources and growth factors were studied by orthogonal experiments. The best conditions for biosurfactant-producing of Pseudomonas aeruginosa and Bacillus subtilis were determined and then two biosurfactants produced by Pseudomonas aeruginosa and Bacillus subtilis were identified by TLC and HPLC-MS. So this research is innovative in the research method.
    The pollution of sediment by heavy metals is noted by more and more researchers. The researches vary from ecology risk of metal-polluted sediment, the relation between the organic content in the sediment and heavy metal content, to the releasing regulation of heavy metal in the sediment, but the research on the remediation of polluted sediment is a new research field in the world. The research on the metal removal from sediment is still limited to the reports by Mulligan C N.
    The potential of microbially-produced surfactant (rhamnolipid) to remove cadmium and lead from sediment was investigated in this study. Batch washings were conducted on the sediment with different solution pH and rhamnolipid concentrations. And the speciation of heavy metals in the sediment before and after washing was analyzed by sequential extraction. The results show that rhamnolipid can remove cadmium and lead from sediment efficiently. The heavy metal removal was optimum when the pH of rhamnolipid solution was 10.0, and the removal efficiency was the
    
    
    highest when the sorption of rhamnolipid on the sediment reached a plateau. The speciation of the heavy metals had an effect on the removal efficiency, and exchangeable and organic fractions could be removed efficiently. Four successive washings removed 80.1% cadmium and 36.5% lead. Biosurfactant rhamnolipid has a low toxicity to ecological system of the Earth and can be recovered by precipitation, so its potential in the remediation of metal-polluted sediment is great.
引文
[1] Wagner F H, Kretschmer A. Production and chemical characterization of surfactants from Rhidococcus eruthropolis and Pseudomonas sp. MUB grown on hydrocarbons. Microbial Enhanced Oil Recovery. America Tucson Ariz: Pebbwell Publishing, 1983, 55-66
    [2] Zhang Y M, Miller R M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas Rhamnolipid surfactant. Appl. Environ. Microbiol., 1992, 58: 3276-3282
    [3] 夏咏梅,方云.生物表面活性剂的开发和应用.同用化学工业,1999(1):27-31
    [4] Garti N. What can nature offer from an emulsifier point of view: trends and progress? Colloids and Surfaces, 1999, 152:125-146
    [5] Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids and Surfaces, 1999, 152:41-52
    [6] 徐燕莉等.表面活性剂的功能.北京:化学工业出版社,2000,8-14
    [7] Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev., 1997, 61(1): 47-64
    [8] Hansen K G, Desai J D, Desai A J. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol. Tech., 1993, 7:745-748
    [9] Shulga A N, Karpenko E V, Eliseev S A. The method for determination of anionogenic bacterial surface-active peptidolipids. Microbiol. J, 1993, 55: 85-88
    [10] Siegmund I, Wagner F. New method for detecting rhamnolipids exerted by Pseudomonas species grown on mineral agar. Biotechnol. Tech, 1991, 5:265-268
    [11] Jian D K, Collins-Thompson D L, Lee H, et al. A drop-collapse test for screening surfactant-producing microorganisms. J. Microbiol. Methods, 1991, 13: 271-279
    [12] Adria A B, Miller R M. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms, J. Microbiol. Methods, 1998, 32: 273-280,
    [13] 陈坚.环境生物技术.北京,中国轻工业出版社,1999,410-456
    [14] Lin S C, Lin K G, Lo C C, et al. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb. Technol., 1998, 23:267-285
    [15] Wei Y H, Chu I M. Enhancement of Surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb. Technol., 1998, 22:724-735
    
