用户名: 密码: 验证码:
云制造模式下建材装备企业制造任务执行关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着云计算、物联网等先进技术的迅猛发展和制造业所面临的挑战,云制造模式和技术应运而生,其核心在于实现制造资源的协同和共享,为制造业的升级转型提供了新的推动力。然而,由于云制造模式的开放性及多用户等特征,导致多用户任务执行过程涉及到制造任务的异构性、任务资源服务的竞争性、状态监控和任务执行后的评价等问题。对此,本文从四个方面来研究云制造模式下制造任务的优化执行,并以建材装备企业为应用对象进行实践研究。主要研究工作可以概括为以下几个方面:
     (1)针对制造任务执行过程中的任务异构性问题,提出了云制造任务的信息模型和语义建模框架,首先应用本体建模技术建立了初始云制造任务本体(OCMT_Ontology),以建材装备企业制造任务文本库为基础结合文本处理技术,通过本体自学习模型建立并完善通用云制造任务本体(GCMT_Ontology);在此基础基础之上,通过匹配GCMT_Ontology,构建云制造任务子本体(CMTS_ontology)来实现云制造任务的语义描述。
     (2)提出了云制造任务执行服务链构建框架,在分析单用户资源服务优选的基础上,重点研究多用户任务资源服务优选模型,针对多用户对资源服务的竞争,提出了应用演化博弈论的方法构建多用户资源服务的博弈模型,按照任务执行是否延期分四种类型求解博弈模型的演化稳定策略,并分析其动态复制方程的演化相图。最后,依据制造子任务的时序逻辑关系来构建可执行的协同制造资源服务链。
     (3)提出云制造模式下任务执行过程状态监控框架,构建了基于制造任务子本体的多源数据一致映射模型,按照制造任务的结构和执行服务链实现任务执行进度的数据融合,根据制造资源实时监控的数据,应用隐性马尔科夫模型实现制造资源状态的实时监控。
     (4)提出了云制造任务执行过程评估模型,并建立了不同执行阶段的评估指标及模糊化处理方法。提出直觉模糊OWA-TOPSIS的方法对任务执行过程进行评估,构架了六类不同的TOPSIS数据累积方法和最佳和最差理想点的识别方法,并通过案例研究验证了提出方法的实用性。
     (5)从实际应用出发,针对建材装备制造企业产品的制造过程,开发了云制造模式下任务执行过程管理系统,并在协同制造的多个企业间实现任务执行计划管理、过程跟踪和评价。
With the rapid development of advanced technologies such as cloud computing, Internet of things and the challenges in manufacturing industries, cloud manufacturing model and technology is proposed. And its aims are to realize the collaboration and sharing of manufacturing resources, and provide new powers to transformation and upgradation of manufacturing industries. However, the openness of cloud manufacturing model and multi-user characteristic, cause that multi-user tasks execution process involves heterogeneity of manufacturing tasks, competition of resource services, condition monitoring and evaluation of task execution and so on. In view of this, this paper researches the optimization execution of manufacturing task in cloud manufacturing mode from four aspects, and choose the building material equipment enterprises as the application case study in practice. The main research work can be summarized as the following aspects:
     (1) To the heterogeneity problem in the process of manufacturing task execution, put forward the cloud manufacturing task information model and semantic modeling framework. And apply ontology modeling technology to establish the original cloud manufacturing task ontology (OCMT_Ontology), then establish and perfect the common cloud manufacturing task ontology (GCMT_Ontology) by self-learning model of ontology on the basis of the text corpus of manufacture tasks in building material equipment enterprise and text pre-processing technology, Furthermore, build the cloud manufacturing task sub-ontology (CMTS_ontology) by matching with GCMT_Ontology and implement the semantic description of cloud manufacturing tasks.
