多水下机器人协调控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,智能水下机器人(Autonomous Underwater Vehicle/AUV)技术取得了长足的发展。其在海洋环境数据采集、区域搜索、海底目标探测等方面发挥着越来越重要的作用。随着作业任务复杂度的增加,单个水下机器人有时无法满足工作的需要。多水下机器人系统(Multiple Autonomous Underwater Vehicles/MAUV)凭借其空间分布性、任务执行中所体现出来的高效性、鲁棒性以及灵活性方面都具有单个水下机器人无法比拟的优势。关于多水下机器人系统的理论与应用研究在近十几年间逐渐引起国内外相关机构的重视。
     本文针对多水下机器人协同作业研究中需要解决的几项关键技术进行了研究:
     1.开展了模块化、分布式多水下机器人协调控制软件体系结构研究。在所建立体系结构中,每个AUV都被抽象为一组功能相对独立、信息相互依赖的功能模块。基于网络协议的信息传递机制为单个AUV内部功能模块之间的信息交互提供了稳定高效的支持,同时为功能模块的分布式运行提供了基础的保证。系统内水下机器人之间的信息交互手段被抽象为相对独立的通讯模块,保证了AUV间信息交互格式的统一与规范。
     2.开展了基于行为的多水下机器人协调控制方法研究。针对水下作业环境复杂多变的特点,从提高水下机器人自主性、自适应能力的需求出发,开展了基于行为的水下机器人智能控制方法研究。多水下机器人协同作业过程中的运动控制指令由-系列的行为(包括协作行为)共同作用来实现。对于行为融合(行为选择)问题论文中采用了基于多目标值优化的方法进行研究。论文中所使用的IvP计算模型通过对行为决策空间的离散化保证了行为融合算法的实时性,以及行为融合结果的优化性。
     3.考虑到行为融合结果跳变对AUV运动控制稳定性可能产生影响,论文结合非线性控制理论和混合系统理论的相关方法开展了基于行为的AUV运动控制稳定性研究。进行了基于指令滤波反演设计方法的AUV运动控制器设计,开展了基于多Lyapunov函数的行为融合输出跳变条件下的AUV运动控制稳定性分析,得到了行为输出跳跃条件下AUV运动控制稳定的条件。
     4.开展了基于市场拍卖机制的多水下机器人任务分配方法研究。针对单任务拍卖模型容易陷入局部极大值的问题,通过考虑任务间的“协同”作用,提出了基于“聚类”模型的多水下机器人任务分配算法,提高了多水下机器人任务分配的优化程度。通过仿真算例验证了方法的有效性。
     5.针对多水下机器人协调编队控制问题,开展了多水下机器人协同编队控制方法研究。通过对多AUV协同编队运动模型进行简化,利用图论的方法描述系统中AUV之间的信息交互拓扑结构,基于多智能体一致性理论开展了不同通讯拓扑结构下分布式控制律的设计,使得AUV利用局部感知信息进行运动指令解算最终驱动其艏向趋于一致。通过建立相应的Lyapunov函数证明了系统的稳定性。
     6.建立了多水下机器人协调控制仿真环境,针对未来多水下机器人系统的典型应用设计了不同的试验用例。通过仿真试验初步验证了本论文相关研究方法的可行性、有效性。
The technology of autonomous underwater vehicle(AUV) has achieved an impressive de-velopment during the last decades. AUV is playing an important role in such tasks as oceano-graphic data collection, resource exploration and underwater object inspection. As tasks get more complex, some times the single AUV can not full fill the requirements of tasks. Robust-ness, efficiency and flexibility are the advantages offered by multiple autonomous underwater vehicles(MAUV) over a single autonomous underwater vehicle system and hence has drawn more attention from research institutions all over the world than ever before.
     Although fast developed, some of the problems concerned with MAUV were not well solved. In this thesis, several key techniques concerned with cooperation of multiple au-tonomous underwater vehicle system were studied:
     1. A modularized, distributed software architecture was established for coordinated control of multiple autonomous underwater vehicle system. In this architecture,each AUV was abstracted as a group of software modules which has different functionality of their own while depends on the information provided by each other. The network protocol based information exchange mechanism provides a fast and stable means for exchange of information between software modules belong to the same AUV. The unified information exchange mechanism also makes it possible for modules of the same AUV to run in distributed fashion. Functionality of communication between different AUVs was realized by an relatively independent communi-cation module(which provides the software abstraction of the communication devices such as underwater modem),which provides a unified format for communication between AUVs.
