预知子提取物的质量控制及其抗抑郁药效—药动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:提取分离药材预知子(Fructus Akebiae)中抗抑郁活性成分,测定预知子提取物(Fructus Akebiae Extract, FAE)主要成分常春藤皂苷元(hederagenin),齐墩果酸(Oleanolic acid, OA),熊果酸(Ursolic acid, UA)含量,对预知子提取物的溶剂残留及重金属进行检测,初步研究FAE质量控制的标准。建立检测大鼠血浆及脑脊液中常春藤皂苷元的超快速液相色谱-质谱联用(UFLC-MS/MS)方法,初步阐明预知子中抗抑郁活性成分常春藤皂苷元的药代动力学。建立抑郁相关的行为绝望模型,对预知子提取物及常春藤皂苷元抗抑郁活性的药效学筛选,明确预知子中抗抑郁活性的物质基础。
     方法:(1)药材预知子中抗抑郁活性成分提取:以预知子药材为原料,先进行脱脂处理,再依次进行80%乙醇、乙酸乙酯和水饱和正丁醇提取后得预知子总皂苷,将所得总皂苷经含酸乙醇降解及纯化处理后得预知子提取物(FAE)。并采用UFLC-MS/MS法,对FAE中的主要化学成分进行系统解析,测定其主要成分常春藤皂苷元,齐墩果酸,熊果酸含量。(2)FAE中有机溶剂的残留量检测:采用自动顶空GC-MS法,用RxiTM-5ms (30mx0.25mm,0.25μm)毛细管色谱柱,优化顶空条件,以叔丁醇为内标。参照中国药典(2010年)中的相关规定,测定了预知子提取过程中使用的三种有机溶剂-乙醇、乙酸乙酯、正丁醇的残留量(3)预知子药材及FAE中5种有害重金属的测定:微波消解,以锗(Ge)、铟(In)铋(Bi)作为内标,补偿基体效应,采用ICP-MS同时测定砷、铅、汞、镉、铜5种元素。(4)①采用UFLC-MS-MS法测定大鼠血浆与脑脊液中常春藤皂苷元的浓度。血浆样品选用甲醇沉淀蛋白处理,而脑脊液用乙酸乙酯萃取,然后N2吹干浓缩,以异戊巴比妥为内标,选用XR-ODSⅡ(75 mm×2.0 mm, i.d.,2.1μm)柱进行分离,流动相为5 mM醋酸铵和乙腈(v/v)梯度洗脱,流速0.35 mL/min。通过电喷雾离子化,负离子检测,优化质谱条件,常春藤皂苷元的定量离子m/z471.5→393.4,内标异戊巴比妥定量离子m/z 225→182。考察了样品在各种储藏条件下,如长期(-20℃,7d)、短期(25℃,4h)、冻融(n=3)以及样品处理后的稳定性,同时也考察了方法的回收率、基质效应、精密度、准确度。②常春藤皂苷元药代动力学探索:SD大鼠,按100mg/kg、400mg/kg两个剂量,单次给药,分别在0,5,10,15,20,30,60,90,120,150,180,210,240,300min采集血样备用。脑脊液样品,分别在给药前与给药后20 mmin采集备用。运用DAS 2.1.1软件计算药代动力学数据。(5)FAE抗抑郁的作用:①建立皮质酮(corticosterone, Cor)损伤的PC12细胞模型,观察常春藤皂苷元对照品和预知子提取物(FAE)对细胞形态、细胞活力的影响。②建立抗抑郁活性的药效学初筛模型,雄性昆明小鼠随机分成5组,即溶剂对照[0.5%羧甲基纤维素钠(CMC-Na)溶液]组、hederagenin (10mg/kg、50mg/kg)组、FAE (100mg/kg)组、草酸-S-西酞普兰(escitalopram, ESC)阳性对照(6.25mg/kg)组,各组动物每日灌胃1次,每次0.2 mmL/10g,连续给药7天。建立小鼠的行为绝望模型,末次给药24小时后分别进行强迫游泳实验(the forced swimming test, FST)和悬尾实验(the tail suspension test, TST)不动时间记录,以及自主活动计数。
     结果:(1)FAE中含约70%的常春藤皂苷元及少量的齐墩果酸和熊果酸,在相应的浓度范围内三种化合物对照品的标准曲线线性良好,三批样品中平均含量常春藤皂苷元为70.60%±2.29%;齐墩果酸为2.09%±0.12%,熊果酸为5.32%±0.10%。(2)自动顶空GC-MS法检测FAE中有机溶剂的残留量:结果三批预知子提取物中乙酸乙酯与正丁醇均未检出,乙醇平均百分含量:从0.14%(RSD,4.6%)-0.31%(RSD,3.9%)(n=3)。结果显示预知子提取物中乙醇残留均低于0.5%,符合《中国药典》2010版的溶剂残留标准。(3)ICP-MS法中5种重金属元素的标准曲线线性良好(r>0.9993),平均回收率95.6%~108.0%,RSD<10.3%。预知子药材与FAE中5种重金属含量分别为:Pb(2.11±0.09)μg/g,(1.48±0.02)μg/g;As(0.26±0.03)μg/g,(0.22±0.02)μg/g;Cd(0.038±0.001)μg/g,(0.017±0.002)μg/g;Hg(0.037±0.010)μg/g,(0.026±0.007)μg/g;Cu(14.46±0.50)μg/g,(14.45±0.29)μg/g。结果表明预知子药材及FAE中5种有害重金属元素的含量均低于《中国药典》2010版的限量标准。(4)首次建立了检测血浆和脑脊液的中常春藤皂苷元的UFLC-MS-MS法,常春藤皂苷元在0.406-200 ng/mL范围内:血浆中:y=0.0245x+0.00671,r=0.9981,脑脊液中:少=0.0520x+0.0529, r=0.9960.日间差2.4%~8.9%,日内差1.1%~13.0%,准确度在-9.0%~11.1%之间。常春藤皂苷元在血浆及脑脊液中的回收率均大于85%,且血浆及脑脊液中内源性物质无干扰,基质无显著影响。