褐煤本源菌生气特征及其作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阐明微生物与煤中有机质相互作用而生气的特征和机理,是深入理解煤层气成因及创新煤层气开采方法的重要基础。为此,本文以昭通盆地褐煤为对象开展次生生物煤层气生成的模拟实验研究,并对生气机制进行了探讨。
     研究发现,褐煤样品中有本源活性厌氧细菌存在,以厌氧纤维素分解菌为主,硫酸盐还原菌极少;成功富集到本源产甲烷菌,以革兰氏阳性杆菌为主,个体差异较大。在此基础上,以富集到的本源菌为菌源,利用褐煤样品为底物进行了生物气生成模拟实验。结果表明:本源厌氧菌经过适应期后,能够利用褐煤有机质大量生气;次生生物气经历了两个产气周期,第一周期为腐植组产气期,第二周期是惰质组、稳定组产气期。认为产甲烷菌数量和腐植组含量直接影响生成潜力,矿物质对生气量影响明显;第一个周期的生气机理是乙酸发酵,第二个周期有CO2还原作用参与其中。
     结果显示:所生成甲烷的δ13C1值和δD均处于次生生物气正常范围;δ13C1随着降解时间延长而变轻,这主要受底物类型和甲烷生成途径控制;12C有明显从原煤向生物气中迁移的特征,认为母源继承关系和显微组分构成是造成迁移行为差异的重要原因。同时发现:在厌氧细菌降解作用下,褐煤族组分中饱和烃是受微生物降解的主要成分,厌氧细菌对偶数碳烷烃的降解能力更强,对正构烷烃的降解能力强过对异构烷烃的降解,低碳数的正构烷烃受降解程度大于高碳数烷烃,降解后期长链烷烃才受到明显的生物降解作用。
     基于实验结果认为,褐煤次生生物气产出是多种微生物共同作用的结果。随降解活动的进行,体系中优势微生物、生物酶发生改变和更替,引起pH值和VFA含量变化。降解初期发酵细菌为优势菌种,产甲烷菌和辅酶F420活性受到酸性物质的抑制。随后,产氢产乙酸菌成为优势菌,它们利用发酵细菌代谢产物产生乙酸和氢,两者之间具有食物链关系。辅酶F420活性在静止期后增长迅速,并在产气高峰期达到最大,体现本源产甲烷菌对褐煤底物的良好适应性,是评价产气量高低的有效指标。
     通过改变生气条件,研究底物类型、褐煤粒度、矿井水和煤矸石对褐煤生物气生成的影响。结果表明:不同配比的酵母浸出液、甲醇和乙酸钠溶液对生物气生成具有抑制或激活作用,较小粒度褐煤有利于提高生气率,不同比例矿井水的添加能够有效增加次生生物气产量。煤矸石本身不能作为基质被厌氧细菌利用。
Elucidating the characteristics and mechanism of the reaction of microorganisms and organic matter in coal to produce bio-gas is a very important foundation to the further understanding of the genesis of coalbed gas and the innovation of coalbed gas exploration. So we select the brown coal in Zhaotong basin as the research object to study the generation of secondary biogenic coalbed gas, and then discuss its generation mechanism.
     The results show that, the brown coal samples have active anaerobic bacteria, in which cellulose decomposition bacteria are in the majority and sulfate-reducing bacteria are very few. Local methanogen are successfully enrichment cultivated and they are mainly G+ bacillus, and the individual sizes have large differences. Based on that, the local bacteria and brown coal samples are selected as bacterial sources and substrates to study the generation of secondary biogenic gas from the brown coal. The results prove that, after resting period, the local anaerobic bacteria could use the brown coal to produce a large amount of biogenic gas. Secondary biogenic coalbed gas has two generation periods. The substrate that is biodegraded to produce gas in the first period is humic matter, which in the second period is inertinite and liptinite. The amount of methanogen and content of humic matter in the brown coal influences the generation potential of secondary biogenic coalbed gas directly and the mineral in coal has significant effect on the production of the secondary biogenic coalbed gas. The generation path way of CH4 in the first cycle is acetate fermentation and the second with CO2-reduction involved.