     (2) Propose the construction framework of cloud manufacturing task execution service chain. On the basis of the analysis of single user resource service optimal-selection problem, multi-user task resource service optimal-selection model is focused. And construct the game model by applying the evolutionary game theory to solve the competetion problem of multi-user resource services.Four types of scenarios are developed to obtain the evolution stable strategy of game model and the diagrams of replicator dynamics are analyzed simultaneously. Finally, build the executable collaborative manufacturing resource service chain based on the sequential and logic relationship of manufacturing subtasks.
     (3) Construct the state monitoring framework of task execution process in cloud manufacturing. And build the multi-source data mapping model of manufacturing task ontology.On basis of this, achieve data fusion of task execution progress according to the structure of manufacturing tasks and resource service chain, and realize the real-time condition monitoring of manufacturing resources with the hidden markov model.
     (4) Advance the evaluation model of cloud manufacturing task execution process and build the evaluation attributions and fuzzification methods of different attributions. And then propose intuitionistic fuzzy OWA-TOPSIS method to evaluate the performance of task execution process, in which six different types of data aggregation methods and corresponding positive-ideal and negative-ideal solutions identification methods are advanced. And then, the practicability of the proposed method is verified by a case study.
     (5)Develop the task execution management system for practical application following the product manufacturing process of the building material equipment enterprises in could manufacturing. And implement the collaborative manufacturing task execution plan management, process tracking and evaluation among the collaborative enterprises.
引文
[1]Ranky P G. Computer integrated manufacturing[M] New Jersey Prentice Hall Press,1986.
    [2]Groover M P. Automation, Production Systems, and Computer-Integrated Manufacturing[M], New Jersey:Prentice Hall Press,2007.
    [3]Gunasekaran A. Agile manufacturing:a framework for research and development[J]. International Journal of Production Economics,1999,62(1-2):87-105.
    [4]Yusuf Y Y, Sarhadi M, Gunasekaran A. Agile manufacturing:The drivers, concepts and attributes[J] International Journal of Production Economics,1999,62(1-2):33-43.
    [5]Li Q, Zhou J, Peng Q R, et al. Business processes oriented heterogeneous systems integration platform for networked enterprises[J]. Computers in Industry,2010,61(2):127-144.
    [6]Tao F, Zhang L, Nee A Y C. A review of the application of grid technology in manufacturing[J]. International Journal of Production Research,2011,49(13):4119-4155.
    [7]陶飞,张霖,郭华,等.云制造特征及云服务组合关键问题研究[J].计算机集成制造系统,
    2011,17(3):477-486.
    [8]崔荣会,李艾艾.云制造落地[J].中国制造业信息化,2010,(6):18-21.
    [9]李美芳.CIMS及其发展趋势.现代制造工程,2005.(9):113-115.
    [10]李伯虎,戴国忠.CIMS应用示范工程10年回顾与展望[J].计算机集成制造系统,1998(3):3-9.
    [11]李蓓智.敏捷制造中的若干使能技术及其应用的研究[D].上海:东华大学,2005.
    [12]范玉顺,刘飞,祁国宁.网络化制造系统及其应用实践[M].北京:机械工业出版社,2003.
    [13]Lee J. E-manufacturing-fundamental, tools, and transformation[J]. Robotics and Computer-Integrated Manufacturing,2003,19(6):501-507.
    [14]刘士军.制造网格[M].北京:电子工业出版社,2009
    [15]李伯虎,张霖,王时龙,等.云制造-—面向服务的网络化制造新模式[J].计算机集成制造系统,2010,16(001):1-7.
    [16]李伯虎.再论云制造[J].计算机集成制造系统,2011,17(3):449-457.
    [17]Xun, X. From cloud computing to cloud manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2012,28 (1):75-86.
    [18]李伯虎.云制造——制造领域中的云计算[J].中国制造业信息化,2011,(10):24-26.
    [19]王正成,黄洋.面向服务链构建的云制造资源集成共享技术研究[J].中国机械工程,2012,23(11):1324-1331.
