准好氧填埋场CH_4减排和加速稳定化的微生物学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用现代分子生物学技术,研究了准好氧和厌氧填埋填埋场渗滤液中细菌、准好氧填埋场不同填埋时期固体垃圾中甲烷氧化菌的数量、群落组成与多样性,准好氧填埋场长期降解和稳定化特征,主要得到以下研究结果:
     (1)不同填埋工艺对细菌丰度存在明显影响。准好氧填埋场渗滤液中细菌16srRNA基因拷贝数在填埋初期和填埋2年期没有明显变化。厌氧填埋场渗滤液中细菌16srRNA基因拷贝数在填埋初期显著大于填埋稳定期。准好氧填埋场渗滤液中pmoA基因拷贝数分别是厌氧填埋场的48和59倍左右,显著高于厌氧填埋场。
     填埋场渗滤液中细菌群落结构及多样性对不同填埋工艺和不同填埋时期的变化反应敏感。准好氧填埋场的两种渗滤液样品细菌群落多样性高于厌氧填埋场。准好氧填埋场(初期和稳定期)渗滤液样品和厌氧填埋场初期的细菌群落结构具有较高的相似性,而与厌氧填埋场稳定阶段渗滤液中细菌群落结构存在明显差异。此外,通过克隆测序研究发现,填埋场渗滤液中细菌群落结构分为7大类群:Proteobacteria (34.8%), Spirochaetes (23.9%), Firmicutes (23.9%), Bacteroidetes (8.7%),Thermotoge (6.5%)和不可分类(2.2%)。准好氧填埋场的Proteobacteria和Bacteroidetes高于厌氧填埋场。准好氧填埋场渗滤液之间细菌群落结构具有较高的相似性,但是厌氧填埋场之间差异显著。甲烷氧化菌(Methylocaldum sp.05J-I-7)仅仅在准好氧填埋场渗滤液样品中发现。因此,填埋工艺造成的填埋场环境的不同是影响细菌丰度和群落结构的重要因素。
     (2)填埋时间影响垃圾样品中CH4氧化菌丰度,但对群落组成与多样性影响不显著。准好氧填埋场固体垃圾中的CH4氧化菌以填埋时间最早的1“填埋区pmoA基因拷贝数最高,填埋龄为1年左右的准好氧填埋场固体垃圾中的CH4氧化菌丰度随着填埋时间的增加有增加的趋势,表现出一定的正相关关系。导气管周围垃圾中的CH4氧化菌数量均要高于距离导气管15m处的垃圾。不同填埋时期填埋时间最长的准好氧填埋区甲烷氧化菌多样性高于填埋时间较短的填埋区,且分配更均匀。同一填埋时期的甲烷氧化菌群落结构随距离导气管的远近相似性有所差异。但填埋时间最短的4“填埋区相似性很高。根据序.列的系统发育分析,准好氧填埋场甲烷氧化菌群落结构归为个甲烷氧化菌属:Methylocaldum、Methylobacter、Methylocystis。
     (3)经过5年的填埋处置,准好氧填埋体的沉降量和减容率均显著高于厌氧填埋体,同时渗滤液回灌比清水回灌更容易引起填埋体的不均匀沉降。准好氧填埋体填埋气不同时期的CH4含量均显著低于厌氧填埋体,而O2含量则显著高于厌氧填埋体,陈腐垃圾中VS和TOC含量较新鲜垃圾显著降低,同时准好氧填埋体陈腐垃圾的VS和TOC含量均低于厌氧填埋体。渗滤液和清水回灌造成了填埋体表面明显的不均匀沉降。
     准好氧填埋体陈腐垃圾的BDM值显著低于厌氧填埋体,BDM值随着导气管距离的增加逐渐升高;随着填埋深度的增加而逐渐升高,且距离导气管距离越大,层问BDM值差异越大,陈腐垃圾的腐殖质提取率略低于厌氧填埋体;同时,陈腐垃圾的HA/FA相对较高,但两者之间的HA/FA差异不显著。
In this paper, molecular biological techniques of real-time polymerase chain reaction and denaturing gradient gel electrophoresis and cloning analysis of 16S rRNA and pmoA gene were used to describe community composition and abundance of bacteria in leachate of semi-aerobic and anaerobic landfills, methanotrophs in waste of semi-aerobic landfill. The results as follows:
     Firstly, the bacterial anoudance and composition in leachate were effceted by different landfill method, the bacterial 16S rRNA copy numbers of the leachate had no significant reduction in initial and stable period. In aerobic landfill, the highest bacterial 16S rRNA gene copy numbers in leachate were found at initial stage, but reduced significantly at stable period. The MOB populations in stabilized leachate were one order of magnitude lower than that of initial ones both in semi-aerobic and anaerobic landfills. More MOB populations existed in semi-aerobic landfill leachate than that of the anaerobic ones.