     The results show that, the value of bothδ13C1 andδD of the produced CH4 are in the normal distribution ranges compared with those of biogenic methane. With the time increasesδ13C1 decreases, which is mainly controlled by the substrate style and the generation path way of CH4. 12C significantly transfers from raw coal to biogenic methane and the reason may be the inheriting from original source and the component of organic maceral in coal. Meanwhile, it is found that, by the degradation of anaerobic bacteria, saturated hydrocarbon in the brown coal group is the main biodegraded composition. Anaerobic bacteria degradation ability to even-numbered alkane is stronger than to odd-numbered alkane, to n-alkanes stronger than to isoalkane, to n-alkanes with lower carbon number stronger than to n-alkanes with more carbon number, and only in the later stage of biodegradation the long chain alkanes starts to be degraded by bacteria significantly.
     Based on the experimental results, the generation of secondary biogenic coalbed gas from brown coal is considered to be the result of interaction of various microorganisms. With the biodegradation, the dominate bacteria and enzyme in the system are changed and replaced, which leads to the changes of pH and concentrations of VFA. In the initial stage of biodegradation, fermentation bacteria is the dominate bacteria and methanogen and activity of coenzyme F420 are inhibited by the acid matter produced by fermentation bacteria. Syntrophic acetogenic bacteria become dominate bacteria followed by fermentation bacteria. They use the metabolites from fermentation bacteria to produce acetate and H, which shows the food chain relationship with fermentation bacteria. Activity of coenzyme F420 increases quickly after resting period and reaches the maximum at the peak of biogas generation, showing the good adaptability of local methanogen to brown coal substrate and activity of coenzyme F420 is the effective index to evaluate the biogas production.
     Through changing the gas production conditions, the effects of different styles of substrate, brown coal size, mineral drainage and gangue on the generation of secondary biogenic coalbed gas from brown coal are studied. The results show that, different ratios of yeast extract, methanol and odium acetate solution have inhibition or activation effect on the generation of the secondary biogenic coalbed gas. Smaller brown coal size is good for increasing the gas production. The adding of mining drainage with different proportions activates the production of the secondary biogenic coalbed gas effectively. Gangue itself can not be substrate used by anaerobic bacteria.
引文
[1] Abram J. W., Nedwell D. B. 1987. Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen[J]. Arch Microbial, 117: 89-92.
    [2] Ayers W. B. Jr. 2002. Coalbed gas systems, resources and production and a review of contrasting cases from the San Juan and Powder River basins[J]. AAPG Bulletin, 86 (11): 1853-1890.
    [3] Baker K. H. 1994. Bioremediation of surface and subsurface soils. In: Baker K. H., Herson D.S. (Eds). Bioremediation. Mc Graw-Hill, NewYork, pp. 203-259.
    [4] Bryant M.P. 1976. The microbiology of anaerobic degradation and methanogenesis with special reference to sewage[J]. Microbial energy conversion UNTAR symposium, (6): 107-117.
    [5] Carol I. B., Tim A.M. 2008. Secondary biogenic coal seam gas reservoirs in New Zealand: A preliminary assessment of gas contents[J]. International Journal of Coal Geology, 76:151-165.
    [6] Cheng Yun-huan, Sang Shu-xun, Huang Hua-zhou, et al. 2007. Variation of Coenzyme F420 Activity and Methane Yield in Landfill Simulation of Organic Waste[J]. Journal of China University of Mining and Technology, 17(3): 403-408.
    [7] Chung H. M., Sacktt W.M. 1978. Carbon isotope fractionation during coal pyrolysis[J]. Fuel, 57:734-735.
    [8] Conrad R. 2005. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J].Organic Geochemistry, 36(5):739-752.
    [9] Dahllof I. 2002. Molecular community analysis of microbial diversity[J]. Curr. Opin. Biotechnol., 13(3):213-217.