    [20]建材工业,http://baike.baidu.com/view/1086570.htm
    [21]国家高技术研究发展计划(863计划)先进制造技术领域“云制造服务平台关键技术”主题项目申请指南,http://www.863.gov.cn/news/1010/20/1010203734.htm
    [22]关于印发“十二五”制造业信息化科技工程规划的通知,国科发高(2012]312号, http://www.most.gov.cn/tztg/201205/t20120511_94337.htm
    [23]On-the-cloud environment implementing agile management methods for enabling the set-up, monitoring and follow-up of business innovation processes in industrial SMEs, EC.2011, Available from:http://cordis.europa.eu/projects/rcn/100324_en.html
    [24]李伯虎,张霖,任磊,等.云制造典型特征、关键技术与应用[J].计算机集成制造系统,2012,18(7):1345-1356.
    [25]李伯虎,柴旭东,侯宝存,等.一种基于云计算理念的网络化建模与仿真平台——“云仿真平台”[J].系统仿真学报,2009,21(17):5292-5299.
    [26]李伟平,林慧苹,莫同,et al.云制造中的关键技术分析[J].制造业自动化,2011,33(1):7-10.
    [27]战德臣,程臻,赵曦滨,等.制造服务及其成熟度模型[J].计算机集成制造系统,2012,18(7):1584-1594.
    [28]尹超,黄必清,刘飞.中小企业云制造服务平台共性关键技术体系.计算机集成制造系统,2011,17(3):495-503.
    [29]Cheng Y, Tao F, Zhang L, et al. Study on the utility model and equilibrium of resource service transaction in cloud manufacturing[C]. IEEE International Conference on Industrial Engineering and Engineering Management, Macao:IEEE Computer Society,2010:2298-2302.
    [30]甘佳,段桂江.云制造服务信任评估技术[J].计算机集成制造系统,2012,18(7):1527-1535.
    [31]罗永亮,张霖,陶飞,等.云制造模式下制造能力建模关键技术[J].计算机集成制造系统,2012,18(7):1357-1367.
    [32]李瑞芳,刘泉,徐文君.云制造装备资源感知与接入适配技术研究[J].计算机集成制造系统,2012,18(7):1547-1553.
    [33]He Y, Zhang Q, Hu D C. Research on ontology-based task modeling in manufacturing grid[J]. Applied Mechanics and Materials,2011,63-64:537-540.
    [34]Chunga S Y, Leea D Y. An augmented Petri net for modelling and control of assembly tasks with uncertainties[J]. International Journal of Computer Integrated Manufacturing,2005,18(2-3): 170-178.
    [35]安波,廖文和,郭宇,等.扩散制造任务建模及分解方法[J].南京航空航天大学学报,2010,42(6):731-734.
    [36]曾鹏飞,郝永平,邵伟平,等.基于PDM协同设计任务建模与调度方法研究[J].现代制造工程,2007(9):29-32.
    [37]姚倡锋,张定华,卜昆,等.复杂零件协同制造任务信息模型及建模方法[J].计算机集成制造系统,2009,15(1):47-52.
    [38]张杰,宋虹兴,傅勉,等.IDEF与UML相结合的作战任务建模方法[J].指挥控制与仿真,2010,32(3):18-21.
    [39]何汉武,熊有伦,郑德涛,等.面向虚拟企业的制造任务描述及制造链构造方法研究[J]. 中国机械工程,2001,12(4):455-459.
    [40]Wurdel M, Sinnig D, Forbrig P, et al. CTML:Domain and Task Modeling for Collaborative Environments[J]. Journal of Universal Computer Science,2008,14(19):3188-3201.
    [41]MESA International. MES Explained:The Benefit of MES:A Report from the Field, White Paperl, Pittsburgh:Manufacturing Execution Systems Assoc.,1997.
    [42]MESA International. MES Functionalities&MRP to MES Data Flow Possibilities, White Paper2, Pittsburgh:Manufacturing Execution Systems Assoc.,1997.
    [43]Wang Q. Service-driven networked collaborative manufacturing execution platform for extended enterprises [J]. Applied Mechanics and Materials,2009,16-19:88-92.