     2. "Behavior-based" control theory was applied to the coordinated control of multiple autonomous vehicles. In order to improve the autonomy and adaptability of the AUVs in dy-namical undersea environments, behavior-based intelligent control strategy was studied. In the execution of cooperative tasks, motion command was generated by a set of interacting behav-iors.The multiple objective optimization based behavior fusion method was used in behavior fusion. IvP model was applied to ensure the realtime demand and optimized output of behavior fusion.
     3. As the jump of behavior fusion results will have influences on stability of AUV motion control,Nonlinear control theory and hybrid system theory was applied to the problem of "stability of behavior based control of AUV". A nonlinear motion controller of AUV based on command filtered backstepping(CFBS) was established. Control stability of AUV under jump of behavior output was studied and the conditions under which the AUV would remain stable was derived based on theory of multiple Lyapunov function.
     4. The problem of task allocation of MAUV was studied and "market-based" allo-cation strategy was applied to solve the problem.By inspecting the "Synergy effect" between tasks, an improved auction-based task allocation algorithm(cluster based task bidding algo-rithm) was proposed to improve the optimality of task allocation results.
     5. The problem of coordinated formation control was studied. Simplification was made on the motion model of MAUV coordinated formation control, graph theory was used to describe communication topologies between AUVs in the system. Consensus theory of multi-agent system was used to design distributed control laws of AUVs in formation control. The control law can be calculated by local information collected by the AUV and the direction of all the AUVs can be driven to the same value under the control law. Lyapunov function was design to prove stability of the system.
     6. Simulation environment for coordinated control of multiple autonomous under-water vehicle system was established, some typical task cases were designed to verify the feasibility and effectiveness of the methods proposed in this thesis.
引文
[1]J. S. Shamma. First edn. Cooperative Control of Distributed Multi-agent System, John Wiley and Sons Ltd,2007
    [2]C. B. Thomas, B. G. James, C. Josko, et al. Autonomous Oceanography Sampling Networks. Oceanography.1993,6(3):86-94P
    [3]S. Ramp, R. Davis, N. Leonard, et al. Preparing to Predict:The Second Autonomous Ocean Smapling Network Experiment in the Monterey Bay. Deep-Sea Research, Part Ⅱ.2009, (56):68-86P
    [4]P. Haley, Jr, P. Lermusiaux, A. Robinson, et al. Forecasing and Reanalysis in the Monterey Bay/california Current Region for the Autonomous Ocean Sampling Net-work-Ⅱ Experiment. Deep-Sea Research, Part Ⅱ.2009, (56):127-148P
    [5]E. Fiorelli, N. Leonard, P. Bhatta, et al. Multi-auv Control and Adaptive Sampling in Monterey Bay. IEEE Journal of Oceanic Engineering.2006,31(4):935-948P
    [6]Z. Fumin, N. Leonard. Cooperative Kalman Filters for Cooperative Exploration.2008 American Control Conference.2008:2654-2659P
    [7]D. A. Paley. Cooperative Control of Collective Motion for Ocean Sampling with Autonomous Vehicles. Princeton University, Ph.D. thesis.2007
    [8]A. Isern. The Ocean Observatories Initiative:Wiring the Ocean for Interactive Scientific Discovery. OCEANS 2006.2006:1-7P