    [10] Daniel S. L., Fulton G., Spencer R. W., et al. 1980. Origin of hydrogen in methane produced by Methanobacterium thermo auto trophicum[J]. Bacterial, 141:694-698.
    [11] Dariusz S., Maria A. M., Arndt S., et al. 2008. Variability of geochemical properties in a microbiallly dominated coalbed gas system from the eastern margin of the Illinois Basin, USA[J].International Journal of Coal Geology, 76: 98-110.
    [12] Degens E. T., Stoffers P. 1976. Stratified waters as a key to the past[J]. Nature, (263): 22-27.
    [13] Dolfing J., Mukler J. W. 1985. Comparison of methane production rate and coenzyme F420 content of methanogenic consortia I anaerobic granular sludge[J]. Appl. Environ. Microbial, 49(5):1142-1145.
    [14] Donald A.K., Romeo M. F., Christophe V., et al. 2008. Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: Implications for CBM regeneration[J]. International Journal of Coal Geology, 76:3-13.
    [15] Lange M., Ahring B.K. 2001. A comprehensive study into the molecular methodology and molecular biology of methanogenic[J]. Archaea FEMS Microbial Rev., 5(12):553-571.
    [16] Li Dong-mei, Hendry P., Faiz M. 2008. A survey of microbial populations in some Australian coalbed methane reservoirs[J].International Journal of Coal Geology, 76:14-24.
    [17] Giggenbach W. F. 1982. Carbon-13 exchange between CO2 and CH4 under geothermal conditions[J].Geochmica et Cosmochimica Acta, 46:159-165.
    [18] Gilcrease P. C. 1997. Mass transfer effects on the bioreduction of TNT solids in slurry reactors [D].PhD dissertation, Colorado State University, Fort Collins, CO.
    [19] Gunaseelan V.N. 1997. Anaerobic digestion of biomass for methane production: A review[J]. Biomass and Bioenergy, 13(1):83-114.
    [20] Kotarba M. J. 2001. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins, Poland[J].Organic Geochemistry, 32:163-180.
    [21] Kotarba M. J., Lewan M. D. 2004. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis[J]. Organic Geochemistry, 35:615-646.
    [22] Lange M., Ahring B. K. 2001. A comprehensive study into the molecular methodology and molecular biology of methanogenic[J]. Archaea FEMS Microbiol. Rev., 5(12): 553- 571.
    [23] Manzur A., Smith J. W. 2001. Biogenic methane generation in the degradation of eastern Australian Permian coals [J].Organic Geochemistry, 32:809-816.
    [24] Michael F., Anna M., Steven P. 2008. Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basin, U.S.A. [J]. International Journal of Coal Geology, 76:86-97.
    [25] Michael S. G., Keith C. F., Patrick C. G. 2008. Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A. [J].International Journal of Coal Geology, 76:34-45.
    [26] Kotarba M. J., Rice D. D. 2001. Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland[J].Applied Geochemistry, 16:895-910.
    [27] Mohanty S. R. K., Bharati N. D., Rao V. R., et al. 2000. Influence of heavy metals on methane oxidation in tropical rice soils [J]. Ecotox. Environ. Safety, 47:277-284.
    [28] Nilanjan C., Gouranga M. S., Sujit C. L. 2003. Effect of physical irradiation and chemical mutagen treatment on methane production by methanogenic bacteria[J]. World Journal of Microbiology & Biotechnology, 19:145-150.
    [29] Pappe M. S., Giovannoni S. J. 2003. The uncultured microbial majority[J]. Annual Review of Microbiology, 57(1):369-394.
    [30] Rice D. D., Claypool G. E. 1981. Generation, accumulation and resource potential of biogenic gas[J]. AAPG Bull, 65(1):5-25.
    [31] Rice D. D. 1993. Composition and origins of coalbed gas [A].Law B. E., Rice D. D., eds. Hydrocarbons from coal [M].AAPG Studied in Geology Series 38, 159-184.