常春藤皂苷元在血浆及脑脊液中冻融(n=3)、长期(-20℃,7d)、短期和样品处理后(25℃,4h)稳定性良好。表明方法的有效性符合美国食品药品管理局对生物样品的分析检测要求。药代动力学研究结果显示,大鼠灌胃单次给药100 mg/kg、400 mg/kg FAE:Cmax分别为11.21±0.50 ng/mL,47.73±1.39 ng/mL;Tmax分别为20 min,18.33±2.58 min。血药浓度消除半衰期t1/2为49.90±1.85 min,44.06±2.98 min。而AUC0-t分别为668.44±20.21 ng/mL*min,3066.46±243.07 ng/mL*min,AUC0-∞为701.42±28.62 ng/mL*min,3131.47±236.83 ng/mL*min。消除速率Ke为0.014±0.001和0.016±0.001。在单次给药(400 mg/kg FAE)20 min时,脑脊液中常春藤皂苷元含量6.17±0.22 ng/mL(RSD,3.5%),表明常春藤皂苷元能穿透血脑屏障。(5)①细胞实验中,常春藤皂苷元对照品和FAE可显著对抗Cor造成的PC12细胞损伤,模型组细胞A值为0.686±0.058,与溶剂对照组(0.983±0.054)相比较显著降低,但经常春藤皂苷元(1,5,10μg/mL)和FAE(20μg/mL)(0.780±0.018、0.874±0.030、0.942±0.021;0.957±0.039)或5.0μg/mL ESC(0.956±0.036)预处理过的细胞,其A值较之于模型组细胞具有显著升高(P=0.000)。常春藤皂苷元和FAE可显著对抗Cor所致的细胞氧化损伤。②常春藤皂苷元连续7天重复给药后,在FST中与溶剂对照组(198.4±43.96s)比较,给予剂量为10 mg/kg、50 mg/kg常春藤皂昔元,100 mg/kg FAE或ESC阳性对照组的小鼠游泳不动时间分别为115.9±30.49、110.1±26.49、97.4±22.24、100.25±20.63s,不动时间显著减少;TST中各实验组组间差异显著(P=0.000),不同给药剂量10mg/kg(197.89±30.65 s)、50 mg/kg(128.38±36.49 s)常春藤皂苷元,100 mg/kg(119.67±23.64 s)FAE以及ESC阳性对照组(109.89±22.75s)小鼠,与溶剂对照组(228.13±40.34s)相比,均显著缩短了空中不动时间;小鼠自主活动检测实验中,常春藤皂苷元和FAE给药组及ESC组小鼠与溶剂对照组相比较,水平活动计数值均无显著性差异(P=0.799)。
     结论:FAE中常春藤皂苷元含量达68%,有机溶剂残留量及重金属检测,符合《中国药典》2010版的相关标准,能够满足二类中药新药的要求。检测血浆及脑脊液中常春藤皂苷元的UFLC-MS/MS法,具有高灵敏度,高选择性,可有效用于药代动力学的研究,药代动力学结果显示,常春藤皂苷元可经肠胃快速吸收分布到血液及脑脊液中,表明常春藤皂苷元能穿透血脑屏障。常春藤皂苷元和FAE均对Cor诱导的PC12细胞损伤模型具有明显的保护作用;并可显著改善行为绝望模型小鼠的抑郁样行为。因此,可以初步确定预知子提取物产生抗抑郁药效的物质基础为常春藤皂苷元。
Objective:1) to determine the contents of hederagenin, ursone and oleanolic acid from the extracts of Fructus Akebiae (FAE) which was extracted by systemic solvent segregation.2) to develope a Head-space GC-MS method for determination of enthanol, ethyl acetate and n-butanol in FAE.3) to establish an ICP-MS method for the determination of heavy metals, including As, Hg, Pb, Cd, Cu, in Fructus Akebiae and Fructus Akebiae extracts.4) to develop a rapid, sensitive, and selective ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method for the quantitative determination of hederagenin in rat plasma and cerebrospinal fluid (CSF) as well as for the pharmacokinetic study of hederagenin accumulation in the central nervous system (CNS).5) to illustrate antidepressant activity of hederagenin by investigating the effect of hederagenin on the morphological features, as well as by using behavioural despair animal models, so as to provide scientific basis for further development of Fructus Akebiae.