    
    [16] Davis D A, Lynch H C, Varley J. The production of Surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb. Technol., 1999, 25:322-331
    [17] 华兆哲,陈坚,朱文昌等.假丝酵母(Candida antartic WSH112)生产生物表面活性剂及降解正构烷烃的研究.南京大学学报(自然科学),1998,34(2):149-153
    [18] Pagilla K R, Sood A, Kim H. Gordonia (nocardia) amarae foaming due to biosurfactant production. Water Science and Technology, 2002, 46 (1): 519-533
    [19] Balba M T, Al-Shayji Y, Al-Awadhi N, et al. Isolation and characterization of biosurfactant-producing bacteria from oil-contaminated soil. Soil and Sediment Contamination, 2002, 11(1): 41-58
    [20] Ellaiah P, Prabhakar T, Sreekanth M, et al. Production of glycolipids containing biosurfactant by Pseudomonas species. Indian Journal of Experimental Biology, 2002, 40(9): 1083-1096
    [21] Fox S L, Bala G A. Production of Surfactin from Bacillus subtilis ATCC 21332 using potato substrates. Biosource Technology, 2000, 75:235-240
    [22] Rahman T J, McClean S, Marchant R, et al. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa rising low-cost raw materials. Biotechnology Progress, 2002, 18(6): 1277-1290
    [23] Benincasa M, Contiero J, Manresa M A, et al. Rhamnolipid production by Pseudomonas aeruginose LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 2002, 54:283-300
    [24] Crosman J T, Pinchuk R J, Cooper D G.. Enhanced biosurfactant production by corynebacterium alkanolyticum ATCC 21511 using self-cycling fermentation. Journal of the American Oil Chemists' Society, 2002, 79(5): 467-490
    [25] Veenanadig N K, Gowthaman M K, Karanth N G. Scale up studies for the production of biosurfactant in packed column bioreactor. Bioprocess Engineering, 2000, 22:95-109
    [26] Lang S, Wullbrandt D. Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol, 1999, 51:22-35
    [27] Lang S. Biological amphiphiles(microbial biosurfactants). Current Opinion in Collid&Interface Science, 2002, 7:12-25
    [28] 赵裕蓉,王宁玲.生物法制蔗糖脂——生物表面活性剂.北京化工大学学报,1996,23(4):6-10
    [29] 张翠竹,梁凤来,张心平,等.一种脂肽类生物表面活性剂的物理化学性质
    
    及其对原油的作用.油田化学,2000,17(2):172-176
    [30] Abraham W, Meyer H, Yakimov M. Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochimica & biophysica Acta, 1998, 1393:57-62
    [31] 华兆哲,陈坚,朱文昌,等.新型生物表面活性剂甘露糖赤藓糖醇脂(MEL)的分离与表面性质研究.天然产物研究与开发,1998,11(3):11-16
    [32] 李祖义,施邑屏.生物表面活性剂对多环芳烃增溶及脱附作用.生物工程学报,1996,12(增刊):238-241
    [33] Juan C M, Jeffrey K, Alba T. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseusomonas aeruginosa UG2 on corn oil. Journal of Chromatography A, 1999, 864:211-220
    [34] Kuyukina M S, Ivshina I B, Philp J C, et al. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 2001, 46:149-156
    [35] Masaaki M, Yoshihiko H, Tadayuki I. A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica et biophysica Acta, 2000, 1488:211-218
    [36] Lin S C, Chen Y C, Lin Y M. General approach for the development of hign-performance liquid chromatography methods for biosurfactant analysis and purification. Journal of Chromatgraphy A, 1998, 825:149-159
    [37] Davis D A, Lynch HC, Varley J. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 culture. Enzyme Microb. Technol., 2001, 28:346-354
    [38] 王立,汪正范,牟世芬等,色潜分析样品处理.北京,化学工业出版社,2001:56-78
    [39] 任仁.化学与环境.北京:化学工业出版社,2002,56-78
    [40] 韦进宝,钱沙华.环境分析化学.北京:化学工业出版社,2002,156-167
    [41] 张达英.分析仪器.重庆,重庆大学出版社,1990,89-98
    [42] Reid G, Gan B S, She Y M. et al. Rapid identification of probiotic lactobacillus biosurfactant proteins by ProteinChip tandem mass spectrometry tryptic peptide sequencing. Applied and Environmental Microbiology, 2002, 68 (2) : 977-989
    [43] 李祖义,徐永珍.一种细菌糖脂的化学结构和物化性能.化学学报,1988,46:264~268
    [44] Agrawal P K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry, 1992, 31:3307-3321
    