     The bacterial diversities of two leachate samples in semi-aerobic landfills were significantly higher than that in anaerobic landfill sites. In addition, bacterial communities in semi-aerobic landfills leachate (both in initial and stable periods) and initial anaerobic leachate had a relatively higher homology with each other, but the bacterial communities in stable anaerobic leachate showed obvious distinguishability.
     Based on the sequences and phylogenetic analysis, bacterial communities in the tests were classified into six groups:Proteobacteria (about 34.8%), Spirochaetes (about 23.9%), Firmicutes (about 23.9%), Bacteroidetes (about 8.7%) and Thermotoge (about 6.5%). The semi-aerobic leacates had the dominantly higher proportions of Proteobacteria and Bacteroidetes (the contributors to biogeochemical processes) than that in anaerobic ones. Between semi-aerobic leachates, the high similarities of microbial composition were found, but a significantly difference was shown between anaerobic ones. The methanotrophic microbe (Methylocaldum sp.05J-I-7) was only found in semi-aerobic landfills.
     Secondly, aboudance of MOB was effected by lanfill time, but there was no signicantly inpaction to compostion and divertisity.1# which had the longest landfill time had the highest copy numbers of pmoA genes. The results showed that the quantity of MOB populations had an increasing trend with the landfill time in one-year old wastes, and expressed positive relationship to some extent. It was found MOB of waste around gas pipe all higher than 15m far from gas pipe, It was found MOB of waste around gas pipe all higher than 15m far from gas pipe.
     The MOB composition and diversity in long landfill time waste higher than short one in different landfill time. There was some difference in one landfill time with the distance to gas pipe, but 4# landfill had a higher similarity. Based on the sequences and phylogenetic analysis, methanotrophic communities in the tests were classified into three groups:Methylocaldum、Methylobacter、Methylocystis.
     Thirdly, pile surface settlements and volume reduction rate of the semi-aerobic landfills were significantly higher than the anaerobic ones after 5 year landfill disposal.Moreover, the treatments with leachate recycling were tend to have the larger uneven settlements than the ones with water recycling. In different landfill periods, the concentrations of O2 in semi-aerobic landfill piles were significantly higher than anaerobic ones, while the concentrations of CH4 in former were dramatically lower than the latter. VS and TOC content of aged-refuse were obviously lower than the ones in fresh refuse. Moreover, VS and TOC content of aged-refuse in semi-aerobic landfills were significantly lower than that in anaerobic ones, BDM value of aged-refuse in semi-aerobic landfills had a significant reductions comparing with that in anaerobic ones. Furthermore, BDM value of aged-refuse in semi-aerobic landfills increased with air pipe distances and depth increasing, and the greater the air pipe distances, the bigger the difference of BDM value between the layers. In addition, total extraction ratios of humic matters in semi-aerobic aged-refuse were slightly lower than anaerobic ones, while the HA/FA in semi-aerobic and anaerobic aged-refuse were relatively high, and no significant differences were found.
引文
毕新慧,徐小白.2000.我国城市垃圾的处理方法及建议.自然辩证法通法,22(4):43-49.
    车玉伶,王慧,胡洪营,梁威,郭玉凤.2005.微生物群落结构和多样性解析技术研究进展.生态环境,14(1):127~133
    陈红歌,胡元森,贾新成,吴坤.2005.垃圾填埋场种群空间分布及组成多样性研究.环境科学学报,25(6):809~815.
    陈槐,周舜,吴宁,王艳芬,罗鹏,石福孙.2006.湿地甲烷的产生、氧化及排放通量研究进展.应用与环境生物学报,12(5):726-733.
    陈坚,刘和,李秀芬.2008.环境微生物实验技术.北京:化学工业出版社
    谌戡,孙东,任岷.2005.生活垃圾生物反应器填埋技术中渗滤液回灌的研究.环境卫生工程,13(6):1~4
    丁世存,黄启飞,汪群慧,王琪.2008.准好氧填埋结构中氧气扩散数值模拟.环境科学研究,21(6):17-20.
    丁维新,蔡祖聪.2001.氮肥对土壤氧化大气甲烷影响的机制.农村生态环境,17(3):30~34
    董路,刘玉强,黄启飞,杨玉飞,王琪.准好氧填埋结构CH4含量分布变化研究,环境科学研究,2005,18(3):20-23.
    董路,王琪,李姮,黄树华.2000.填埋场加速稳定技术的研究.中国环境科学,20(5):461-464.
    费平安,王琦.2008.填埋场覆盖层CH4氧化机理及影响因素分析.可再生能源,26(1):97-101.
    郭亚丽,赵由才,徐迪民.2002.上海老港生活垃圾填埋场基本特性的研究.上海环境科学,21(11):669~671.
    国家环境保护总局污染控制司.20000.城市固体废物管理与处理处置技术.北京:中国石化出版社
    韩冰,苏涛,李信,邢新会.2008.甲烷氧化菌及甲烷单加氧酶的研究进展.生物工程学报,24(9):1511-1519
    杭晓敏,杨虹.2001.垃圾填埋场中厌氧真菌18S rDNA的PCR扩增及鉴定.生物工程学报,17(5):515~519.