     Methods:(1) FAE was obtained by systemic solvent extraction:Fructus Akebiae was defatted, and then extracted with 80% ethanol, ethyl acetate and H2O-saturated n-butanol, and the general saponin was obtained. Total general saponin was degraded with HC1 in ethanol, resulting in crude crystal. The contents of hederagenin, ursone and oleanolic acid in FAE were determined by UFLC-MS/MS. (2) Multiresidue detection of FAE was performed by a head-space GC-MS. The analysis was carried on RxiTM-5ms (30m×0.25mm,0.25μm) column. The conditions of headspace has been tested and optimized. The tert-butanol was used as an internal standard. (3) The samples of FAE and Fructus Akebiae were digested by closed-vessel Microwave digestion. The five heavy metals were directly analyzed by ICP-MS. Ge、In and Bi was selected as the internal standards to compensate matrix effects. (4) Sample pretreatment of rat plasma and CSF involved a simple protein precipitation with methanol and a one-step extraction with ethyl acetate. Amobarbital was chosen as the internal standard (IS) for the assay. Separation was carried out in a Shim-pack XR-ODS II (75 mm×2.0 mm, i.d.,2.1μm) column with gradient elution at a flow rate of 0.35 mL/min. The mobile phase was 5 mM ammonium acetate and acetonitrile. Detection was performed in a triple-quadruple tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization. According to optimization of mass spectrometry conditions, m/z 471.5→393.4 was used for quantification of hederagenin and m/z 225→182 for IS. QC sample were subjected to processed samples kept at 25℃in autosampler for 4 h, to short-term stability kept at ambient temperature (25℃) for 4 h, to long-term (7days) storage conditions (-20℃), and to three freeze-thaw cycles stability studies.The method was applied to determine the plasma and CSF concentrations of hederagenin after oral FAE (100 mg/kg,400 mg/kg). Rat plasma samples were collected before and 0,5,10,15,20,30,60,90, 120,150,180,210,240, and 300 min after oral dosing. Rat CSF samples were only collected before and 20 min post-dosing. DAS 2.1.1 software was performed to deal with pharmacokinetics data. (5)①The differentiated PC 12 cells were cultivated in vitro, pretreated for 4-6 h with 1μg/mL hederagenin,5μg/mL hederagenin,10μg/mL hederagenin,20μg/mL FAE and 12.5μM escitalopram (ESC), respectively, and then injured by 200μM Cor for 48 h. The cellular morphology was examined with light microscopy, and then the cell viability rate in all groups was tested by MTT assay.②Male Kunming mice were randomly divided into five groups:control (0.5% CMC-Na solution),25 mg/kg FAE,50 mg/kg FAE,100 mg/kg FAE, and 6.25 mg/kg ESC. All the drugs were given via the oral route once a day at 8 a.m. for 1 week. The forced swimming test (FST), the tail suspension test (TST) and locomotor activity were conducted 60 min after the first acute treatment 5μg/ml and 24 h after repeated treatment for 7 days with drugs.
     Result:(1) Hederagenin in FAE have been found about 70% of purity, containing small quantity ursone and oleanolic acid. The standard curves were linear in the range of each consistency. The content of hederagenin was 70.60%±2.29%, ursone 5.32%±0.10%, oleanolic acid 2.09%±0.12%(n=3). (2)Ethyl acetate and n-butanol were not found in FAE. The average content of enthanol ranged from 0.14% (RSD,4.6%) to 0.23% (RSD,3.1%). Multiresidue detection of FAE conformed to the criteria set by Chinese Pharmacopoeia (2010), where content determined for enthanol must not exceed 0.5%. (3)For all of the analyzed heavy metals, the correlative coefficient of the calibration curves was over 0.9993. The recovery rates of the procedure were 95.6%-108.0%, and its RSD was lower than 10.3%. Heavy metal elements Pb (2.11±0.09)μg/g, As(0.26±0.03)μg/g, Cd(0.038±0.001)μg/g, Hg(0.037±0.010)μg/g and Cu(14.46±0.50)μg/g were found in Fructus Akebiae. The average contents of heavy metal elements in FAE were Pb (1.48±0.02)μg/g, As(0.22±0.02)μg/g, Cd (0.017±0.002)μg/g, Hg (0.026±0.007)μg/g and Cu (14.45±0.29)μg/g. The results indicated that all of the concents heavy metals conformed to the criteria set by Chinese Pharmacopoeia (2010). (4)A linear calibration curve for hederagenin was obtained over a concentration range of 0.406(lower limit of quantification, LLOQ) to 200 ng/mL (r2>0.99) for both plasma and CSF. The intra-day and inter-day precision (relative standard deviation, RSD) values were less than 15% and the accuracy (relative error, RE) was within-9.0% and 11.1% for plasma and CSF at all quality control (QC) levels. The extraction recoveries to determine hederagenin in rat plasma and CSF are both more than 85%. No interference from endogenous substances was observed at the retention times of hederagenin and IS. Results from all stability tests demonstrated good stability of hederagenin. This method conformed to the criteria for the analysis of biological samples set by the USFDA. It was also successfully applied to the pharmacokinetic study of hederagenin accumulation following oral administration of Fructus akebiae extract in rats. After administration of a single dose of 100 mg/kg FAE, the Cmax and Tmax were 11.21±0.50 ng/mL and 20 min, respectively. Plasma concentration declined with a t1/2 of 49.90±1.85 minin. The AUC0-t and AUC0-∞values were 668.44±20.21 ng/mL-min and 701.42±28.62 ng/mL·min, respectively. The Ke was 0.014±0.001. After administration of a single dose of 400 mg/kg FAE (approximately 70% hederagenin or about 280mg), the Cmax and Tmax were 47.73±1.39 ng/mL and 20 min, respectively. Plasma concentration declined with a t1/2 of 42.52±1.94 min. The AUCo-t and AUC0-∞values were 3023.18±254.23 ng/mL-min and 3090.47±241.52 ng/mL-min, respectively. The Ke was 0.016±0.001. At 20 min, 6.17±0.22 ng/mL (RSD,3.5%) of hederagenin was detected in rat CSF after administration of a single 400 mg/kg dose of FAE. The pharmacokinetics results indicated that hederagenin can pass through the blood-brain barrier. (5)①In PC 12 cell experiments, the A value of model group is 0.686±0.058, significantly lower compared to the control group (0.983±0.054), but with hederagenin(1,5, 10μg/mL) and FAE(20μg/mL) (0.780±0.018,0.874±0.030,0.942±0.021,0.957±0.039) or 5μg/mL ESC (0.956±0.036) pretreated cells, the A values were significantly Increased (P=0.000). Therefor, hederagenin and FAE had potencial protected effect to oxidative damaged PC 12 cells caused by Cor.②After repeated hederagenin administration for 7 days, the immobility time of groups of 10mg/kg,50mg/kg Hederagenin or 100 mg/kg FAE or positive control of ESC was 115.9±30.49 s,110.1±26.49 s,97.4±22.24 s and 100.25±20.63 s, respectively, significantly reduced compared to the control group (198.4±43.96 s) in the FST; Simily to FST, thle immobility time of TST was significantly different between groups (P=0.000). Compared with the control group (228.13±40.34 s), 10mg/kg (197.89±30.65 s),50 mg/kg (128.38±36.49 s) Hederagenin,100 mg/kg (119.67±23.64 s) FAE and (109.89±22.75 s) ESC groups had a significantly reduced immobility time in the air, The results of spontaneous activity test did not have significantly different tendecy between the drug intervented groups and the untreatment group by the level of activity counts (P= 0.799).