    [9]A. Chave, M. Arrott, C. Farcas, et al. Cyberinfrastructure for the Us Ocean Observatories Initiative:Enabling Interactive Observation in the Ocean. OCEANS 2009-EUROPE, 2009. OCEANS'09.2009:1-10P
    [10]T.-C. Liu, H. Schmidt. Auv-based Seabed Target Detection and Tracking. MTS/IEEE. OCEANS'02.2002,1:474-478P
    [11]M. Montanari, J. Edwards, H. Schmidt. Autonomous Underwater Vehicle-based Concur-rent Detection and Classification of Buried Targets Using Higher Order Spectral Ana-lysis. Oceanic Engineering, IEEE Journal of.2006,31(1):188-199P
    [12]D. Eickstedt, M. Benjamin, H. Schmidt, et al. Adaptive Control of Heterogeneous Marine Sensor Platforms in an Autonomous Sensor Network. IEEE/RSJ International Conference on Intelligent Robots and Systems,2006:5514-5521P
    [13]T. Schneider, H. Schmidt. Unified Command and Control for Heterogeneous Marine Sensing Networks. Journal of Field Robotics.2010:1-14P
    [14]J. Curcio, J. Leonard, J. Vaganay, et al. Experiments in Moving Baseline Navigation Using Autonomous Surface Craft. OCEANS,2005. Proceedings of MTS/IEEE.2005, 1:730-735P
    [15]M. Grund, L. Freitag, J. Preisig, et al. The Plusnet Underwater Communications System: Acoustic Telemetry for Undersea Surveillance. OCEANS 2006.2006:1-5P
    [16]R. Ghabchello, I. Kaminer, A. Aguiar. A General Framework for Multiple Vehicle Time-coordinated Path Following Control.2009 American Control Conference.2009:3071-3076P
    [17]A. Pascoal, C. Silvestre, P. Oliveira. Vehicle and Mission Control of Single and Multiple Autonomous Marine Robots. IEE Control series.2006,69:353-386P
    [18]W. Yan, R. Cui, D. Xu. Formation Control of Underactuated Autonomous Underwa-ter Vehicles in Horizontal Plane. IEEE International Conference on Automation and Logistics,2008:822-827P
    [19]R. Cui, S. S. Ge, B. Voon Ee How, et al. Leader-follower Formation Control of Under-actuated Auvs with Leader Position Measurement.2009:979-984P
    [20]Z. Lichuan, L. Mingyong, X. Demin, et al. Cooperative Localization for Underwater Vehicles.2009:2524-2527P
    [21]Y. Yao, D. Xu, W. Yan. Cooperative Localization with Communication Delays for Mauvs.2009,1:244-249P
    [22]许真珍,李一平,封锡盛.一个面向多uuV协作任务的分层式控制系统.机器人.2008,30(2):155-159页
    [23]徐红丽,许真珍,封锡盛.基于局域网的多水下机器人仿真系统设计与实现.机器人.2005,27(5):423--425页
    [24]S. Ren, L. Tan, Y. Li, et al. A Semi-physical Simulation Framework for Multiple Un-manned Underwater Vhicles.2010:1798-1801P
    [25]冀大雄,李一平,刘健.主从式AUV群的随从AUV导航.仪器仪表学报.2009,30(6):631-634页
    [26]吴小平,冯正平.多AUV覆盖控制研究.中国造船.2009,50(2):118-127页
    [27]吴小平,冯正平,朱继懋.基于蚁群算法的多AUV路径规划仿真研究.计算机仿真.2009,26(1):150-153页
    [28]X. wei Chen, Z. ping Feng. Formation Control of Underwater Mobile Sensing Networks. Journal of Shanghai Jiaotong University(Science).2010,14(5):590-592页
    [29]由光鑫.多水下机器人分布式智能控制技术研究.哈尔滨工程大学博士学位论文.2006
    [30]孟宪松.多水下机器人系统合作与协调技术研究.哈尔滨工程大学博士学位论文.2006
    [31]姜磊.弱通讯条件下多水下机器人协调方法研究.哈尔滨工程大学硕士学位论文.2009
    [32]徐宏根.多水下机器人编队协调问题研究.哈尔滨工程大学硕士学位论文.2005
    [33]王兢.水下机器人编队系统研究.哈尔滨工程大学硕士学位论文.2003
    [34]李锋.多智能体Q学习在多AUV协调中的应用与仿真.哈尔滨工程大学硕士学位论文.2008
    [35]蒋新松,封锡盛,土棣棠.水下机器人,辽宁科学技术出版社,2000.300-301页
    [36]P. Ridao, J. Batlle, J. Amat, et al. Recent Trends in Control Architectures for Au-tonomous Underwater Vehicles. International Journal of Systems Science.1999, 30(9):133-156P