    何敏,何品晶,吕凡,邵立明.2008.垃圾填埋场覆土层Ⅱ型甲烷氧化菌的群落结构.中国环境科学,28(6):536~541.
    何品晶,邵立明.1994.城市生活垃圾BDM测定方法的特性及应用.环境卫生工程,2:27~29.
    胡敏云,陈云敏.2001.城市生活垃圾填埋场沉降分析与计算.土木工程学报,34(6):88~92.
    花岛正孝.1994.一般废弃物最终处分场.川崎:财团法人日本环境卫,
    黄立南,林里,陈月琴,蓝崇钰,屈良鹄.2002.藻类对垃圾填埋场渗滤液的净化.生态学报,22(2):253~258.
    黄立南,周惠,陈月琴,罗硕,蓝崇钰,屈良鹄.2004.传统垃圾填埋场渗滤液中古细菌16S rRNA基因的RFLP分析.中山大学学报,43(1):87~90.
    贾传兴,彭绪亚,袁容焕,蔡华帅,廖丽莎,曾彦龙.2006.生物可降解度判定生活垃圾堆肥处理的稳定性.中国给水排水,22(5):68-70.
    李国刚,曹杰山,汪志国.2002.我国城市生活垃圾处理处置的现状与问题.环境保护,30(5):35-38.
    李沁元,崔晓龙,张东华,彭谦,徐丽华.2004.云南腾冲热海两热泉菌藻席细菌多样性的研究.微生物学,44(4):431~435.
    梁战备,史奕,岳进.2004.甲烷氧化菌研究进展.生态学杂志,23(5):198~205.
    廖利,吴学龙,梁荣华.1996.深圳盐田垃圾场陈垃级基本特性的测试研究.武汉城市建设学院学报,13(1):62-64.
    凌代文.1995.厌氧微生物研究的新进展.微生物学通报,22(4):245~252.
    刘丹,杨立中.1997.德国垃圾卫生填埋技术的现状与发展.成都理工学院学报,24:152-157.
    刘疆英,徐迪民,赵由才,李国健,陈绍伟黄仁华.2002.城市生活垃圾填埋场沉降研究.土壤与环境,11(2):111~115.
    刘玉强,黄启飞,董路,王琪.2006.准好氧填埋结构耗氧半径的确定.中国环境科学,26(1):19-22.
    刘玉强,王琪,黄启飞,杨玉飞,董路.2005.不同填埋工艺对填埋气产生动态变化的影响.应用生态学报,16(12):2409~2412.
    鲁如坤.1999.土壤农化分析.北京:中国农业科学与技术出版社.
    罗明芳,吴昊,王磊,邢新会.2007.含有甲烷氧化菌的混合菌群特性研究.微生物学报,47(1):103-109
    内藤幸穗.1976.处理技术事典.东京:北出版印刷株式会社,125-134.
    钱小青,牛东杰,楼紫阳,赵有才.2006.填埋场矿化垃圾资源综合利用研究进展.环境卫生工程,14(2):62~64.
    钱学得,郭志平,施建勇,卢廷浩.现代卫生填埋场的设计与施工.北京:建筑工业出版社,2001.
    任仁.2000.温室气体甲烷的人为源及其减排的技术措施.环境导报,4:42-43.
    沈东升,何若,刘宏远.2003.生活垃圾填埋生物处理技术.北京:化学工业出版社
    石洪影,谢冰,魏铮,刘慧玲.2008.哈尔滨市大型生活垃圾堆场稳定化研究.哈尔滨商业大学学报(自然科学版),24(3):328-330.
    时景丽,王仲颖,胡润青,宋彦勤.2002.我国垃圾填埋气体排放和回收利用现状分析.中国能源,8:26~28.
    孙晓蕾,刘丹,李启彬.2008.垃圾压实密度对模拟回灌型准好氧填埋场稳定进程影响的试验研究.安全与环境学报,8(3):64--67.
    唐平,刘丹,赵由才.2007.准好氧填埋场稳定化指标的室内模拟研究.有色冶金设计与研究,28(2-3):159-163.
    田艳锦,黄启飞,李帆,魏世强.2006.填埋结构对渗滤液中氨氮脱除的影响.环境污染治理技术与设备,7(6):35-38.
    田艳锦,黄启飞,王琪,魏世强.2007.渗滤液回流对不同填埋结构甲烷变化规律的影响研究.环境污染与防治,,29(1):40-43.
    王洪嫒,江晓路,管华诗,牟海津.2004.微生物生态学一种新研究方法-T-RFLP技术.微生物学通报,31:90~94
    王罗春,赵由才,陆雍森.2003.垃圾BDM分析及其应用.环境卫生工程,11(1):6~8.
    王罗春,赵由才,陆雍生.2001.大型垃圾填埋场垃圾稳定化研究.环境污染治理技术与设备,2(4):15~17.