    
    [45] Bonmatin J M, Genest M, Labbe H, et al. Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics. Biopolymers, 1994, 34: 975-982
    [46] Grangemard I. Surfactin and lichenysin, two lipopeptides from Bacillus: obtention of isoforms, structural determination by NMR and mass spectroscopy and activity-structure relationships [dissertation]. France: Lyon 1 University, 1997: 123-129
    [47] 张翠竹,张心平等.一株地衣芽孢杆菌产生的生物表面活性剂.南开大学学报(自然科学),2002,33(4):41~45
    [48] Banat I M. Characterization of biosurfactants and their use in pollution removal-state of the art. Acta Biotechnol., 1995, 15:251-261
    [49] Bonmatin J M, Labbe H, Grangemard I, et al. Production, isolation and characterization of [Leu4]- and [Ile4] surfactins from Bacillus subtilis. Lett. Peptide. Sci., 1995, 2:41-52
    [50] Ishigami Y, Osman M, Nakahara H, et al. Significance of b-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf., 1995, 4:341-349
    [51] Kleinkauf H, Dohren H. Applications of peptide synthetases in the synthesis of peptide analogues. Acta Biochim Pol, 1997, 44:839-846
    [52] Sullivan E R. Molecular genetics of biosurfactant production. Curr. Opin. Biotechnol. 1998, 9:263-271
    [53] Braun P G, Hildebrand P D, Ells T C, et al. Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of pseudomonas fluorescens. Canadian Journal of Microbiology, 2001, 47(4): 294-310
    [54] David C, Marco A, Raymundo C. Synthesis of the mannosyl erythritol lipid MELA; confirmation of the configuration of the meso-erythritol moiety. Tetrahedron, 2002, 58: 35-44
    [55] Eliora Z R, Eugene R. Natural roles of biosurfactants. Environmental Microbiology, 2001, 3(4): 229-236
    [56] Eliora Z R, Eugene R. Biosurfactants and oil bioremediation. Current Opinion in Biotechnology. 2002, 13:249-262
    [57] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 2001, 60:193-212
    [58] Mulligan C N, Yong R N, Gibbs B F. Heavy metal removal from sediments by
    
    biosurfactants. Journal of Hazardous Materials, 2001, 85:111-122
    [59] Liu L, Huang G H. Decision analysis for the cleaning of petroleum hydrocarbons from contaminated groundwater by using biosurfactant—an integrated simulation-optimization approach, In: International Symposium on Separation and Purification, Saskatoon, Canada, 1999:87-96
    [60] Liu L, Huang G H, Fuller G A. Modeling for surfactant-enhanced aquifer remediation processes at petroleum-contaminated sites. In: The Eighth International Energy Forum, Las Vegas, Nevada, USA, 2000:23-28
    [61] Liu L, Huang G H, Li J B, et al. Simulation of processes for recovering free light non-aqueous phase liquids using dual-phase vacuum extraction - A Canadian case study. In: The Eighth International Energy Forum,Las Vegas, Nevada, USA, 2000: 78-89
    [62] Liu L, Huang G H, Fuller G A. Modeling for surfactant-enhanced aquifer remediation processes at petroleum-contaminated sites. Energy Sources (in press)
    [62] Li J B, Huang G H, Chakma A. Modeling petroleum hydrocarbon contamination in subsurface - A western Canadian case study. In: The Eighth International Energy Forum, Las Vegas, Nevada, USA, 2000: 121-129.
    [64] Noordman W H, Wachter J H J, Boer G J. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginose varies with substrate availability. Journal of Biotechnology, 2002, 94:195-203
    [65] Moran A C, Olivera. N. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis 09. Biodegradation, 2000, 11 (1): 65-78
    [66] Shulga A, Karpenko E, Vildanova-Martsishin R. Biosurfactant-enhanced remediation of oil-contaminated environments. Adsorption Science and Technology, 2000, 18(2): 171-179
    [67] Vipulanandan C, Ren X P. Enhanced solubility and biodegradation of naphthalene with biosurfactant. Journal of Environmental Engineering, 2000, 126(7): 629-640
    [68] Gu M B, Chang S T. Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosensors and Bioelectronics, 2001, 16:667-680
    [69] Rahman K S M, Banat I M, Thahira J. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Canadian Journal of Microbiology, 2001, 47(4): 294-301
    