    [32] Rightmire C. T., Eddy G. E., Kirr J. N. 1984. Coalbed methane resources of the United States[R]. AAPG Studied in Geology Series #17,Ⅶ-Ⅷ, 1-14.AAPG, Tulsa, Oklahoma, USA.
    [33] Romeo M. F., Cynthia A. R., Gary D. S., et al. 2008. Methanogenic pathways of coal-bed gas in the Power River Basin, United States: The geologic factor [J]. International Journal of Coal Geology, 76:52-75.
    [34] Santosh Y., Sreekrishan T. R., Kohli S., et al. 2004. Enhancement of biogas production form solid substrates using different techniques-a review [J]. Bioresource Technology, (95):1-10.
    [35] Schoell M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J].Geochimicaet Cosmochimica Acta., 44(5):649-661.
    [36] Scott A. R. 1993. Composition and origin of coalbed gases from selected basins in the United States[A].International coalbed methane symposium proceedings, 207-222.
    [37] Scott A. R. 1999. Improving coal gas recovery with microbially enhanced coalbed methane. In:Mastalerz M., Golding S. D., (Eds) Coalbed Methane: Scientific, Environmental and Economic Evaluation. Kluwer, Dordrecht, pp, 89-110.
    [38] Scott A. R., Kaiser W. R., Ayers W. B. Jr. 1994. Thermogenic and secondary biogenic gases, San Juan basin, Coloabo and New Mexico-Implications for coalbed gas producibility[J].AAPG Bulletin, 78(8):1186-1209.
    [39] Smith J. W., Pallasser R. J. 1996. Microbial origin of Australian coalbed methane[J].AAPG Bulletin, 80:891-897.
    [40] Smith J. W. 1999. The development of an understanding of the origins of the Sydney and Bowen Basin gases. In: Mastelerz M., Glikson M., Golding S. D. (Eds), Coalbed Methane: Scientific, Environmental and Economic Evaluation. Kluwer Academic, pp, 271-277.
    [41] Steve H. H., Richard L. S., Charles E. B. 2008. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals[J].International Journal of Coal Geology, 76:46-51.
    [42] Thauer R K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson[J]. Microbiology, 144(9): 2377-2406.
    [43] Weiima J., Stams A. J. M. 2001. Methanol conversion in higher-rate anaerobic reactors [J].Water Science Technology, 44(8):7-14.
    [44] Whiticar M. 1989. A geochemical perspective of natural gas and atmospheric methane[J].Organic Geochemistry, 16(1~3):531-547.
    [45] Whiticar M. J. 1999. Carbon and hydrogen isotope systematics of microbial formation and oxidation of methane[J]. Chemical Geology, 161:291-314.
    [46] Whiticar M. J., Faber E., Schoell M. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotopic evidence[J]. Geochimica et Cosmochimica Acta, 50:693-709.
    [47] Woltmate I., Whiticar M. J., Schoell M. 1984. Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake[J]. Limmol Oceanogr, 29: 985-992.
    [48] Zeikus J. G. 1977. The biology of methanogenic bacteria[J]. Bacteriological reviews. 41:514-541.
    [49] Zhu Zhi-min, Shen Bing, Cui Hong-qin, et al. 2007. Genetic analysis of coal-bed methane in Fuxin Basin[J].Geological Science and Technology Information, 26(3):67-70.
    [50] Zinder S. H. 1993. Physiological ecology of methanogens. In: Ferry J. G. (ed), Methanogenesis, pp, 128-206.
    [51] Palmer I. D., Metcalfe R. S., Yee D., et al. 1996.煤层甲烷储层评价及生产技术[M].秦勇,曾勇编译.徐州:中国矿业大学出版社, 26-17.
    [52] Scott A. R., Kaiser W. R., Ayers W.B. Jr. 1997.美国圣胡安盆地的次生生物成因和热成因煤层气[J].天然气地球科学, 8(4):29-35.
    [53] Smith J. W. 1996.澳大利亚煤层甲烷的微生物成因[J].天然气勘探与开发, 19(4):62-67.