    [44]王琦峰,刘飞.基于语义服务的网络化协同制造执行平台[J].计算机集成制造系统,2011,17(5):961-970.
    [45]Zhang W Y, Zhang S, Chen Y G, et al. Combining social network and collaborative filtering for personalised manufacturing service recommendation[J]. International Journal of Production Research,2013,1-18.
    [46]吉锋,何卫平,王东成,等.网络制造环境下面向复杂零件的协同制造链研究[J].计算机集成制造系统,2006,12(1):71-77.
    [47]吉锋,何卫平,魏从刚,等.基于OWL-S的网络协同制造本体研究[J].机床与液压,2006,(7):22-25.
    [48]王景峰,王刚,问晓先,等.面向服务架构下协同制造服务链构建研究[J].电子科技大学学报,2009,38(2):282-287.
    [49]王景峰,王刚,吕民,等.基于产品结构的制造服务链构建研究[J].计算机集成制造系统,2009,15(6):1222-1236.
    [50]王景峰,李健,朱玉杰.基于复杂网络模型的协同制造服务网建立方法[J].森林工程,2010,26(6):79-81.
    [51]Sycara K, Widoff S, Klusch M, et al. Larks:Dynamic Matchmaking Among Heterogeneous Software Agents in Cyberspace[J]. Autonomous Agents and Multi-Agent Systems, 2002,5(2):173-203.
    [52]Klein M. Toward high-precision service retrieval[J]. IEEE Internet Computing,2004,8(1): 30-36.
    [53]陆建江,张亚非等.语义网原理与技术[M].北京:科学出版社,2007.
    [54]Jian G, Gao J. A multi-agent based knowledge search framework to support the product development process[J]. International Journal of Computer Integrated Manufacturing,2010,23(3): 237-247.
    [55]裘江南,仲秋雁,崔彦.服务匹配模型中综合语义匹配方法研究[J].大连理工大学学报,2007,47(6):914-919.
    [56]Tao F, Hu Y, Zhao D, et al. Study on resource service match and search in manufacturing grid system[J]. International Journal of Advanced Manufacturing Technology,2008,43(3-4):379-399.
    [57]Wang Z Z, Qu T, Chen Q X, et al. Resource model and service match algorithm for mould manufacturing grid[J]. International Journal of Computer Integeted Manufacturing,2012, 25(11):1011-28.
    [58]Benatallah B, Shengq Z, Dumas M. The self-serv environment for Web services composition [J]. IEEE Internet Computing,2003,7(1):40-48.
    [59]Sirin E, Parsia B,Wu D, et al. HTN planning for Web service composition using SHOP2 [J]. Journal of Web Semantics,2004,1(4):377-396.
    [60]Rao J, Kungas P, Matskin M. Composition of semantic Web services using linear logic theorem proving [J]. Information Systems,2004,13(6):340-360.
    [61]Ardagna D, Pernici B. Dynamic Web service composition with QoS constraints[J]. International Journal of Business Process Integration on and Management,2006,1(4):233-243.
    [62]Mar Z, Mostefaoui S K, Yahyaoui H. Towards an agent based and context oriented approach for Web services composition [J]. IEEE Transactions on Knowledge and Data Engineering,2005, 7(5):686-697.
    [63]邓水光,黄龙涛,尹建伟.Web服务组合技术框架及其研究进展[J].计算机集成制造系统,2011,17(2):404-412.
    [64]Tao F, Hu Y F, Zhou Z D, et al. Application and modeling of resource service trust-QoS evaluation in manufacturing grid system[J]. International Journal of Production Research,2009, 47(6):1521-1550.
    [65]Tao F, Zhao D M, Zhang L, et al. Resource service optimal-selection based on intuitionistic fuzzy set and non-functionality QoS in manufacturing grid system[J]. Knowledge and Information Systems,2010,25(1):185-208.
    [66]Tao F, Zhao D, Hu Y, et al. Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system[J]. IEEE Transactions on Industrial Informatics,2008,4(4):315-327.