    王罗春.1999.垃圾填埋场稳定化进程研究[博士学位论文].上海:同济大学环境工程学院,
    王琪,董路.2000.填埋场加速稳定技术的研究.中国环境科学,20(5):461-464.
    王伟,韩飞,袁光钰,蒋建国,王志仁.2001.垃圾填埋场气体产量的预.中国沼气,19(2):20-24.
    肖昱,刘丹.2006.回灌型准好氧填埋场渗滤液中COD浓度的预测模型探讨.四川环境,,25(2):26-31.
    邢峰,周蔚然.2007.不同填埋结构渗滤液回流对填埋场渗滤液水质的影响.环境保护科学,33(4):52~54.
    徐勤,黄仁华.2002.二次开发综合利用老港处置场的探讨.环境卫生工程,10(1):21-24.
    徐振刚,张振勇.1999.甲烷排放源及减排对策.洁净煤技术,5(3):10-12.
    许玫英,曾国驱,任随周,岑英华,孙国萍,郭俊.2003.分子检测技术对活性污泥中氨氧化细菌的比较研究.微生物学报,43(3):372-378
    严昶升.1988.土壤肥力研究法.北京:农业出版社,.
    阳小霜,赵由才.2007.生活垃圾填埋场矿化垃圾的开采与综合利用有色冶金设计与研究,28(2-3):151~154.
    杨军,黄涛,曹江英.2007.垃圾填埋场降解规律研究.环境监测管理与技术,19(2):41-43.
    杨秀山,傅连明.1991.产甲烷菌的最新分类目录.中国沼气,18(3):187.
    杨玉飞,董路.黄启飞,王琪.2006.填埋结构对渗滤液回流效果影响研究.环境科学与技术,29(4):71~73.
    杨玉飞,黄启飞,董路,王琪.2005.填埋结构对填埋场稳定化的影响.中国环境科学,25(6):710-713.
    杨玉飞,黄启飞,王琪,刘玉强,董路.2005.准好氧填埋渗滤液水质变化特性研究.应用生态学报,16(11):2168~2172.
    余素林,吴晓磊,钱易.2006.环境微生物群落分析的T-RFLP技术及其优化措施[J].应用与环境生物学报,12(6):861~868
    张国政.1990.产甲烷菌的一般特征探讨.中国沼气,8(2):5-8.
    张华,赵由才.2004.生活垃圾填埋场中矿化垃圾的综合利用.山东建筑工程学院学报,19(3):46-50.
    张陆良,刘丹.2004.准好氧填埋早期渗滤液特征浅析.四川环境,23(3):28~31.
    张相锋,肖学智,何毅,陈家军,杨志峰.2006.垃圾填埋场的甲烷释放及其减排.中国沼气,24(1):3~5.
    张振营,陈云敏.2004.城市垃圾填埋场沉降模型的研究.浙江大学学报(工学版),38(9):1162-1165.
    张正安,黄启飞,屈明,王晓龙,庞香蕊.2006.准好氧填埋结构填埋气的空间变异性研究.环境科学研究,19(5):184~189.
    赵由才,黄仁华,赵爱华.2000.大型填埋场垃圾降解规律研究.环境科学学报,20(6):736-740.
    周大石.1990.沼气发酵原理与甲烷细菌的特性.环境科技,13(6):83~87.
    邹庐泉,何品晶,邵立明,李国建.2003.利用填埋层内微生物代谢控制生活垃圾填埋场渗滤液污染.环境污染治理技术与设备,4(6):70~73.
    Adam D R, Mark H, Paul P.2001. Aerobic landfill test cells and their implication for sustainable waste disposal. The Geographical Journal,167(3):235~247
    Archer D B and Kirsop B H.1990. The microbiology and control of anaerobic digestion In:Anaerobic Digestion:A Waste Treatment Technology (Wheatley, A, Ed.), Elsevier Science Publishing Ltd., London, England.,43~89.
    Barlaz M A, Green RB, Chanton J P, Goldsmith C D and Hater G R.2004. Evaluation of a Biologically Active Cover for Mitigation of Landfill Gas Emissions. Environment Science and Technology, 38(18):4891~4899.
    Barns S M, Takala S L and Kuske C R.1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Applied and Enviromental Microbiology,65: 1731~1737.
    Bodrossy L, Holmes E M, Holmes A J, Kovacs K L and Murrell J C.1997. Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Archive Microbiology,168,493~503.
    Boeckx P, Cleemput O, Villaralvo I D A.1996. Methane emission from a landfill and the methane oxidising capacity of its covering soil. Soil Biology and Biochemistry,28(10-11):1397~1405.
    Borjesson G, Chanton J, Svensson B H.2004. Methane Oxidation in Two Swedish Landfill Covers Measured with Carbon-13 to Carbon-12 Isotope Ratios. Journal of Environmental Quality,30:369~376.
    Borjesson G, Svensson B H.1997. Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Management and Research,15:33~54.