    
    [70] Ochoa-Loza.F J, Artiola J F, Maier R M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant, Journal of Environmental Quality, 2001, 30(2): 479-492
    [71] Cassidy D P, Hudak A J, Murad A A. Effect of loading in soil slurry-sequencing batch reactors on biosurfactant production and foaming. Journal of Environmental Engineering, 2002, 128 (7): 575-574
    [72] 夏星辉,陈静生.土壤重会属污染治理方法研究进展.环境科学,1997,18(3):72-76
    [73] 任旭喜.土壤重金属污染及防治对策研究,环境保护科学,1999,25(5):31-33
    [74] 高太忠,李景印.土壤重金属污染研究与治理现状.土壤与环境,1999,8(2):137-140
    [75] 张秋芳.土壤重余属污染治理方法概述.福建农业学报.2000,15(增刊):200-203
    [76] 胡稳奇,张志光.微生物方法在重金属污染处理中的应用现状及展望.大自然探索,1995,14(2):58-62
    [77] 何云峰,朱广伟,陈英旭,等.运河(杭州段)沉积物中重余属的潜在生态风险研究.浙江大学学报(农业与生命科学版),2002,28(6):669~674
    [78] 何孟常,王子健,汤鸿宵.乐安江沉积物重会属污染及生态风险性评价.环境 科学,1999,20(1):7-10
    [79] 周根娣,吴静波.运河(杭州段)底泥污染物含量分布调查.环境污染与防治,2001,23(1):36-39
    [80] 张敏,钱天鸣.运河(杭州段)底质有机质与重金属元素相关性的探讨.环境污染与防治,2000,22(2):32-33
    [81] 文湘华,杜青,汤鸿宵.乐安江沉积物对重金属的吸附模式研究.环境科学学报,1996,16(1),13-22
    [82] 马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究.环境科学,1999(20),2:7-11
    [83] 朱广伟,陈英旭,田光明.运河(杭州段)沉积物中Cu和Zn的释放特征.环境化学,2002,21(5):435-442
    [84] Cantor C R, Schimmel P R. Biophysical Chemistry, part Ⅲ: The Behavior of Biological Macromolecules. San Francisco: WH Freeman and Co., 1980: 1327-1371
    [85] Champion J T, Gilkey J C, Lamparski H. et al. Electron microscopy of
    
    rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane. J Colloid Interface Sci., 1995, 170:569-574
    [86] Lang S, Wagner F. Structure and properties of biosurfactants. In: Biosurfactants and Biotechnology (Kosaric N, Cairns WL, Gray NCC, eds). New York:. Marcel Dekker, 1987:21-45
    [87] Beveridge A, Pickering W F. The influence of surfactants on the adsorption of heavy metal ions by clays. Water Res, 1983, 17:215-225
    [88] Tan H, Champion J T, Artiola J F, et al. Complexation of cadmium by a rhamnolipid biosurfactant. Environ. Sci. Technol., 1994, 28(13), 2402-2406.
    [89] Zosim Z, Gutnick D, Rosenberg E. Uranium binding by emulsan and emulsanosols. Biotechnol Bioeng, 1983, 25:1725-1735
    [90] Marques A M, Bonet R, Simon-Pujol M D, et al. Removal of uranium by an exopolysaccharide from Pseudomonas sp. Appl. Microbiol. Biotech., 1990 34: 429-431
    [91] Scott J A, Palmer S J. Cadmium biosorption by bacterial exopolysaccharide. Biotech. Lett., 1988, 10:21-24
    [92] Bitton G, Freihofer V. Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microbial. Ecol., 1978, 4:119-125
    [93] Corpe W A. Metal-binding properties of surface materials from marine bacteria. Dev. Ind. Microbiol. 1975, 16:249-255
    [94] Mulligan C N, Yong R N, Gibbs B F, et al. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environmental Science and Technology, 1999, 33(21): 3812-3820
    [95] 沈萍.微生物学.北京.高等教育出版社,2000,146-148
    [96] Cameotra S S, Makkar R S. Synthesis of biosurfactants in extreme conditions. Appl. Microbiol. Biotechnol., 1998, 50:520-529
    [97] 潘冰峰,徐国梁,施邑屏等.生物表面活性剂生产菌的筛选.微生物学报,1999,39(3):264-267
    [98] 李建武,萧能,余瑞元,等.生物化学实验原理和方法.北京,北京大学出版社,2001,125-130
    [99] 方云,夏咏梅.生物表面活性剂.北京,中国轻工业出版社,1992,93-100
    [100] Zhang Y, Miller R M. Enhanced Octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology, 1992 58:3276-3282
    