    [37]D. Yoerger, A. Bradley, B. Walden. System Testing of the Autonomous Benthic Ex-plorer. IARP 2nd Workshop on Mobile Robots for Subsea Enrironments.1994:159-170P
    [38]D. Barnett, S. McClaran, E. Nelson, et al. Architecture of the Texas A&m Autonomous Underwater Vehicle Controller. Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology.1996:231-237P
    [39]S. Rock, H. Wang, M. Lee. Task-directed Precision Control of the Mbari/standford Otter Auv. Proceedings of the 1996 International Program Development in Undersea Robotics & Intelligent Control(URIC).1995:131-138P
    [40]A. Booswell, J. Leaney. Task-directed Precision Control of the Mbari/standford Otter Auv. Proceedings of the IARP 2nd Workshop on Mobile Robots for Subsea Environ-ments.1994:95-106P
    [41]J. Bellingham, L. J.J. Task Configuration with Layered Control. Tech. rep., MIT Sea-Grant College,1994
    [42]李文锋,张帆,闫新庆,等.移动机器人控制系统结构的研究与进展.中国机械工程.2008,19(1):114-119页
    [43]S. Smith. Task-directed Precision Control of the Mbari/standford Otter Auv. Pro-ceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology. 1994:105-111P
    [44]J. Yuh. Underwater Robotic Vehicles:design and Control. Albuquerque,NM:TSI Press, 1995
    [45]A. Healey, D. Marco, R. McGhee, et al. Coordinating the Hovering Behaviors of the NPS AUV II Using Onboard Sonar Servoing. Proceedings of the IARP 2nd Workshop on Mobile Robots for Subsea Environments.1994:95-106P
    [46]P. Ridao, M. Carreras, J. Batlle, et al. O2CA2:A New Object Oriented Control Ar-chitecure for Autonomy:The Reactive Layer. Control Engineering Practice.2002, (10):857-873P
    [47]J. Sousa, F. Pereira, E. da Silva. General Control Architecture for Multiple Auvs. Pro-ceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology. Monterey, CA, USA,1996:223-230P
    [48]J. B. De Sousa, F. Pereira. Hybrid Systems Theory Framework for the Design of a Con-trol Architecture for Multiple Autonomous Underwater Vehicles. IEEE International Symposium on Industrial Electronics. Guimaraes, Portugal,1997,2:747-752P
    [49]T. Fujii, T. Ura. Autonomous Underwater Robots with Distributed Behavior Control Ar-chitecture. Proceedings-IEEE International Conference on Robotics and Automation. Nagoya, Jpn,1995,2:1868-1873P
    [50]Z. Yan, S. Hou. A Coordinated Method Based on Hybrid Intelligent Control Agent for Multi-auvs Control. Proceedings of IEEE International Conference on Information Acquisition. Weihai, Shandong, China,2006:1179-1184P
    [51]C. C. Sotzing, J. Evans, D. M. Lane. A Multi-agent Architecture to Increase Coordina-tion Efficiency in Multi-auv Operations. Oceans 2007-Europe,2007:1-6P
    [52]P. M. Newman. MOOS-a Mission Oriented Operating Suite. Tech. Rep. OE2003-07, Department of Ocean Engineering, MIT,2003
    [53]H. Schmidt, A. Balasuriya, M. Benjamin. Nested Autonomy with MOOS-IvP for In-teractive Ocean Observatories. International Conference on Marine Environment and Biodiversity Conservation in the South China Sea. Kaohsiung,Taiwan,2010:9-17P
    [54]M. Chitre. Dsaav-a Distributed Software Architecture for Autonomous Vehicles. OCEANS 2008.2008:1-10P
    [55]M. R. Benjamin, P. M. Newman, H. Schmidt, et al. An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software. Tech. Rep. MIT-CSAIL-TR-2009-028, Computer Science and Artificial Intelligence Laboratory, MIT,2009
    [56]杨芙清,梅宏,李克勤.软件复用与软件构件技术.电子学报.1999,27(2):68-75页
    [57]钱东,崔立.开放系统-鱼雷和uuv设计的方向.鱼雷技术.2007,15(2):1-7页