    Bourne D G, McDonald I R and Murrell J C.2001. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Applied and Enviromental Microbiology,67: 3802~3809
    Bowman J P, McCammon S A, Skerratt J H.1997. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology,143, 1451~1459.
    Bruuggeman J, Stephen J R, CHANG Yun-juan, Macnaughton S J, Kowalchuk G A, Kling E and White D C.2000. Competitive PCR-DGGE analysis of bacterial mixtures an internal standard and an appraisal of template enumeration accuracy. Journal of Microbiological Methods,40:111~123.
    Bull A T and Hardman,D J.1991. Microbial diversity. Current Opinion in Biotechnology,2,421~ 428.
    Calace N, Liberatori A, Petronio B M.2001. Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environmental pollution, 113(5):331~339.
    Charlotte S and Peter K. Environmental Factors Influencing Attenuation of Methane and Hydrochlorofluorocarbons in Landfill Cover Soils. Journal of Environmental Quality,2004,33:72~79.
    Charlotte S, Peter K.2004. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in Landfill Cover Soils. Journal of Environmental Quality,33:72~79.
    Christophersen M, Kjeldsen P, Holst H, Chanton J.2001. Lateral gas transport in a soil adjacent to an old landfill:Factors governing emission and methane oxidation. Waste Management and Research,19(6): 595~612.
    Chynoweth D P and Pullammanappaltd P.1996. Anaerobic digestion of municipal solid w astes.in:Microbiology of solid waste (Palmisano,A.C.and Bartaz, M.A.,Eds).71~113, CRC Press, Boca Raton, FL.
    Cossu R, Raga R, Rossetti D.2003. The PAF model:an integrated approach for landfill sustainability. Waste Management,23:37~44.
    Costello A M and Lidstrom M E.1999. Molecular Characterization of Functional and Phylogenetic Genes from Populations of Methanotrophs in Lake Sediments. Applied and Enviromental Microbiology,65: 5066-5074
    Czepiel P M, B Mosher, P M Crill and R C Harriss.1996. Quantifying the effects of oxidation on landfill methane emissions. Reviews of Geophysics,101 (D11):16721~16729.
    Dalton H.2005. The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane-oxidizing bacteria. Philosophical Transactions of the Royal Society. Biological Sciences, 360(1458):1207~1222.
    Dasselaar A P, Beusichen M L, Oenema O.1998. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant and Soil,204(2):213~222.
    Dean K W, Chris Z.1993. Municipal landfill biodegradation and settlement. Journal of Environment Engineering,121(3):214~224.
    Dedysh S N, Liesack W, Khmelenina V N, Suzina N E, Trotsenko Y A, Semrau J D, Bares AM, Panikov N S and Tiedje JM.2000. Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. International Journal of Systematic and Evolutionary Microbiology,50,955~969.
    Dunfield P F, Yuryev A, Senin P, Smirnova AV.2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature,450:879~882
    Eden R E, Smith R.1999. Guidance on best practice flaring of landfill gas in the UK [A]. Sardinia'99, 7th, International Waste Management and Landfill Symposium. Cagliari, Italy:499-506.
    Einola J K M, Kettunen R H, Rintala J A.2007. Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biology and Biochemistry,39(3):1156~1164.
    Felske A, Akkermans A D L.1998. Spatial homogeneity of abundant bacterial 16S rRNA molecules in Grassland soils. Microbial Ecology,36:31~36.
    Ferry J G.1993. Methanogenesis:ecology, physiology, biochemistry and genetics. Chapman and Hall, Inc. London.
    Filip Z, Pecher W, Berthelin J.2000. Michobial utilization and transformation of humic acid-like substances extracted from a mixture of municipal refuse and sewage sludge disposed of in a landfill. Environmental Pollution,109(1):83~89.
    Fjellbirkeland A, Torsvik V, Vreas L.2001. Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16S rDNA sequences. Antonie van Leeuwenhoek,79(2):209~217.
    Flessa H, Dorsch P, Beese F.1995. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. Journal of Geophysical Research,100(D11):23115~23124.
    Francois V, Feuillade G, Skhiri N, Lagier T and Matejka G.2006. Indicating the parameters of the state of degradation of municipal solid waste. Journal of Hazardous Materials B137,137(2):1008~1015.
    Fuse H, Ohta M.1998. Oxidation of trichloroethylene and dimethylsulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Bioscience Biotechnology and Biochemistry,62:1925~1931.
    Ge Yuan, He Ji-zheng, Zhu Yong-guan, Zhang Jia-bao, Xu Zhihong, Zhang Li-mei and Zheng Yuan-ming.2008. Differences in soil bacterial diversity:driven by contemporary disturbances or historical contingencies? International Society for Microbial Ecology,2:254~264.
    Gilbert B, Mcdonald I R.2000. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Applied and Environmental Microbiology,66:966~975.
    Godon JJ, Zumstein E, Dabert P, Habouzit F and Moletta R.1997. Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis. Applied and Environmental Microbiology,63:2802~2813.