    [67]Tao F, Zhao D, Hu Y, et al. Correlation-aware resource service composition and optimal-selection in manufacturing grid[J]. European Journal of Operational Research,2010, 201(1):129-143.
    [68]Guo H, Tao F, Zhang L, et al. Research on measurement method of resource service composition flexibility in service-oriented manufacturing system[J]. International Journal of Computer Integrated Manufacturing,2012,25(2):113-135.
    [69]陶飞.制造网格资源服务优化配置理论与应用研究[D].武汉:武汉理工大学,2008.
    [70]刘卫宁,刘波等.面向多任务的制造云服务组合研究[J].计算机集成制造系统,2013,19(1):199-209.
    [71]徐大敏,赵丽萍,要义勇.基于企业间质量跟踪控制模型的质量信息跟踪研究[J].计算机集成制造系统,2009,15(6):1107-1114.
    [72]高文俊.面向军工产品制造过程的质量跟踪与管理技术[D].哈尔滨:哈尔滨工业大学, 2006.
    [73]孙惠斌,江平宇.基于模板的虚拟企业制造信息跟踪方法研究[J].西安交通大学学报,2006,40(1):36-39.
    [74]Wan H D, Chen F F. A Web-based Kanban system for job dispatching, tracking, and performance monitoring[J]. International Journal of Advanced Manufacturing Technology, 2007;38(9-10):995-1005.
    [75]隋天中,崔虹雯.CIMS环境下车间级生产过程的信息跟踪监控系统.东北大学学报(自然科学版),2005,26(12):1188-1191.
    [76]Cheng C, Wang C. Outsourcer selection and order tracking in a supply chain by mobile agents. Computers & Industrial Engineering,2008.55(2):406-422.
    [77]Huang G Q, Zhang Y F, Jiang P Y. RFID-based wireless manufacturing for real-time management of job shop WIP inventories. International Journal of Advanced Manufacturing Technology,2007,36(7-8):752-764.
    [78]Chen R S, Tu M. Development of an agent-based system for manufacturing control and coordination with ontology and RFID technology[J]. Expert Systems with Applications,2009, 36(4):7581-7593.
    [79]尹超,储建涛,刘飞等.摩托车零部件制造企业网络化采购支持系统[J].重庆大学学报,2008,31(4):377-381.
    [80]Gavalas D, Tsekouras G E, Anagnostopoulos C. A mobile agent platform for distributed network and systems management[J]. The Journal of Systems and Software,2009,82(2):355-371.
    [81]Zhang Y, Jiang P, Huang G, et al. RFID-enabled real-time manufacturing information tracking infrastructure for extended enterprises[J]. Journal of Intelligent Manufacturing,2012,23(6), 2357-2366.
    [82]Guo S S, Wang T R. Yu X B. Agent-based system for sales order tracking with RFID technology[C]. The Mechanic Automation and Control Engineering. Wuhan, China:2010, 2996-3000.
    [83]鄢萍,王东强等.一种基于制造过程信息传播关系网的生产进度提取和跟踪方法[J].中国机械工程,2010,21(9):1046-1052.
    [84]姜建华.虚拟企业环境下订单驱动的任务管理机制研究与实践[D].武汉:武汉理工大学,2011.
    [85]李伯虎,张霖,柴旭东.云制造概论[J].中兴通兴技术,2010,16(4):5-8.
    [24]Tao F, Zhang L, Venkatesh V C, et al, Cloud manufacturing:a computing and service-oriented manufacturing model[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2011,225 (10):1969-1976.
    [87]李春泉,尚玉玲,胡春杨.云制造的体系结构及其关键技术研究[J].组合机床与自动化加工技术,2011,(7):104-107,112.
    [88]范文慧,肖田元.基于联邦模式的云制造集成体系架构[J].计算机集成制造系统, 2011,17(3):469-476.
    [89]What is an Ontology? http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
    [90]Gruber T R Toward Principles for the Design of Ontologies Used for Knowledge Sharing[J]. International Journal Human-Computer Studies,1995,43(5-6):907-928.