     Conclusion:Studies reveal that hederagenin from the extracts of Fructus akebiae was enriched to approximately 70% purity. ICP-MS arid GC-MS are both suitable for quality control of FAE. The new UFLC-MS-MS developed for the quantitative determination of hederagenin in rat plasma and CSF demonstrated high sensitivity, selectivity, and speed of analysis, as well as fulfilling FDA guidelines for bioanalysis. Furthermore, the method has been successfully applied in a pharmacokinetic study of hederagenin in rat plasma and CSF. Results of this study show that hederagenin can be distributed rapidly in plasma and CSF, which indicated that hederagenin could be quickly gastrointestinal absorbed. Moreover, hederagenin can pass through the blood-brain barrier. In addition, hederagenin and FAE can remarkably improve depressive behaviors in behavioral despair animal models. These results suggest both hederagenin and rude FAE possess potent antidepressant properties. Therefore, hederagenin could be substance used in treating depression.
引文
[1].谭兰,张伟.综合医院抑郁症的诊断及治疗[J].青岛大学医学院学报,2003.39(4):363-366.
    [2].赵贤芳.抑郁症的诊断及治疗[J].内蒙古民族大学学报(自然科学版),2007.22(6):657-659.
    [3]. Gelenberg AJ. Depression symptomatology and neurobiology[J]. Clin Psychiatry,2010,71(1):e02.
    [4]. Greden JP. Physical symptoms of depression:vnmet needs. [J]. Clin Psychiatry, 2003,64(Suppl 7):5-11
    [5].连瑞.抗抑郁药的过去、现在与未来[J].天津药学,2003.15(3):62-63.
    [6].童建明.抗抑郁症药物的发展方向[J].中临床精神医学杂志,2002.12(2):116-117.
    [7].缪国娟,宋淑娜.抑郁症的药物治疗[J].海峡药学,2007.19(2):77-78.
    [8].李朋云,董文心.抗抑郁药物的研究概况[J].中国医药工业杂志,2006,37(11):779-783.
    [9].侯霖,李彦华.王景俊.抗抑郁药的研究新进展[J].医学综述,2007,13(19):1511-1512.
    [10].康健,李作平.抗抑郁天然药物的研究概况[J].中成药,2006,28(5):713-716.
    [11].王连芝,刘树民.中药抗抑郁活性成分研究进展[J].时珍国医国药,2008,19(6):1510-1511.
    [12].李云峰,袁莉,杨明,等.棉籽总黄酮抗抑郁作用的研究[J].中国药理学通报,2006,22(1):60.
    [13]. HemmeterU, Annen B, B ischofR, etal. Polysomnographic effects of ad2 juvant ginkgo bilob a therapy in patients with Major depress ionmedicated with trimipramine[J]. Pharmacopsychiatry,2001,34(2):50
    [14].丁素文,杨东华.浅谈抗抑郁药的发展趋势.[J].黑龙江医药,2004,17(2):135-136.
    [15].吴鉴明.加味甘麦大枣汤抗抑郁疗效的对照研究[J].中国临床医生,2002,30(1):18-19.
    [16].张有志,聂惠民,张德昌,等.柴胡加龙骨牡蛎汤等经方治疗抑郁症的动物行为学研究[J].中国中医基础医学杂志,2001,7(7):30-32.
    [17].盂海彬,瞿融,马世平.柴胡加龙骨牡蛎汤抗抑郁作用研究[J].中药药理与临床,2003,19(1):3-5.
    [18].杨进,谢忠礼.菖欢1号对大鼠抑郁症模型脑内单胺类神经递质的影响[J].南京中医药大学学报,2001,17(5):492.
    [19].宋立人,洪恂,丁渚亮,等.现代中药学大词典(Ⅱ)[Z].北京:人民卫生出版社,2001,335-337.
    [20]. Qin Hai-ning. A taxonomic revision of the Lardizabalaceae [J]. Cathaya,1997, (8-9):211-214.
    [21].中药大辞典(上)[Z].上海科学技术出版社,1977,19-20.
    [22].高应斗,周雨风.木通、茯苓、旋覆花的利尿作用[J].中华医学杂志,1994(2):963.
    [23].张卫华.三种木通利尿作用及其毒性的比较研究[J].中国药学杂志,1989,24(10):594-596.
    [24]. Ryuichi H, Miyahara K, Kawasaki T, et al. Seed saponins of Akebia quinala Decne. I. Hederagenin-3-O-gIycosides[J].chem Pharm Bull,1972,20(9): 1935-1939.