    Grifin M E, McMahon K D, Mackie R I, Raskin L.1998. Methanogenic population dynamics during start up of anaerobic digesters treating municipal solid waste and biosolids.Biotechnology Bioengineering, 57:342-355.
    Haarstrick A, Mora-Naranjo N, Meima J, et al.2004. Modeling anaerobic degradation in municipal landfill. Environmental Engineering Science,21(4):471~484.
    Hamidi Abdul Aziz, Mohd Suffian Yusoff, Mohd Nordin Adlan, Nurul Hidayah Adnan and Salina Alias.2004. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Management,24(4):353~358.
    Hanashima M, Yamasaki K, and Kuroki T.1981. Heat and Gas Flow Analysis in Semi-aerobic Landfill. Journal of the Environmental engineering Division, Proceedings of the American Society of Civil Engineers,107,1~9.
    Hanson R S, Hanson T E.1996. Methanotrophic bacteria. Microbiology and Reviews,60:439~471.
    Heid C A, Stevens J, Livak K J, and Williams P M.1996. Real time quantitative PCR. Genome Research,6:986~994.
    Henckel T, Friedrich M, and Conrad R.1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenate. Applied and Enviromental Microbiology,65:1980~1990
    Hesselsoe M, Boysen S, Iversen N, Jorgensen L, Murrell J.C, McDonald I,Radajewski S, Thestrup H and Roslev P.2005. Degradation of organic pollutants by methane grown microbial consortia Biodegradation,16(5):435~448.
    Heyer J, Berger U, Hardt M, Dunfield P F.2005. Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. International Journal of Systematic and Evolutionary Microbiology,55,1817~1826.
    Hilger H A, Cranford D F, Barlaz M A 2000. Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology and Biochemistry,32(4):457~467.
    Holmes A J, Roslev P, McDonald I R, Iversen N, Henriksen K and Murrell J C.1999. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Applied and Environmental Microbiology,65:3312~3318.
    Horz H P, Yimga M T and Liesack W.2001. Detection of methanptroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, maxaF, and 16S rRNA and ribosomal DNA, incuding pmoA-based terminal restriction fragment length polymorphism profiling. Applied and Enviromental Microbiology,67:4177~4185.
    Houghton J T, Ding Y, Griggs D J, Noguer M, Linden P J V, Dai X, Maskell K, Johnson C A. Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,2001..
    Huang L N, Zhou H, Chen Y Q, Luo S, Lan C Y, and QU LH.2002. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiology Letter,214(2):235-240.
    Hudgins M and March J.1998. In situ Municipal Solid Waste Composting Using an Aerobic Landfill System. American Technologies Inc., (7):144~157.
    Hudgins M, Harper S.1999. Operational characteristics of two aerobic landfill systems. The 7th International Waste Management and Landfill Symposium in Sardinia, Italy, on October 4.
    IPCC. Intergovernmental Panel on Climate Change, Climate Change 2001:The Scientific Basis. Cambridge University Press, Cambridge, UK
    Kim H.2005. Comparative Studies of Aerobic and Anaerobic Landfills Using Simulated Landfill Lysimeters. Ph.D. Thesis, University of Florida, USA,.
    Kirk J L, Klironomos J N, Lee H and Trevors J T.2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution,133(3): 455-465.
    Kolb S, Knief C, Stubner S, Conrad R.2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology,69:2423~2429.
    Kruempelbeck I, Ehrig H J. Long term behaviour of municipal solid waste landfills in Germany. In: Proceedings Sardinia 1999, Seventh International Waste Management and Landfill Symposium, eds. Christensen T H, Cossu R, Stegmann R, CISA Publisher, Italy, vol. Ⅰ,27-36.
    Lee N, Kusuda T, Shimaoka T, Matsufuji Y and Hanashima M.1994. Pollutant Transformations in Landfill Layers. Waste Management and Research,12:33~48.
    Lee N, Kusuda T, Shimaoka T, Matufuji Y and Hanashima M.1993. Qualitative Transformation of Pollutants in Model Solid Waste Layers. Waste Management and Research.(The Japan Society of Waste Management Experts),4(2):55~63.
    Liang C, Das K C, McClendon R W.2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a bioslids composting blend. Bioresource Technology, (86): 131~137.
    Little C K, Palumbo A V.1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Applied and Environmental Microbiology,45:371~399.
    Liu W T, Marsh T L, Cheng H, and Forney LJ.1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Enviromental Microbiology,63:4516~4522.
    Logemann S, Sch J, Bijvank S, Loosdrecht M, Kuenen J G and Jetten M.1998. Molecular microbial diversity in nitrifying reactor system without sludge retention. FEMS Microbiology Ecology,27(3):239~ 249
    Matsufuji Y, Hanashima M.1997.. Characteristic and mechanism of Semi-aerobic Landfill on Stabilization of Solid waste. Proceedings of the first Korea-Japan Society of Solid Waste Management: 87-94.