    [54]包茨. 1989.天然气地质学[M].北京:石油出版社.
    [55]陈坚. 1999.环境生物计数[M].北京:中国轻工业出版社.
    [56]陈践发,李春园,沈平,等. 1995.煤型气烃类组分的稳定碳、氢同位素组成研究[J].沉积学报, 13(2): 59-69.
    [57]陈荣书. 1989.天然气地质学[M].武汉:中国地质大学出版社.
    [58]陈义才,沈忠民,罗小平. 2007.石油与天然气有机地球化学[M].北京:科学出版社.
    [59]承磊. 2007.石油烃厌氧生物降解过程中的产甲烷古菌研究[D].中国农业科学院硕士学位论文.
    [60]戴金星,戚厚发,宋岩,等. 1986.我国煤层气组分、碳同位素类型及其成因和意义[J].中国科学( B辑), 12: 1317-1326.
    [61]戴金星,陈英. 1993.中国生物气中烷烃组分的碳同位素特征及其鉴别标志[J].中国科学(B)辑, 303-309.
    [62]戴金星. 1992.各类烷烃气的鉴别[J].中国科学(B)辑, (2): 183-193.
    [63]邓宇,张辉,钱贻伯,等. 1996.南海莺琼盆地沉积环境中厌氧纤维素分解菌的分布与作用[J].应用与环境生物学报, 2(3): 303-307.
    [64]丁安娜,连莉文,张辉,等. 1995. 1845m~2608m气源岩中产甲烷菌的富集培养和发酵产气实验研究[J].沉积学报, 13(3): 117-125.
    [65]丁安娜,王明明,李本亮,等. 2003.生物气的形成机理及源岩的地球化学特征——以柴达木盆地生物气为例[J].天然气地球科学, 14(5): 402-407.
    [66]窦启龙,陈践发,薛燕芬,等. 2005.实验室条件下微生物降解原油的地球化学特征研究[J].沉积学报, 23(3): 542-547.
    [67]杜万荣. 1982.云南第三纪褐煤田地质特征及其聚煤规律.云南地质, 1(3): 234-245.
    [68]段利江,唐书恒,朱宝存. 2006.关于煤层甲烷稳定碳同位素研究的回顾与展望[J].中国煤层气, 3(4): 35-38.
    [69]傅雪海,秦勇,韦重幍. 2007.煤层气地质[M].徐州:中国矿业大学出版社.
    [70]高玲,宋进. 1998.云南保山盆地生物气生成模拟实验及生物气资源预测[J].成都理工学院学报, 25(4): 487-494.
    [71]公维佳,李文哲,刘建禹. 2006.厌氧消化中的产甲烷菌研究进展[J].东北农业大学学报, 37(6): 838-841.
    [72]龚绍礼. 1989.河南禹县煤矿区煤质特征与成煤环境的关系[J].沉积学报, 7(3): 83-89.
    [73]关德师. 1990.甲烷菌的生成条件与生物气[J].天然气工业, 10(5): 13-20.
    [74]关德师,牛嘉玉,郭丽娜,等. 1995.中国非常规油气地质[M].北京:石油出版社. 8-17.
    [75]官敏,贺延龄,刘永红,等. 2006.铝盐对厌氧微生物产甲烷活性的影响研究[J].中国沼气, 24(1): 18-20.
    [76]贺延龄. 1998.废水的厌氧生物处理[M].北京:中国轻工业出版社.
    [77]胡家俊,周群英. 1988.环境工程微生物学[M].北京:高等教育出版社.
    [78]胡纪萃,周孟津,左剑恶. 2003.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社.
    [79]胡可可,赵峰,赵春伟,等. 2009.磁化—厌氧生物降解有机物的影响机理分析[J].环境科学与技术, 32(3): 112-115.
    [80]黄籍中. 1998.论天然气甲烷碳同位素偏负的基因[J].天然气勘探与开发, 21(1): 27-35.
    [81]康晏,王万春,任军虎. 2004.生物气生成的地球化学因素分析[J].矿物岩石地球化学通报, 23(4): 350-354.