    [25]. Mimaki Y, Kumda M, Yokosuka A, et al. TriterPenes and triterpene sponins from the stem of Akebia trifoliate[J]. Chem PhamL Bull,2003,51(8): 960-965.
    [26].王家明,王智民,高慧敏,等.预知子化学成分研究[J].中国药学杂志,2008,43(2):98-100.
    [27].丁兰,侯茜,徐福春,等.异叶败酱中三萜化合物常春藤皂苷元对人早幼粒白血病细胞HL260的增殖抑制、周期阻滞及凋亡诱导作用[J].西 北师范大学学报,2009,45(1):88-93.
    [28].毛峻琴,伊佳,李铁军.中药预知子乙醇提取物抗抑郁作用的实验研究[J].药学实践杂志,2009.27(2):126-128.
    [29]. Dan Zhou, Hong Jin, Huan-Bing Lin, et al. Antidepressant Effect of the Extracts from Fructus Akebiae [J]. Pharmacology, Biochemistry and Behavior. 2010,94(3):488-495.
    [30].川口利一,等.药学杂志(日).1940,60(11):59
    [31]. SHI J Z, LIU GT. Effect of alpha2hederin and sapindoside B on hepaticmicrosomal cytochrome P2450 in mice [J]. Acta Pharmacol Sin,1996, 17(3):2642266.
    [32]. WON S H, LEEJ H. Kalopanaxsaponin A is a basic saponin structure for the anti2tumor activity of hederagenin monodesmosides [J]. Planta Med,2001, 67(2):118-121.
    [33]. TRUTE A, GROSS J, MUTSCHLER E, et al. In vitro antispasmodic compounds of the dry extract obtained from Hedera helix [J]. Planta Med, 1997,63(2):125-129.
    [34]. CHOI J. HUH K. Antinociceptive and anti-rheumatoidal effects of kalopanax pictus extract and its saponin components in experimental ani-mals [J]. J Ethnopharmacol,2002,79 (2):199-204.
    [35]. DANLOYS, QUETIN-LECLERCQJ. Effects of alpha2hederin, a saponinextracted from Hedera helix, on cells cultured in vitro [J]. Planta Med,1994.60(1):45-49.
    [36].江纪武,肖庆祥.植物药有效成分手册[M].人民卫生出版社,1986:920-921
    [37].王哗,鲁静,等.中药材木通质量评价方法的研究[J].药物分析杂志,2004,24(2):171-174.
    [38].张雪,何丙辉,等HPLC法测定金银花中常春藤皂苷元、齐墩果酸、槲皮素、木犀草苷和绿原酸[J].中草药杂志,2008,39(10)1576-1577.
    [39].李会军HPLC-ELSD法测定金银花中常春藤皂苷元及齐墩果酸的含量[J]. 药物分析杂志,2006,26(6)820-822.
    [40].齐帅,胡华HPLC-DAD-ELSD法同时测定威灵仙药材中齐墩果酸和常春藤皂苷元的含量[J].广东药学学报,2010,26(1)67-39
    [41].中华人民共和国药典[S].二部.北京:化学工业出版社,2010:附录61-65.
    [42].刘冬,杨敬芝,杜守颖等.顶空气相色谱法测定大孔树脂提取物中的残留溶剂研究[J].药物分析杂志,2009,29(11):1877-1880.
    [43].夏文斌,张燕,严付华.顶空气相色谱法测定红三叶提取物中乙醇与正己烷溶剂残留量[J].中国卫生.检验杂志,2009,19(10):2274-2275.
    [44].王翰华,王向军,曾苏,等.顶空毛细管气相法测定鸡肝散提取物中有机溶剂残留量[J].药物分析杂志,2008,28(2):267-269.
    [45].许真玉.药品审评过程中残留溶剂检查常见问题分析[J].中国药科大学学报,2009,40(5):471-473.
    [46].王少敏,钱大公,王柯,等.气相色谱法测定6种中药提取物中大孔吸附树脂有机残留物[J].中国药学杂志,2009,44(1):55-58.
    [47].伊雄海,陆贻通.川芎等8种中药材中农药及重金属残留状况研究.现代中药研究与实践,2004.28(3):7.
    [48].范华均,李攻科,栾伟,等.微波溶样-石墨炉原子吸收光谱法测定石蒜中的镉、汞、铅[J].光谱学与光谱分析,2005,25(9):1503.
    [49]. Yang Yaling, Yang Guangyu, Lin Qiang. Determination of heavy metal in chinese herbal medicine by Microwave digestion and RP-HPLC with uv-vis detection [J]. Microchimica Acta,2004,144 (4):341.
    [50].王刚,陈荣达,林烦承,等.中药中微量元素测定的研究进展[J].药物分析杂志,2002,22(2):151.
    [51].王永宁,石玉平,李继东.螺旋藻中铅镉的ICP-MS测定[J].分析试验室,2004,23(5):68.
    [52]. Swami K, Judd CD, Orsini J, et al. Microwave assisted digestion aerosol samples followed by inductively coupled plasma mass spectrometry determination of trace elements[J].Fresenius J Anal Chem,2001,369 (1) 63.
    [53].胡圣虹,林守麟,刘勇胜,等.等离子体质谱法测定地质样品中痕量稀土元素的基体效应及多原子离子干扰的校正研究[J].高等学校化学学报,2000,21(3):368.
    [54].马强,胡海,刘颖,等.微波消解2石墨炉原子吸收光谱法分析中药中微量元素[J].吉林大学学报:理学版,2006,44(5):817.
    [55].杨屹,侯翔燕,王书俊,等.微波消解-AAS法测芦荟中微量金属元素锌、锰、镉、铅[J].光谱学与光谱分析,2004,24(12):1672.