    Matsufuji Y, Tachifuji A, Hanashima M.2000. Improvement technology for sanitary landfills by semi-aerobic landfill concept. Proceedings of the Asian Pacific Landfill Symposium Fukuoka:JSWME, 163-169.
    Matsuto T, Tanaka N, Koyama K.1991. Stabilization mechanism of leachate from semi-aerobic sanitary landfills of organic-rich waste. In:Proceedings Sardinia 91, Third International Landfill Symposium, Vol.Ⅰ, CISA, Cagliari.,876~888.
    Mccaig A E, Glover L A, Prosser J I.1999. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied Environmental Microbiology,65: 1721~1730.
    McDonald I R, Bodrossy L, Chen Y and Murrell J C.2008. Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environment Microbiology,74:1305~1315
    Michihiro S.1991. A Road to Sanitary Landfill-From Open Dump to Sanitary Landfill Advantages of the Fukuora Method and its Application废弃物学会论文志,,10(6):117-145.
    Miho U, Haruna H, Aoi S, Shimoyama T, Nakayama T, Okuwaki A, Nishino T and Hemmi H.2009. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of microbial community structure in landfill leachate. Journal of Hazardous Materials,164:1503~1508.
    Mohanty S R, Bodelier P L E, Conrad R.2007. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiology Ecology,62:24~31.
    Mor S, De Visscher A, Ravindra K, Dahiya R.P., Chandra A and Van cleemput O.2006. Induction of enhanced methane oxidation in compost:Temperature and moisture response. Waste Management,26(4): 381-388
    Murrel J C, Gilbert B.2000. Molecular biology and regulation of methane monooxygenase. Archive Microbiology,173:325~332.
    Murrell J C, McDonald I R and Bourne D G.1998. Molecular methods for the study of methanotrophs ecology. FEMS Microbiology Ecology,27:103~114.
    Nguyen H T, Elliot S J.1998. The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel coppercontaining three-subunit enzyme. Journal of biological chemistry,273: 7957~7966.
    Nguyen H T, Sheimke A K.1994. The nature of the copper ions in the membranes containing the particulate methane monoxygenase from Methylococcusca psulatus (bath). Journal of biological chemistry, 69; 14995~15005.
    Nico Boon, Wim De Windt, Willy Verstraete, Eva M. Top.2002. Evaluation of nested PCR-DGGE (denaturing gradient gelelectrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiology Ecology,39,101~112.
    Oldenhuis R, Vink R L.1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environment Microbiology, 55:2819~2826.
    Olsen G J, Woese C R and Overbeek R.1994. The winds of (evolutionary) change:breathing new life into microbiology. The Journal of Bacteriology,176:1~6.
    Owens J M, Chynoweth D P.1993. Biochemical methane potential of municipal solid waste components. Environmental Science and Technology,27(2):1~14.
    Pascal Boeckx, Oswald van Cleemput and Ida Villaralvo. Methane emission from a landfill and the methane oxidising capacity of its covering soil. Soil Biology and Biochemistry,1996,28:1397-1405.
    Pavese N S, Bodrossy L, Reichenauer T G, Weilharter A and Sessitsch A.2006.16S rRNA based T-RFLP analysis of methane oxidizing bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Applied Soil Ecology,31:251~266.
    Pinar G, Saiz JC, and Schabereiter GC.2001. Archaeal communities in two disparate deteriorated ancient wall paintings:detection, identification and temporal monitoring by denaturing gradient gel electrophoresis. FEMS Microbiology Ecology,37:45~54.
    Pol A, Heijmans K, Harhangi H R, et al.2007. Methanotrophs below pH by a new Verrucomicrobia species. Nature,450:874~871.
    Pourcher A M, Sutra L, Hebe I, et al.2001. Enumeration and Characterization of Ceiluotytic Bacteria From Refuse of a landfill. FEMS Microbiology Ecology,34:229~241.
    Purcell B.2000. Aerox landfilling:a change of approach. Waste Management,25-27.
    Purcell B.2000. Aerox landfilling:the operational implications. Waste Management,27-28.
    Read A D, Hudgins M, Harper S, Phillips P and Morris J.2001. The successful demonstration of aerobic landfilling:the potential for a more sustainable solid waste management approach?. Resources, Conservation and Recycling,32:115~146.
    Robert K H, Michele R N, Paul R F.1993. Chemical characterization of freshkills landfill refuse and extracts. Journal of Environment Engineering,119(6):1176~1195.
    Seghers D, Siciliano S D, Top E M, and Verstraete W.2005. Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biology and Biochemistry,37:187~193
    Seghers D, Verthe K, Reheul D, Bulcke R, Boeckx P Verstraete W and Siciliano SD.2003. Long-term effect of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environmental Microbiology,5:867~877.
    Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H and Nakamura K.1998. Phylogenetic diversity of mesophilic and thermophilic granular sludge determined by 16S rRNA gene analysis. Microbiology,144:2655~2665.