    [82]李刚,杨立中,欧阳锋. 2001.厌氧消化过程控制因素及pH和Eh的影响分析[J].西南交通大学学报, 36(5): 518-521.
    [83]李谨,胡国艺,张英,等. 2008.生物气CO2还原途径中碳同位素分馏作用研究[J].地学前缘, 15(5): 357-342.
    [84]李建政,马超,郭晓宇. 2009.产氢产乙酸菌株AX2的生长条件及产乙酸特性[J].哈尔滨工业大学学报, 41(4): 100-103.
    [85]李明潮,张五济. 1990.中国主要煤田的浅层煤成气[M].北京:科学出版社.
    [86]李明宅,张洪年,刘华. 1996.生物气模拟试验的进展[J].石油与天然气地质, 17(2): 117-125.
    [87]李明宅,张洪年,张辉,等. 1997.煤的厌氧微生物降解研究[J].石油实验地质, 19(3): 274-277.
    [88]李明宅,张辉. 1998.煤的厌氧降解产气作用[J].天然气工业, 18(2): 10-14.
    [89]李贤庆,王铁冠,钟宁宁,等. 2000.未熟—低熟烃源岩有机岩石学研究的若干进展[J].地学前缘(中国地质大学,北京), 7(3): 103-110.
    [90]李晓华,李国会,张燕生. 2006.无机盐对乙酸底物甲烷发酵动力学的影响[J].农业工程学报, 22(增刊): 5-9.
    [91]李亚新,杨建刚. 2000.微量金属元素对甲烷菌激活作用的动力学研究[J].中国沼气, 18(2): 8-16.
    [92]李亚新,董春娟. 2001.激活甲烷菌的微量元素及其补充量的确定[J].环境污染与防治, 23(3): 116-118.
    [93]黎霞. 2008.油藏发酵细菌的鉴定及石油烃厌氧生物降解研究[D].中国农业科学院硕士学位论文.
    [94]刘冬梅,张玉贵,唐修义. 1997.煤层气中甲烷δ13C值偏轻的机理探讨.焦作工学院学报, 16 (2): 89-94.
    [95]刘坤岗. 1983.昭通褐煤盆地的成因类型[J].煤田地质与勘探, 1: 58-60.
    [96]刘洪林,李景明,王红岩,等. 2005.内蒙古东部低煤阶含煤盆地群的煤层气勘探前景[J].天然气地球科学, 16(6): 771-775.
    [97]刘洪林,刘春涌,王红岩,等. 2006.西北低阶煤中生物成因煤层气的成藏模拟实验[J].新疆地质, 24(2): 149-153.
    [98]刘洪林,李贵中,王红岩,等. 2006.西北低煤阶盆地生物成因煤层气成藏模拟研究[J].石油实验地质, 28(6): 600-603.
    [99]刘洪林,李景明,王红岩,等. 2006.浅议我国低煤阶地区的煤层气勘探思路[J].煤炭学报, 31(1): 50-53.
    [100]刘洪林,李景明,李贵中,等. 2007.浅议我国低煤阶地区煤层气的成藏特点——从甲烷风化带的角度[J].天然气地球科学, 18(1): 125-129.
    [101]刘全有,刘文汇,孟仟祥. 2006.塔里木盆地煤岩在不同介质条件下热模拟实验中烷烃系列有机地球化学特征[J].天然气地球科学, 17(3): 313-318.
    [102]刘聿太. 1990.沼气发酵微生物及厌氧技术[M].北京:科学出版社, 57-100.
    [103]陆安定,刘桂霞,连莉文,等. 1991.生物甲烷形成实验与生物气聚集的有利地质条件探讨[J].石油学报, 12(3): 7-17.
    [104]穆亚蓬,王万春,宋振响. 2008.生物气源岩评价指标研究现状及展望[J].天然气地球科学, 19(6): 775-779.
    [105]钱凯,赵庆波,汪泽成. 1996.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社.