    [56].胡秋芬,黄齐林,周元清,等.用电感耦合等离子体质谱法测定中草药中重金属元素[J].理化检验-化学分册,2008,44(12):1213.
    [57]. Jiang D, Gao QP, Shi SP, et al. Triterpenoid saponins from the fruits of Akebiae quinata[J]. Chem Pharm Bull (Tokyo).),2006,54(5):595-597.
    [58]. Yamahara J, Takagi Y, Sawada T, et al. Effects of crude drugs on congestive edema [J].Chem Pharm Bull.1979,27(6):1464-1468
    [59].马红梅,张伯礼.不同科属木通比较[J].中国中药杂志,2002,27(6)412-418.
    [60].李会军,李萍HPLC-ELSD法测定金银花中常春藤皂苷元及齐墩果酸的含量[J].药物分析杂志,2006,26(6),820-822.
    [61].张雪,何丙辉,杨宪,等HPLC法测定金银花中常春藤皂苷元、齐墩果酸、槲皮素、木犀草苷和绿原酸[J].中草药,2008,39(10)1576-1577.
    [62]. 王晔,鲁静,林瑞超,等.中药材木通质量评价方法的研究[J].药物分析杂志,2004,24(2):171-:174..
    [63].马双成,刘燕,毕培曦,等RP-HPLC法测定金银花药材中常春藤皂苷元及齐墩果酸的含量[J].药物分析杂志,2006,26(6):885-887.
    [64]. LI Kai, YANG Xiao-Lin, ZHANG Chun-Feng. et al. Metabolites of Asperosaponin Ⅵ in Rats' Feces by HPLC-MSn[J]. Chinese Journal of Natural Medicines 2009,7(4):440-443.
    [65]. USFDA, http://www.fda.gov/cvm
    [66]. Gelenberg AJ. Depression symptomatology and neurobiology [J]. J Clin Psychiatry,2010,71(1):e02.
    [67]. Schiile C. Neuroendocrinological mechanisms of actions of antidepressant drugs[J]. J Neuroendocrinol,2007,19(3):213-26.
    [68]. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice:A primary screening test for antidepressants [J]. Arch Int Pharmacodyn Ther,1977, 229(2):327-36.
    [69]. Steru L, Chermat R, Thierry B, et al. The tail suspension test:A new method for screening antidepressants in mice [J]. Psychopharmacology (Berl),1985, 85(3):367-70.
    [70].黄文超,李云峰,罗质璞.单胺递质对皮质酮所致的PC12细胞损伤的保护作用[J].中国药理学通报,2003,19(1):103-6.
    [71]. Peruche B, Krieglstein J. Neuroblastoma cells for testing neuroprotective effects [J]. Pharmacol Methods,1991,26(2):139-48.
    [72]. Gomez LA. Alekseev AE, Aleksandrova LA, et al. Use of the MTT assay in adult ventricular crdiomyocytes to assess viability to assay viability:effects of adenosine and potassium on cellular survival [J]. Mol Cell Cardiol,1997, 29(4):1255-66.
    [73]. Willner P. The validity of animal models of depression [J]. Psychopharmacology (Berl),1984,83(1):1-16.
    [74]. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs [J]. Trends Pharmacol Sci,2002,23(5): 238-45.
    [75]. Zomkowski AD, Santos AR, Rodrigues AL. Putrescine produces antidepressant-like effects in the forced swimming test and in the tail suspension test in mice [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2006,30(8):1419-25.
    [76]. Gelenberg AJ. Depression symptomatology and neurobiology[J]. J Clin Psychiatry,2010,71(1):e02. Review.
    [77]. Monteleone P, Mei M. Disturbed sleep as a core symptom of depression. [J]. Zh Nevrol Psikhiatr Im S S Korsakova.2009,109(5):86-91
    [78]. Ohayon MM, Schatzberg AF.Social phobia and depression:prevalence and comorbidity[J]. J Psychosom Res.2010 Mar; 68(3):235-43
    [79]. Nemer off CB. The burden of severe depression:a review of diagnostic challenges and treatment alternatives [J]. J Psychiatr Res 2007 Apr-Jun; 41(3-4):189-206.
    [80]. Ying Xu, Shan Li, Ruijie Chen, et al. Antidepressant-like effect of low molecular proanthocyanidin in mice:Involvement of monoaminergic system[J]. Pharmacology, Biochemistry and Behavior 94 (2010) 447-453.
    [81].宋新宇.青春期抑郁症的成因及对策[J].中小学心理健康教育,2009,(7):35-36.
    [82].中华本草精选本上册[M].上海:上海科学技术出版社,1998:681-683
    [83].瞿发林,张理义,余海鹰,等.贯叶连翘抗抑郁作用机制的研究进展[J].中国神经精神疾病杂志,2003,29(1):80-82
    [84]. Chatterjee S. S., Bhattacharya M., Wonnemann A., et al. Hyperforin as a possible antidepressant component of Hypericum extracts[J]. Life Sciences, 1998; 63(6):499-510.
    [85]. Chatterjee S. S., Nolder M., Koch E., et al. Antidepressant activity of Hypericum perforatum and hyperforin:the neglected possibility [J]. Pharmacopsychiatry.1998 Jun;31 Suppl 1:7-15.
    [86]. Di Carlo G, Bonelli F, Emst E, et al. St John's wort: Prozac from the plant kingdom[J]. Trends Pharmacol Sci.2001 Jun; 22(6):292-297. Review.
    [87]. Mennini T, Gobbi M. The antidepressant mechanism of Hypericum perforatum[J]. Life Sci.2004 Jul 16;75(9):1021-1027. Review.