    Shen Ju-pei, Zhang Li-mei, Zhu Yong-guan, Zhang Jia-bao, and He Ji-zheng.2008. Abundance and composition of ammonia- oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology,10(6):1601~1611
    Shen R N, Yu L.1997. Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria:purification and properties of a soluble methane monooxygenase f rom Methylomonus sp.GYJ3. Archives of Biochemistry and Biophysics,345:223~229
    Shimaoka T, Matsufuji Y. and Hanashima M.2000. Mechanism of Self-Stabilization of Semi-Aerobic Landfill. Proceedings of the 5th Annual Landfill Symposium, Solid Waste Association of North America: 171-186.
    Soutaro H.1993. The Current State and Future of Landfill Management in Japan. NTEP (International Environmetal Planning Center) Newsletter, (3):9~14.
    Sowers G F.1973. Settlement of waste disposal fills. In:Proceeding of 8th international Conference on Soil Mechanics and Foundstion Engineering, Moscow,.
    Spring S, Schulze R, Overmann J, Schleifer K H.2000. Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes:molecular and cultivation studies. FEMS Microbiology Reviews,24:573~590.
    Stralis-Pavese N, Bodrossy L, Reichenauer T G, Weilharter A and Sessitsch A.2006.16S rRNA based T-RFLP analysis of methane oxidizing bacteria-Assessment, critical evaluation of menthodology performance and application for landfill site cover soils. Applied Soil Ecology,31:251~266.
    Suna E A, Turgut T, Onay, Orhan Yenigun.2008. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology 99,5418~5426.
    Suzuki M T, Taylor L T, DeLong E F.2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Applied and Environmental Microbiology,66:4605~ 4614.
    Theisen A R, Ali M H, Radajewski S, Dunfield P F, McDonald I R, Dedysh S N, Miguez C B and Murrell J C.2005. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Molecular Microbiology,58:682-692.
    Tsubota J, Eshinimaev B T, Khmelenina V N, and Trotsenko Y A.2005. Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. International Journal of Systematic and Evolutionary Microbiology,55,1877~1884.
    Visscher A D, D Thomas, Boeckx P, and Cleemput O V.1999. Methane Oxidation in Simulated Landfill Cover Soil Environments. Environmental Science and Technology,33:1854~1859.
    Vreas L, Torsvik V.1998. Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology,36:303~315.
    Wagner M, Loy A, Nogueira R, Purkhold U, Lee N and Daims H..2002. Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek,,81(1-4):665~680
    William E E, William S O.1997. Biodegradability of municipal solid waste components in laboratory-scale landfills. Environmental Science and Technology,31(3):911~917.
    Wise M G, McArhtur J V, and Shimkets L J.1999. Methanotrophs diversity in landfill soil:Isolation of novel type Ⅰ and type Ⅱ methanotrophs whose presence was suggested by culture-independent 16S rDNA analysis. Applied and Enviromental Microbiology,65:4887~4897.
    Wise M G, McArthur J V, Shimkets L J.2001. Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type Ⅰ methanotrophs.International Journal of Systematic and Evolutionary Microbiology,51,611~621.
    Woese C R.1987. Bacterial evolution. Microbiology and Molecular Biology Reviews,51:221~271.
    Wu J H, Liu W T, Tseng I C, and Cheng S S.2001. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology,147:373~382.
    Yang C H and Crowley D E.2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and Enviromental Microbiology,66:345~351.
    Yasushi Matsufuji, Masataka Hanashima, Syuji Nagano, and Ayako Tanaka.1993. Generation of greenhouse effect Gases from different landfill types. Engineering Geology, (34):181-187.
    Yu Z, Morrison M.2004. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Applied and Enviromental Microbiology,70:4800~4806.
    Zach, A, Humer, M, Gomiscek, T, Heiss-Ziegler, C, Grassinger, D, and Lechner P.1999. Anapproach to a low-emission landfill. In:T.H. Christensen, R. Cossu, and R. Stegmann (eds.):Sardinia 99, Proceedings of the Seventh International Landfill Symposium (Ⅰ, pp.243-250). CISA, Cagliari, Italy.
    Zhao Y C, Li H, Wu J, and Gu Guowei.2002 Treatment of leachate by aged-refusebased biofilter Journal of Environmental Engineering,128(7):662~668.
    Zhao Y C, Shao F.2004. Use of an aged-refuse biofilter for the treatment of waste waters from feedlots. Environmental Engineering Science,21(3):349~360.
    Zhao Y C, Wang L C, Huang R H, Xu DM and GU G W.2002. A comparison of refuse attenuation in laboratory and field scale lysimeters. Waste Management,22:29~35.
    Zheng Yong, Zhang Li-Mei, Zheng Yuan-Ming, HongjieDi and He Ji-Zheng.2008. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. Journal of soil and sediments,8(6):406~414.
    Zinder S H, Anguish T and Cardwell S C.1984. Effects of Temperature on Methanogenesis in a Thennophilic (58℃) Anaerobic Digestor. Applied and Environment Microbiology,47:808~813

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700