    [106]钱贻伯,连莉文,陈文正,等. 1998.生物气形成过程中CH4碳同位素变化规律的研究[J].石油学报, 19(1): 29-35.
    [107]钱泽澍,闵行. 1988.沼气发酵微生物学[M].杭州:浙江科技出版社.
    [108]仇天雷,承磊,罗辉,等. 2006.一株近海沉积物中产甲烷菌的分离及鉴定[J].中国沼气, 25(2): 3-7.
    [109]秦勇,唐修义,叶建平. 1998.华北上古生界煤层甲烷稳定碳同位素组成与煤层气解吸—扩散效应[J].高校地质学报, 4 (2): 127-132.
    [110]秦勇,唐修义,叶建平,等.中2000.国煤层甲烷稳定碳同位素分布与成因探讨[J].中国矿业大学学报, 29 (2): 113-119.
    [111]秦勇. 2003.中国煤层气地质研究进展与综述[J].高校地质学报. 9(3): 339-358.
    [112]秦勇. 2005.国外煤层气成因与储层物性研究进展与分析[J].地学前缘, 12(3): 289-298.
    [113]施华均,钱泽澎,闵航. 1995.硫酸盐对厌氧消化产甲烷的影响[J].浙江大学学报, 21(1): 27-32.
    [114]帅燕华,张水昌,苏爱国,等. 2006.生物成因天然气勘探前景初步分析[J].天然气工业, 26(8): 1-5.
    [115]帅燕华,张水昌,赵文智,等. 2007.陆相生物气纵向分布特征及形成机理研究——以柴达木盆地涩北一号为例[J].中国科学(D辑), 37(1): 46-51.
    [116]石昕. 2000.塔里木盆地库车坳陷煤成烃地质地球化学特征[D].中国石油天然气股份公司石油勘探开发科学研究院.
    [117]沈忠民,罗小平,刘四兵. 2007.云南保山盆地生物气源岩地球化学特征及环境指示意义[J].石油天然气学报, 29(4): 52-57.
    [118]孙俊民. 1998.煤层气的成因及地球化学特征[J].焦作工学院学报, 17(4): 245-248.
    [119]孙敏卓,李思政,房嬽,等. 2008.播娘蒿籽可溶有机质的分布及生物化学意义[J].分析测试学报, 27(4): 426-429.
    [120]孙万禄,应文敏,王树华,等. 1997.煤层气地质学基本问题的探讨[J].石油与天然气地质, 18(3): 189-194.
    [121]唐敏,邓寅生,赵福玲. 2008.煤矸石井下填充后微生物降解残渣的分析[J].能源环境保护, 22(3): 25-28.
    [122]唐修义,黄文辉. 2004.中国煤中微量元素[M].北京:商务印书馆, 136-141.
    [123]陶明信. 2005.煤层气地球化学研究现状与发展趋势[J].自然科学进展, 15(6): 648-652.
    [124]陶明信,王万春,解光新,等. 2005.中国部分煤田发现的次生生物成因煤层气[J].科学通报, 50(增刊): 14-18.
    [125]陶明信,李晓斌,史宝光,等. 2007.次生生物气特征、形成条件与资源潜力[C].第二届全国应用地球化学学术讨论会论文专辑,云南地质, 25(4): 407-408.
    [126]王爱宽,秦勇,林玉成,等. 2010.褐煤中天然产甲烷菌富集培养与生物气产出模拟[J].高校地质学报, 16(1): 1-6.
    [127]王铁冠,等. 1990.生物标志物地球化学研究[M].武汉:中国地质大学出版社.
    [128]王晓峰,刘文汇,徐永昌,等. 2006.不同成因天然气的氢同位素组成特征研究进展[J].天然气地球科学, 17(2): 163-169.
    [129]王万春. 1996.天然气、原油、干酪根的氢同位素地球化学特征[J].沉积学报, 14(增刊): 131-135.
    [130]王云鹏,耿安松,刘德汉,等. 2004.页岩、煤、沥青和原油的生气实验研究[J].沉积学报, 22(增刊): 106-110.