    [88]. Catchpole O J, Perry N B, Silva da B M T, et al. Supercritical extraction of herbs I:Saw Palmetto, St John'swort, Kava root, and Echinacea [J]. J Supercrit Fluids,2002,22:129-138.
    [89].国外医药.植物药分册.2001,16(2):88-89.
    [90]. Roz N, Mazur Y, Hirshfeld A, Rehavi M.Inhibition of vesicular uptake of monoamines by hyperforin [J]. Life Sci.2002 Sep 27; 71(19):2227-2237.
    [91]. Calapai G, Crupi A, Firenzuoli F, et al. Effects of Hypericum peratum on levels of 5- Hydroxytryptamine Noradrenaline and Dopamine in the Cortex, Dinencephalon and Brainstem of the rat[J]. Pharm Pharmacol,1999, 51(6):723-728.
    [92]. Raffa R. B. Screen of receptor and uptake-site activity of hypericin component of St.John's wort reveals sigma receptor binding[J]. Life Science,1998, 62(16):PL265-270.
    [93]. Linde K, Ramirez G, Mulrow CD, et al. St John's wort for depression-an overview and meta-analysis of randomized clinical trials [J]. BMJ,1996, 313(7052):253-258.
    [94]. Schellenberg R,Sauer S,Dimpfel w. Pharmacodyamic effects of two different hypericum extracts in healthy volunteers measured by quantitative EEG [J]. Pharmacopsychiatry,1998,31(Suppl 1):44-53.
    [95]. Calapai G, Crupi A, Firenzuoli F, et al. Effects of Hpericum perforatum on levels of 5-hydroxytryptamine noradrenaline and dopamine in the cortex diencephalon and brainstem of the rat [J]. J Pharm Pharmacol 1999,51(6): 723-728.
    [96]. Ozturk Y, Testing the Antidepress Effects of Hpericum species on Animal Models. [J]. Pharmacopsychiatry,1997,30(suppl):125-128.
    [97]. Yun Feng Li, Zheng Hua Gong, Ming Yang, et al. Inhibition by the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the corticosterone-induced apoptosis in PC12 cells[J]. Life Sciences,2003,72(8):933-942.
    [98].崔承彬,杨明,姚志伟,等.中药巴戟天中抗抑郁活性成分的研究[J].中国中药杂志,1995,20(1):36-39.
    [99]. Zhang ZQ, Yuan L, Yang M, et al. The effect of Morinda officinalis How, a Chinese traditional medicinal plant, on the DRL 72-s schedule in rats and the forced swimming test in micel[J]. Pharmacology, Biochemistry and Behavior, 2002,72 (1-2):39-42.
    [100].张中启,袁莉,赵楠,等.菊淀粉型六聚糖对鼠强迫性游泳和低速率差式强化程序的影响[J].中国药理学通报,2001,17(2):164-167.
    [101].程彤,阮金秀,袁淑兰,等.绞股蓝皂甙对正常及利血平小鼠脑单胺递质量和体征的影响[J].中国药理学与毒理学杂志,1994,8(1):34-36
    [102].蔡兵,崔承彬,陈玉华,等.巴戟天中菊淀粉型低聚糖类单体成分对小鼠的抗抑郁作用[J].中国药理学与毒理学杂志,1996,10(2):109-112.
    [103].刘艳芹,王永安,王伊文,等.巴戟天六聚寡糖对N-甲基-D-天冬氨酸损伤的大鼠大脑皮层细胞的保护作用[J].中国新医药,2004,3(5):19-21.
    [104].李云峰,杨明,赵毅民,等.巴戟天寡糖对皮质酮损伤的PC12细胞的保护作用[J].中国中药杂,2000,25(9):551-554.
    [105]].任利翔,罗轶凡,宋少江,等.知母总皂苷抗实验性抑郁作用的研究[J].中药新药与临床药理,2007,18(1):28-32.
    [106].路明珠,张治强,伊佳,等.知母皂苷B-Ⅱ抗抑郁作用及其机制研究[J].药学实践杂志,2010,28(4):283-287
    [107].许实波.姜黄素的药理作用研究概况[J].中草药,1991;22(8):137-139
    [108]. Youssef KM, El-Sherbeny MA. Synthesis and antitumor activity of some curcumin analogs [J].Arch Pharm(Weimheim),2005,338(4):181-189
    [109]. Yu ZF, Kong LD, Chen Y. Antidepressant activity of aqueous extracts of Curcuma longa in mice [J]. Ethnopharm acology,2002,83 (1-2):161-165.
    [110].陈文星,刘乐平,李磷,等.姜黄素抗抑郁作用及其机理研究[J].中药新药与临床药理,2006,17(5):317-320
    [111]. Xu Y, Ku BS, Yao HY, et al.. Antidepressant effect of curcumin in mice [J].Zhongguo linchuang kanfu,2005; 9(44):162-164
    [112].李明亚,陈红梅.石菖蒲对行为绝望动物抑郁模型的抗抑郁作用[J].中药材,2001,24(1);40-41
    [113].杨晓燕,陈发奎,刘玉兰.石菖蒲抗抑郁药理作用的研究[J].海军军事医学,1999,20(2):16-19.
    [114].季宁东,李娟好,李明亚,等.石菖蒲提取液的抗抑郁作用及柴胡皂苷对其作用的影响[J].南京医科大学学报,2006,26(12):1203-1206.
    [115].谢婷婷,王虹,刘屏,等.中药石菖蒲对脑内单胺类神经递质5-羟色胺水平的影响[J].中国药物应用与监测,2007,(3):15-17.