    [91]Guarino N. Formal Ontology, Conceptual Analysis and Knowledge Representation[J]. International Journal of Human-Computer Studies,1995,43(5-6):625-640.
    [92]Hu Y F, Tao F, Zhao D M, et al. Manufacturing grid resource and resource service digital description[J]. International Journal of Advanced Manufacturing Technology,2009,44:1024-1035.
    [93]Hou X, Ong S K, Nee A Y C, et al., GRAONTO:A graph-based approach for automatic construction of domain ontology[J]. Expert Systems with Applications,2011,38(9):11958-11975.
    [94]Shih C, Chen M, Chu H, et al. Enhancement of domain ontology construction using a crystallizing approach[J]. Expert Systems with Applications,2011,38(6):7544-7557.
    [95]Lee C, Kao Y, Kuo Y, et al. Automated ontology construction for unstructured text documents[J]. Data & Knowledge Engineering,2007.60(3):547-566.
    [96]Chen R, Liang J, Pan R. Using recursive ART network to construction domain ontology based on term frequency and inverse document frequency[J]. Expert Systems with Applications,2008, 34(1):488-501.
    [97]Chen R, Chuang C. Automating construction of a domain ontology using a projective adaptive resonance theory neural network and Bayesian network[J]. Expert Systems,2008,25(4):414-430.
    [98]Kavalec M, Maedche A, Svatek V. Discovery of lexical entries for non-taxonomic relations in ontology learning[C]. SOFSEM 2004:Theory and Practice of Computer Science,2004,249-256.
    [99]Sanchez D, Moreno A. Learning non-taxonomic relationships from web documents for domain ontology construction[J]. Data Knowledge Engineering,2008,64(3):600-623.
    [100]Dahab M, Hassan H, Rafea A. TextOntoEx:Automatic ontology construction from natural English text[J]. Expert Systems with Applications,2008,34(2):1474-1480.
    [101]welcome to protege. http://protege.stanford.edu/
    [102]Singh G, Prabhakar T, Chatterjee J, et al. Onto Viz:visualizing ontologies and thesauri using layout algorithms[C], The fifth international conference of the Asian Federation for Information Technology in Agriculture, Bangalore, India, Macmillan India Limited,2006,709-719.
    [103]Zhang X, Hou X, Chen X, et al. Ontology-based semantic retrieval for engineering domain knowledge[J]. Neurocomputing,2012.
    [104]The Stanford Natural Language Processing Group, http://nlp.stanford.edu/software/ index.shtml
    [105]Fallucchi F, Zanzotto F M. Inductive probabilistic taxonomy learning using singular value decomposition[J]. Natural Language Engineering,2011,17(1):71-94.
    [106]Gamallo P, Bordag S. Is singular value decomposition useful for word similarity extraction?[J] Language Resources and Evaluation,2010,45(2):95-119.
    [107]贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,(1):10-13
    [108]钱晓东,王正欧.基于算法改进的ART2数据聚类方法研究[J].哈尔滨工业大学学报,2006,38(9):1549-1553.
    [109]李山,石源,刘红军.基于ART2网络的三维模型聚类分析方法[J].计算机集成制造,2011,17(9):1865-1872.
    [110]Cao Y, Wu J. Dynamics of projective adaptive resonance theory model:the foundation of PART algorithm[J]. IEEE Transactions on Neural Networks,2004,15(2):245-260.
    [111]Fundel K, Kuffner R, Zimmer R. RelEx--Relation extraction using dependency parse trees[J]. Bioinformatics,2006,23(3):365-371.
    [112]Lee S, Huh S Y, McNiel R D. Automatic generation of concept hierarchies using WordNet[J]. Expert Systems with Applications,2008,35(3):1132-1144.
    [113]Huang X, Zhou C. An OWL-based WordNet lexical ontology[J]. Journal of Zhejiang University SCIENCE A,2007,8(6):864-870.