    [58]陈强,张林根.美国军用uuv现状及发展趋势分析.舰船科学技术.2010,32(7):129-134页
    [59]董炀斌.多机器人系统的协作研究.浙江大学博士学位论文.2007
    [60]R. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation.1986,2(1):14-23P
    [61]R. Arkin. Behavior-based Robotics. Cambridge, MA, USA:MIT Press,1998
    [62]P. Maes. How to Do the Right Thing. Tech. Rep. MIT-NE43-86, AI-Laboratory, MIT, 1989
    [63]程玉虎,易建强,赵冬斌.机器人行为协调机制研究进展.机器人.2004,26(2):187-192页
    164]王义萍,陈庆伟,胡维礼.机器人行为选择机制综述.机器人.2009,3 1(5):472-480页
    [65]M. Carreras. A Proposal of a Behavior-based Control Architecture with Reinforcement Learning for an Autonomous Underwater Robot. University of Girona, Ph.D. thesis. 2003
    [66]李冬梅,陈卫东,席裕庚.基于强化学习的多机器人合作行为获取.上海交通大学学报.2005,39(8):1331-1335页
    [67]郭磊.自主式水下机器人基于行为的控制方法研究.中国海洋大学硕士学位论文.2008
    [68]王作为.基于进化算法的智能机器人行为学习研究.哈尔滨工程大学硕士学位论文.2008
    [69]V. Chankong, Y. Y. Haimes. Multiobjective Decision Making-Theory and Methodol-ogy. North Holland,1983
    [70]J. K. Rosenblatt. Damn:A Distributed Architecture for Mobile Navigation. Carnegie Mellon University, Ph.D. thesis.1997
    [71]J. Riekki. Reactive Task Execution of a Mobile Robot. Oulu University, Ph.D. thesis. 1999
    [72]P. Pirjanian. Multiple Objective Behavior-based Control. Robotics and Autonomous Systems.2000,31(1):53-60P
    [73]M. R. Benjamin. Interval Programming:A Multi-object Optimization Model for Au-tonomous Vehicle Control. Brown University, Ph.D. thesis.2002
    [74]M. R. Benjamin, P. Newman, H. Schmidt, et al. An Overview of MOOS-IvP and a User Guide to the Ivp Helm Autonomy Software. Tech. Rep. MIT-CASAIL-TR-2010-041, Comupter Science and Artificial Intelligence Laboratory, MIT,2010
    [75]黎萍,杨宜民.多机器人系统任务分配的研究进展.计算机工程与应用.2008,44(17):201-206页
    [76]N. Mankiw. Principles of Economics.3rd Edition. Thomson Learning,2004
    [77]M. Dias. Traderbots:A New Paradigm for Robust and Efficient Multirobot Coordination in Dynamic Environment. Carnegie Mellon University, Ph.D. thesis.2004
    [78]R. Zlot, A. Stentz. Market-based Multirobot Coordination for Complex Tasks. Interna-tional Journal of Robotics Research.2006,25(1):73-101P
    [79]R. Zlot. An Auction-based Approach to Complex Task Allocation for Multirobot Teams. Carnegie Mellon University, Ph.D. thesis.2006
    [80]N. Kalra. A Market-based Framework for Tightly-coupled Planned Coordination in Multirobot Teams. Carnegie Mellon University, Ph.D. thesis.2006
    [81]B. Gerkey. On Multi-robot Task Allocation. University of South California, Ph.D. thesis. 2003
    [82]B. Gerkey, M. Mataric. Sold! Auction Methods for Multirobot Coordination. IEEE Transactions on Robotics and Automation.2002,18(5):758-768P
    [83]S. Sariel, T. Balch, N. Erdogan. Naval Mine Countermeasure Missions:A Distributed, Incremental Multirobot Task Selection Scheme. IEEE Robotics and Automation.2008, 15(1):45-52P
    [84]S. Sariel, T. Balch. Distributed Multi-auv Coordination in Naval Mine Countermeasure Missions. Tech. Rep. GIT-GVU-06-04, Georgia Institute of Technology,2006
    [85]张匕,陈卫东,席裕庚.多机器人协作探索的改进市场法.控制与决策.2005,20(5):516-520页
    [86]柳林.多机器人系统任务分配与编队控制技术研究.国防科学技术大学博士学位论文.2006
    [87]M. Dias, R. Zlot, N. Kalra, et al. Market Based Multirobot Coordination:A Survey and Analysis. Proceedings of the IEEE.2006,94(7):1257-1270P
    [88]L. M. Ausubel, P. Cramton. Vickrey Auctions with Reserving Pricing. Economic The-ory.2004,23:493-505P