    [116]. Cho J, Kim YH, Kong JY, et al. Protection of cultured rat cortical neurons from excito toxicity by a sarone, a major essential oil component in the rhizomes of Acorus gramineus[J]. Life Science,2002,71 (5):591-599.
    [117]. Tao G, Irie Y, Li DJ, et al. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity [J]. Bioorg Med Chem,2005,13(15):4777-4788.
    [118].张林娜,陈振强.银杏叶片治疗老年抑郁症的疗效观察[J].辽宁中医杂志,1999,26(12):560.
    [119].蒋建章,车峰远,刘翠菊,等.银杏叶片治疗血管性抑郁症的临床观察[J].中国中西医结合杂志,2003,23(5):388-399
    [120].张洪新.银杏叶提取物合用经典抗抑郁药控制抑郁发作对比研究[J].中华现代医学与临床,2005,2(2):42-43.
    [121].秦晓松,金魁如,丁宝坤.银杏叶提取物联合盐酸文拉法辛对抑郁大鼠海马nNOS蛋白表达及NO水平的影响[J].中国心理卫生杂志,2003,17(12):828-831.
    [122]. Ramassamy C, Christen Y, Clostre F, et al. The Ginkgo Biloba Extract EGB761, Increases Synaptosomal Uptake of 5-Hydroxytryptamine:Invitro and Exvivo Studies. [J]. Pharm Pharmacol,1992,44(11):943-945.
    [123]. L ingaerde O, Foreland AR, Magnusson A. Can winter depression be prevented by Ginkgo biloba extract A placebo controlled trial [J]. Acta Psychiatr Scand,1999,100 (1):62-66.
    [124]. Shah ZA, Sharma P, Vohora SB. Ginkgo biloba normalizes stress-elevated alterations in brain catecholamines, serotonin and p lasma corticosterone levels[J]. Eur N euro psychopharmacol,2003,13 (5):321-325.
    [125]. Hemmeter U, Annen B, Bischof R, et al. Polysomnographic effects of adjuvant ginkgo bilobatherapy in patients with major depression medicated with trimipramine. [J]. Pharmacopsychiatry,2001,34 (2):50-59.
    [126].曹尉尉,李晏,伊佳.积雪草总苷元抗抑郁作用的研究.[J]中国现代应用药学杂志,2009,26(2):92-95
    [127].曹尉尉,陆波.积雪草总三萜酸及其主要成分的抗抑郁活性研究[J]药学实践杂志,2008,26(3):185-187
    [128].陈瑶,秦路平,郑汉臣,等.积雪草总苷对抑郁症大鼠神经内分泌功能的影响.[J].第二军医大学学报,2002,23(11):1224-1226
    [129].秦路平,丁如贤,张卫东,等.积雪草挥发油成分分析及其抗抑郁作用研究[J].第二军医大学学报,1998,19(2):186-187
    [130].戈宏焱,陈博,许丹,等.柴胡皂苷A对抑郁模型大鼠脑中单胺类神经递质及其代谢物含量的影响[J].高等学校化学学报,2008,29(8):1535-1538
    [131]. Kim SH, Han J, Seog DH, et al. Antidep ressant effect of Chaihu-Shugan-San extract and its constituents in ratmodels of dep ression [J]. Life Science,2005,28; 76 (11):1297-1306.
    [132].王斌,刘天培.柴胡皂甙加强氟西汀在强迫游泳模型上的抗抑郁作用[J].中草药,1997,28(12):729-731
    [133].马菁菁,刘斌,罗跃娥.远志化学成分和药理活性的研究进展[J].辽宁中医药大学学报,2009,11(12):161-163
    [134].谢婷婷,刘屏,孙艳,等.远志YZ-50对慢性应激抑郁模型大鼠海 马Bax、Bcl-2表达的影响[J].中国药物应用与监测,2008,5(6):14-17
    [135].孙艳,谢婷婷,王东晓,等.中药远志对慢性应激抑郁大鼠BDNF及其受体TrkB mRNA表达的影响[J].南方医科大学学报,2009,29(6):1199-1203
    [136].黄晓舞,谢婷婷,王东晓,等.远志醇提物的抗抑郁作用[J].中国药物应用与监测,2008,4(4):22-25
    [137]. Shin D, Oh JW, Cho C, et al. The anti-depressant effect of Nelumbinis semen on rats under chronic mild stress induced depression-like symptoms[J]. American Journal of Chinese Medicine,2005,33 (2):205-213.
    [138]. Jiang CG, Kang M, Cho JH, et al. Nelumbinis Semen reverses a decrease in 5-HT1A receptor binding induced by chronic mild stress, a depression-like symptom [J]. Arch Pharm Res,2004,27 (10):1065-1072.
    [139]. Kang M, Pyun KH, Jang CG, et al. Nelumbinis Semen reverses a decrease in hippocampal 5-HT release induced by chronic mild stress in rats[J]. Pharm Pharm acol,2005,57(5):651-656.
    [140]. Insop Shim, Hyunsu Bae, Moonkyu Kang, et al. Development of better antidepressant using Nelumbinis Semen in an animal model of depression[J]. International Congress Series,2006,1287:345-349.
    [141].郄建坤,屈会化,栾新慧.缬草属植物化学成分及药理研究概况[J].中国药学杂志,2002,37(10):729-733
    [142]. Nakazawa T, Yasuda T, Ueda J, et al. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test[J]. Biol Pharm Bull,2003,26(4):474-480
    [143].潘胜利,解静,钱伏刚,等.大叶药中抗抑郁酰胺类化合物[J].药学学报,2005,40(4):355-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700