    [131]吴锦华,韦朝海,李平. 2009.金属离子及盐度对硝基苯厌氧生物降解过程的影响[J].环境科学研究, 22(1): 99-102.
    [132]吴俊. 1994.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社. 46-74.
    [133]吴佩芳等. 2000.煤层气开发的理论与实践[M].北京:地质出版社. 5.
    [134]武法东. 1990.山西省河东煤田北部石炭、二叠纪煤层中的硫及煤灰成分的相关性[J].地球科学——中国地质大学学报, 15(4): 431-440.
    [135]夏遵义,白志强. 2004.利用产甲烷菌进行CO2地质固定在中国生物气田的应用初探[J].石油勘探与开发, 31(6): 72-74.
    [136]徐永昌. 1994.天然气成因理论及其应用[M].北京:科学出版社, 102-121.
    [137]叶凝芳,何品晶,吕凡,等. 2007.厌氧发酵过程pH对微生物多样性和产物分布的影响[J].应用与环境生物学报, 13(2): 238-242.
    [138]伊小波,连莉文,徐洁泉,等. 1998.产甲烷过程的独特酶类及其生化监测方法[J].中国沼气, 16(3): 8-13.
    [139]曾凡刚,王铁冠,盛国英,等. 1994.广西三种褐煤的生物标志物组合特征[J].石油与天然气地质, 15(2): 141-450.
    [140]张殿伟,刘文汇,刘全有,等. 2005.煤系源岩显微组分对天然气碳同位素组成影响的应用[J].天然气地球化学, 16(6): 792-796.
    [141]张希衡,王宝泉,刘新荣,等. 1996.废水处理工程[M].北京:中国环境出版社.
    [142]张祥. 2004.柴达木盆地东部第四系生物气形成基质及成藏规律[D].西南石油学院博士学位论文.
    [143]张晓宝,胡勇,段毅,等. 2002.柴达木盆地第三系生物气的地质地球化学证据[J].石油勘探与开发, 29(2): 39-41.
    [144]张晓宝,徐自远,段毅,等. 2003.柴达木盆地三湖地区第四系生物气的形成途径与运聚方式[J].地质论评, 49(2): 168-174.
    [145]张小军,陶明信,王万春,等. 2004.生物成因煤层气的生成及其资源意义[J].矿物岩石地球化学通报, 23(2): 165-170.
    [146]张小军,陶明信,解光新,等. 2007.淮南煤田此生生物成因气的比例及资源意义[J].沉积学报, 25(2): 314-318.
    [147]钟建华. 1991.滇西镇安盆地泥炭、软褐煤的有机地球化学研究[J].地质评论, 37(2): 97-106.
    [148]周群英,高廷耀. 2000.环境工程微生物学[M].北京:高等教育出版社, 7.
    [149]周雪飞,任南琪. 2004.高浓度甲醇废水厌氧处理中颗粒污泥和产甲烷细菌的耐酸性[J].环境科学学报, 24(4): 633-636.
    [150]周翥红,连莉文,梁家騵. 1990.柴达木盆地东部第四系生物模拟及其应用[J].天然气地球科学, 1(2): 12-19.
    [151]朱炎铭,秦勇,张有生,等. 2004.煤中显微组分的生烃演化实验[J].煤田地质与勘探, 32(3): 21-24.
    [152]朱先栋. 2000.微量元素对厌氧消化甲烷菌的激活作用[J].太原理工大学学报, 31(5): 585-586.
    [153]朱志敏,沈冰,崔洪庆,等. 2007.阜新盆地煤层气成因分析[J].地质科技情报, 26(3): 67-70.
    [154]邹小玲,许柯,夏兴华,等. 2009. NaCl和KCl盐度对厌氧污泥的驯化及对比产甲烷活性的影响[J].中国沼气, 27(3): 23-26.
    [155]祖波,祖建,周富春,等. 2008,产甲烷菌的生理生化特性[J].环境科学与技术, 31(3): 5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700