    
    [101] 王敬尊,瞿慧生.复杂样品的综合分析—剖析技术概论.北京,化学工业出版社,2000,44-70
    [102] 何丽一.平面色谱方法及应用.北京,化学工业出版社,2000,41-120
    [103] 汪正范,杨树民,吴侔天,等.色谱联用技术.北京,化学工业出版社,2000,122-186
    [104] Razafindralambo H, Popineau Y, Deleu M, ea al. Foaming properties of lipopeptides produced by Bacillus subtilis: effect of lipid and peptide structural attributes. J. Agric. Food Chem., 1998, 46:911-916
    [105] Toraya T, Maoka T, Tsuji H, et al. Purification and structural determination of an inhibitor of starfish oocyte maturation from a Bacillus sp. Appl. Environ. Microbiol., 1995, 61:1799-1804
    [106] Vollenbroich D, Ozel M, Vater J, et al. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals, 1997, 25:289-297
    [107] Tsuge K, Ano T, Shoda M. Characterization of Bacillus subtilis YBS, coproducer of lipopeptides surfactin and plipas-tatin B1. J. Gen. Appl. Microbiol., 1995, 41: 541-545
    [108] Yakimov M M, Timmis K N, Wray V, et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol., 1995, 61 : 1706-1713
    [109] Cooper D G, MacDonald C R, Du S F B. et al. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol., 1981, 42:408-412
    [110] Sandrin C, Peypoux F, Michel G. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem., 1990, 12:370-375
    [111] Drouin C M, Cooper D G. Biosurfactants and aqueous two-phase fermentation. Biotechnol. Bioeng., 1992, 40:86-90
    [112] Mulligan C N, Gibbs B F. Recovery of biosurfactants by ultrafiltration. J. Chem. Technol. Biotechnol., 1990, 47:23-29
    [113] Wei Y H, Chu I M. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme and Microbial Technology, 1998, 22: 724-728
    [114] Herman D C, Artiola J F, Miller R M. Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environmental Science and Technology, 1995,
    
    29(9): 2280~2285
    [115] 中科院南京土壤研究所.土壤理化分析.上海,上海科学技术出版社,1978,45-123
    [116] 奚旦立,孙裕生,刘秀英.环境监测.北京,高等教育出版社,1995,208-221
    [117] Tessier A, Campbell P G C, Blsson M. Sequential extraction procedure for the speciation particulate trace metals. Analytical Chemistry, 1979, 51 (7): 844~851
    [118] 戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为.中国环境科学,1999,19(5):392-396
    [119] Noordman W H, Brusseau M L, Janssen D B. Adsorption of a multicomponent rhamnolipid surfactant to soil. Environmental Science and Technology, 2000, 34(5): 832-838
    [120] Atay N Z, Yenigun O, Asutay M, Sorption of anionic surfactant SDS, AOT and cationic surfactant hyamine 1622 on natural soils. Water, Air, and Soil Pollution, 2002, 136(1): 55-67
    [121] Torrens J L, Herman D C, Miller R M, Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions. Environmental Science and Technology, 1998, 32(6): 776-781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700