    [89]M. Dias, A. Stentz. A Comparative Study between Centralized, Market-based, and Behavioral Multirobot Coordination Approaches. IEEE/RSJ International Conference on Intelligent Robots and Systems,2003:2279-2284P
    [90]M. Lagoudakis, V. Markakis, D. Kempe, et al. Auction-based Multi-robot Routing. Pro-ceedings of the International Conference on Robotics:Science and Systems.2005:343-350P
    [91]A. R. Mosteo, L. Montano. Comparative Experiments on Optimization Criteria and Algorithms for Auction Based Multi-robot Task Allocation. IEEE International Confer-ence on Robotics and Automation.2007:3345-3350P
    [92]T. Sandholm. An Implementation of the Contract Net Protocol Based on Marginal Const Calculation. Eleventh national conference on artificial intelligence.1993:256-262P
    [93]S. Sariel. An Integrated Planning,scheduling and Execution Framework for Multi-robot Cooperation and Coordination. Istanbul Technical Uinversity, Ph.D. thesis.2007
    [94]M. Berhault, H. Huang, P. Keskinocak, et al. Robot Exploration with Combinato-rial Auctions. IEEE International Conference on Intelligent Robots and Systems. 2003:1957-1962P
    [95]M. Dias, A. Stentz. Opportunistic Optimization for Market-based Multirobot Control. IEEE International Conference on Robotics and Automation.2002:2714-2720P
    [96]O. Grygorash, Z. Yan, Z. Jorgensen. Minimum Spanning Tree Based Clustering Algo-rithms. IEEE International Conference on Tools with Artificial Intelligence.2006:73-81P
    [97]D. Johoson, L. Mcgeoch. The Traveling Salesman Problem:A Case Study in Local Optimization. London:John Wiley and Sons,1997
    [98]M. Lagoudakis, P. Keskinocak, A. Kleywegt, et al. Simple Auctions with Performance Guarantees for Multi-robot Task Allocation. IEEE International Conference on Intelli-gent Robots and Systems.2006:698-705P
    [99]刘兴堂.导弹制导控制系统分析、设计与仿真.西安市:西北工业大学出版社,2006
    [100]张鹏,周军红.精确制导原理.北京:电子工业出版社,2009
    [101]D. Fryxell, P. Oliveira, A. Pascoal, et al. Integrated Design of Navigation, Guidance and Control Systems for Unmanned Underwater Vehicles. OCEANS'94.1994,3:105-110P
    [102]T. Fossen. Marine Control Systems:Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics AS,2002
    [103]严卫生,许晖,石秀华,等.自主水下航行器制导系统的设计.船舶工程.2003,25(5):35-37页
    [104]甘永.水下机器人运动控制系统体系结构的研究.哈尔滨工程大学博士学位论文.2007
    [105]D. Eickstedt, S. Sideleau. The Backseat Control Architecture for Autonomous Robotic Vehicles:A Case Study with the Iver2 Auv. OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future:Global and Local Challenges.2009:1-8P
    [106]钱学森,宋健.工程控制论.北京:科学出版社,1980
    [107]J. A. Farrell, P. Marios, S. Manu, et al. Command Filtered Backstepping. IEEE Trans-actions on Automatic Control.2009,54(6):1391-1395P
    [108]D. Vladimir, J. A. Farrell, D. Wenjie. Unifying Behavior-based Control Design and Hybrid Stability Theory.2009 American Control Conoference.2009:3650-3655P
    [109]王莉,王庆林Backstepping设计方法及应用.自动化博览.2004,(6):57-61页
    [110]林永屹.基于backstepping的船舶航向非线性控制方法的研究.大连海事大学硕士学位论文.2007
    [111]冯欣.基于backstepping的船舶动力定位系统控制器设计.大连海事大学硕士学位论文.2009
    [112]肖涛.基于backstepping方法的水下机器人自适应滑模控制技术研究.哈尔滨工程大学硕士学位论文.2009
    [113]高剑,徐德民,赵宁宁,等.一类低速水下航行器的自适应反演运动控制.系统仿真学报.2008,20(7):1800-1803页
    [114]H. Khalil. Nonlinear Systems. third edn. New Jersey:Prentice-Hall,2002
    [115]V. Djapic. Unifying Behavior Based Control Design and Hybrid Stability Theory for Auv Application. University of California,Riverside, Ph.D. thesis.2009
    [116]向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究.华中科技大学博士学位论文.2010