    [114]刘波.云制造环境中面向多任务的服务组合与优化技术研究[D].重庆:重庆大学,2012.
    [115]Liu W, Liu B, Sun D, et al. Study on multi-task oriented services composition and optimisation with the'Multi-Composition for Each Task'pattern in cloud manufacturing systems[J]. International Journal of Computer Integrated Manufacturing,2013,26(8):786-805.
    [116]何玉安.基于本体的制造网格任务管理关键技术研究[D].上海:上海大学,2008.
    [117]王正成,潘晓弘,潘旭伟.基于蚁群算法的网络化制造资源服务链构建[J].计算机集成制造系统,2010,16(1):174-181.
    [118]尹超,张云,钟婷.面向新产品开发的云制造服务资源组合优选模型[J].计算机集成制造系统,2012,18(7):1368-1378.
    [119]魏乐,赵秋云,舒红平.云制造环境下基于QoS的组合云服务自适应调整[J].兰州大学学报(自然科学版),2012,48(4):98-104.
    [120]Wang T R, Guo S S, Sarker B R, et al. Process planning for collaborative product development with CD-DSM in optoelectronic enterprises[J]. Advances Engineering Informatics, 2012,26(2):280-291.
    [121]黄毅.支持RFID实时监控的可重构制造执行系统研究[D].北京:清华大学,2011.
    [122]Kim M J, Jiang R, Makis V, et al. Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure[J]. European Journal of Operation Research, 2011,214(2):331-339.
    [123]Tai A H, Ching W K, Chan L Y. Detection of machine failure:Hidden Markov Model approach[J]. Computers & Industrial Engineering,2009,57(2):608-619.
    [124]Makis V. Multivariate Bayesian process control for a finite production run[J]. European Journal of Operation Research,2009,194(3):795-806.
    [125]Yu X B, Guo S S, Guo J, et al. Rank B2C e-commerce websites in e-alliance based on AHP and fuzzy TOPSIS[J]. Expert Systems with Applications,2011,38(4):3550-3557.
    [126]Chang C W, Wu C R, Chen H C. Using expert technology to select unstable slicing machine to control wafer slicing quality via fuzzy AHP[J]. Expert Systems with Applications, 2008,34(3):2210-2220.
    [127]Yang F, Wu D, Liang L, et al. Supply chain DEA:production possibility set and performance evaluation model[J]. Annual Operation Research,2009,185(1):195-211.
    [128]Liu S T. A fuzzy DEA/AR approach to the selection of flexible manufacturing systems[J]. Computers & Industrial Engineering,2008,54(1):66-76.
    [129]Boran F E, Genc S, Kurt M, et al. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method[J]. Expert Systems with Applications, 2009,36(8):11363-11368.
    [130]Yue Z. An extended TOPSIS for determining weights of decision makers with interval numbers[J]. Knowledge-Based Systems,2011,24(1):146-153.
    [131]Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Set and Systems,1986,20:2087-2096.
    [132]Xu Z. Intuitionistic Fuzzy Aggregation Operators[J]. IEEE Transactions on Fuzzy Systems, 2007,15(6):1179-87.
    [133]Chen Y, Li K W, Liu S. An OWA-TOPSIS method for multiple criteria decision analysis[J]. Expert Systems with Applications,2011,38(5):5205-5211.
    [134]Yager R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J].IEEETransactions on Systems Man and Cybernetics,1988,18:183-190.
    [135]Su Z, Xia G, Chen M, et al., Induced generalized intuitionistic fuzzy OWA operator for multi-attribute group decision making[J]. Expert Systems with Applications,2012, 39(2):1902-1910.
    [136]Yang W, Chen Z. The quasi-arithmetic intuitionistic fuzzy OWA operators[J]. Knowledge-Based Systems,2012,27:219-233.
    [137]Hwang, C L,Yoon K. Multiple attribute deeision making:Methods and applications, A State of the Art survey[M].New york:Springer-Verlag,1981.
    [138]岳超源.决策理论与方法[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700