    [117]M. Mataric. A Distributed Model for Mobile Robot Environment-learning and Naviga-tion,1990
    [118]马国梁,陈庆伟,胡维礼.混合系统:回顾与展望.东南大学学报.2003,33(Sup.):46-49页
    [119]莫以为,萧德云.混合动态系统及其应用综述.控制理论与应用.2002,19(1):1-8页
    [120]杨莹.几类随机混杂系统的稳定性分析及其控制.西安电子科技大学博士学位论文.2009
    [121]J. Lunze, F. Lamnabhi-Lagarrigue. Handbook of Hybrid Systems Control:Theory, Tools, Applications. first edn. Cambridge,UK:Cambridge University Press
    [122]R. DeCarlo, M. Branicky. Perspectives and Results on the Stability and Stabilizability of Hybrid Systems. Proceedings of the IEEE.2000,88(7):1069-1082P
    [123]R. Fierro, F. Lewis. A Framework for Hybrid Control Design. IEEE Transactions on Systems, Man and Cybernetics.1997,27
    [124]B. M.S. Multiple Lyapunov Functions and Ohter Analysis Tools for Switched and Hy-brid Systems. IEEE Transactions on Automatic Control.1998,43(4):475-482P
    [125]翟海峰,胡协和,苏宏业,等.采用多lyapunov函数的混杂系统稳定性研究.控制理论与应用.2002,19(3):457-461页
    [126]M. Branicky. Stability of Switched and Hybrid Systems.33th IEEE Conference ono Decision and Conotrol.1994:3498-3503
    [127]R. Murray. Recent Research in Cooperative Cotrol of Multivehicle Systems. Journal of Dynamic Systems, Measurement and Control.2007,129(5):571-583P
    [128]D. Edwards, T. Bean, D. Odell. A Leader-follower Algorithm for Multiple Auv Forma-tions.2004 IEEE/OES Autonomous Underwater vehicles.2004:40-46P
    [129]崔海英,石秀华,崔荣鑫.自主水下航行器主从式编队控制.鱼雷技术.2007,15(4):42-44页
    [130]吴小平,冯正平,朱继懋.多AUV队形控制的新方法.舰船科学技术.2008,30(2):128-134页
    [131]张汝波,王兢,孙世良.具有环境自适应能力的多机器人编队系统研究.机器人.2004,26(1):69-73页
    [132]F. Arrichiello, S. Chiaverini, T. Fossen. Formation Coontrol of Underactuacted Sur-face Vessels Using the Null-space-based Behavioral Control. IEEE/RSJ International Conoference on Robots systems.2006:5942-5947P
    [133]J. Ghommam, M. F., G. Poisson. Nonlinear Formation Control of a Group of Underac-tuated Ships. Oceans 2007.2007:1-8P
    [134]王晓丽,洪奕光.多智能体系统分布式控制的研究新进展.复杂系统与复杂性科学.2010,7(2-3):70-81页
    [135]J. Fax, R. Murray. Information Flow and Cooperative Control of Vehicle Formations. IEEE Transactions on Automatic Control.2004,49(9):1465-1476P
    [136]R. Olfati-Saber, M. R.M. Consensus Problems in Networks of Agents with Switching Topology and Time-delays. IEEE Transactions on Automatic Control.2004,49(9):169-181P
    [137]Z. Lin, F. B., M. M. Necessary and Sufficient Graphical Conditioins for Formation Control of Unicycles. IEEE Transactions on Automatic Control.2005,50(1):121-127P
    [138]J. Caughman, G. Lafferriere, J. Veerman, et al. Decentralized Control of Vehicle For-mations. System and Control Letters.2005,54(9):899-910P
    [139]杨文.多智能体系统一致性问题研究.上海交通大学博士学位论文.2009
    [140]余莹莹.多智能体系统一致性若干问题的研究.华中科技大学博士学位论文.2010
    [141]王晓丽.多智能体系统分布式控制与设计的研究.中国科学院研究生院博士学位论文.2010
    [142]雷斌.群体机器人系统合作控制问题研究.武汉理工大学博士学位论文.2009
    [143]E. Justh, P. Krishnaprasad. Equilibria and Steering Laws for Planar Formations. System and Control Letters.2004,52(1):25-38P
    [144]W. Ren, B. R.W. Second-order Consensus Protocols in Multiple Vehicle Systems with Local Interactions. AIAA Guidance,Navigation Control Conference.2005
    [145]R. Horn, C. Johnson. Matrix Analysis. Cambridge,UK:Cmabridge University Press, 1985
    [146]N. Biggs. Algebraic Graph Theory. Cambridge,UK:Cmabridge University Press,1993
    [147]R. Distel. Graph Theory. Berlin:Springer,2005
    [148]M. Stojanovic. Recent Advances in High-speed Underwater Acoustic Communications. IEEE Journal of Ocean Engineering.1996,21(2):125-136P
    [149]L. Freitag, G. Matthew, C. von Alt, et al. A Shallow Water Acoustic Network for Mine Countermeasures Operations in Autonomous Underwater Vehicles. Underwater De-fence Technology.2005
    [150]S. Singh, M. Grund, B. Bingham, et al. Underwater Acoustic Navigation with the Whoi Micro-modem. Oceans 2006.2006:1-4P
    [151]L. Freitag, G. Matthew, S. Singh, et al. The Whoi Micro-modem:An Acoustic Com-munications and Navigation System for Multiple Platforms. Oceans 2005.2005:1086-1092P
    [152]L. Freitag, M. Johnson, S. Singh, et al. Integrated Acoustic Communication and Navi-gation for Multiple UUVs. Oceans 2001.2001:2065-2070P
    [153]R. P. Stokey, L. Freitag, M. Grund. A Compact Control Language for Auv Acoustic Communication. Oceans Europe 2005.2005:1133-1137P
    [154]T. Bean, G. Beidler, J. Canning, et al. Language and Logic to Enable Collaborative Behavior Among Multiple Autonomous Underwater Vehicles. International Journal of Intelligent Control and Systems.2008,13(1):67-80P
    [155]R. Sepulchre, D. Paley, L. N.E. Graph Laplacian and Lyapunov Design of Collective Planar Motions. International Symposium on Nonliear Theory and its Applications. 2005:217-232P
    [156]L. Scardovi, R. Sepulchre. Collective Optimization Over Average Quantities.45th IEEE Conference on Decision and Control.2006:3369-3374P
    [157]L. Scardovi, A. Sarlette, R. Sepulchre. Synchronization and Balancing on the N-torus. Systems and Control Letters.2007,56(5):335-341P
    [158]D. Spanos, R. Olfati-Saber, R. Murray. Dynamics Consensus on Mobile Networks.16th IFAC World Congress.2005
    [159]R. Sepulchre, D. Paley, N. Leonard. Stabilization of Planar Collective Motion with Limited Communication. IEEE Transactions on Automatic Control.2008,53(3):706-719P
    [160]I. Couzin, J. Krause, N. Franks, et al. Effective Leadership and Decision-making in Animal Groups on the Move, nature.2005,433(7025):513-516P
    [161]B. Nabet, N. Leonard, I. Couzin, et al. Leadership in Animal Group Motion:A Bi-furcation Analysis.17th International Symposium on Math. Theory of Networks and Systems.2006:1-14P
    [162]T. Koay, Y. Tan, Y. Eng, et al. Starfish-a Small Team of Autonomous Robotics Fish.3rd International Conference on Underwater System Technology:Theory and Applications. 2010
    [163]许真珍,徐红丽,封锡盛.基于c/s模式的多水下机器人仿真平台网络通信研究.微电子学与计算机.2006,23(5):97-101页
    [164]高勇,李一平.多水下机器入水声网络仿真框架设计.机器人技术.2010,26(5-2):149-150页
    [165]M. R. Benjamin. MOOS-IvP Autonomy Tools Users Manual. Tech. Rep. MIT-CASAIL-TR-2010-039, Comupter Science and Artificial Intelligence Laboratory, MIT,2010
    [166]A. J. Shafer. Autonomous Cooperation of Heterogeneous Platforms for Sea-based Search Tasks,2008
    [167]M. R. Benjamin. The Interval Programming Model for Multi-objective Decision Mak ing. Tech. Rep. MIT-CASAIL-TR-2004-021, Comupter Science and Artificial Intelligence Laboratory, MIT,2004
    [168]A. Okamoto. Robust Control of a Platoon of Underwater Autonomous Vehicles. OCEANS04.2004:505-510P
    [169]E. Justh, P. Krishnaprasad. Steering Laws and Continuum Models for Planar Formations. 42nd IEEE Conference on Deceision and Control.2003:3609-3614P
    [170]苏声.水声通信设备近期发展.声学与电子工程.1992,25:37--41页
    [171]齐刚.水声设备研究.声学学报.2006,6(1):61-65页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700