金融市场风险的尾部估计和极值度量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经典的风险理论通常是根据收益率序列的样本数据估计资产组合损失分布函数,然后得出一定置信水平下的可能损失。但近年来,人们越来越发现根据总体损失数据得到的损失分布模型在高频率低损失的中心区域拟合效果比较好,但在低频率大损失的尾部拟合效果往往表现欠佳。而恰恰是位于损失分布尾部的极端风险事件,对相当数量的机构和个人投资者而言,由于缺乏有效预判和充足的风险准备,后果经常是灾难性的。因此,尾部风险的度量已成为金融风险领域研究的重要内容。本文在金融危机的影响尚未消散,各国及全球金融市场仍处于恢复、调整期,甚至有可能面临二次危机的严峻形势下,把目光汇聚于极端情况下金融市场风险的度量与管理,通过理论探讨和实证分析研究行之有效的方法,为识别和管理风险创造良好条件,无疑具有很强的现实意义。
     极值模型和压力测试是重要的极端风险事件分析工具,近年来,人们将其引入VaR模型,用以进行金融市场尾部风险测度,取得了比较好的效果。但是,极值模型和压力测试在应用过程中仍然面临一些问题,理论研究者和风险管理实践者仍在不断研究其改进方法。本文正是从这些问题中选取了部分对模型有效性有重要影响的问题开展研究和讨论,包括阈值如何选取、样本数据的尾部相关性和极值指数的估计、满足一致性要求的压力测试风险度量模型等问题,得到了一些令人满意的结果。同时,在研究资产组合个体风险测度模型的基础上,本文还重点讨论了极端情况下的系统性风险管理,并从宏观审慎性监管的视角,提出了完善我国金融监管体制架构的建议。
     本文的主要研究工作及成果可归纳如下:第一章介绍了论文研究的理论与现实意义,以文献综述的形式介绍了国内外关于极值理论、压力测试等方面的研究成果,概述了论文的研究内容、研究方法和主要创新。第二章主要是介绍极值分布的基本理论,重点介绍了极值模型的研究对象和极值型定理,广义极值分布和广义Pareto模型形式及原理,以及GEV模型中形状参数的估计问题。第三章基于变点理论探讨了GPD模型中的阈值选取问题,所得模型克服了传统阈值选取方法存在的局限性。第四章重点研究了样本数据的尾部相关性和极值指数的估计问题,对上证综指(SHCI)和标准普尔500指数(S&P500)收益率数据进行了尾指数的实际计算与比较。之后,依次回顾了分块估计方法、倒数串估计法、串估计法以及Ferro-Segers方法计算极值指数的过程及原理,并分别计算了SHCI和S&P500收益率数据用上述方法得到的极值指数。最后,提出了一种新的计算极值指数的计量方法,并证明了其有效性。第五章讨论了一致性框架下的压力测试风险度量模型,将极值分布作为压力测试情景的具体分布形式,在SHCI收益率样本数据中引入压力测试情景(模拟损失),应用历史模拟法、EGARCH(1,1)-M模型进行了实证检验。第六章从分析金融危机爆发以来各主要经济体采取的应对措施入手,讨论了极端情况下的系统性风险管理问题,分析了宏观审慎监管的原则、框架以及与微观审慎监管的区别与联系,提出了相关建议。
     本文采取理论研究为主,实证分析为辅的研究方法,以定量研究为主要手段,以定性分析为补充。创新之处体现在理论和应用两个方面:
     理论创新包括,给出了基于变点理论的GPD模型阈值估计和样本区间分割方法,从理论和实证方面证明了二阶差分变点阈值选取方法的有效性;提出了极值指数的计量估计方法,讨论了此种方法的估计原理,并将实证分析结果与原有的极值指数估计方法进行了比较;将GPD模型作为压力测试情景的具体分布形式,构建了压力测试的一致性框架;从分析金融危机爆发以来各主要经济体采取的应对措施入手,讨论了极端情况下的系统性风险管理,并从宏观审慎监管视角,提出了完善我国金融监管体制架构的建议。
     应用创新包括,将从理论上探讨出的二阶差分变点阈值选取方法应用于VaR的估计中,对目前文献中的相关方法只能粗略估计阈值的状况进行了改进,并实际估计了上证综合指数收益率在不同置信水平下的VaR值;分析比较了SHCI和S&p500收益率数据的尾指数,得出了上证综指收益率服从的边际分布右尾较S&P500厚,但无法识别SHCI与S&P500收益率服从的边际分布左尾厚度差异性的结论;应用分块估计方法、倒数串估计法、串估计法以及Ferro-Segers方法计算了上证综合指数和S&P500收益率数据的极值指数,并将计算结果应用于VaR的实际计算,得到了不同置信水平下的VaR值;应用极值指数的计量估计方法实际计算了上证综合指数和S&P500收益率数据的极值指数,得到了与原有估计方法较为相近的结果;对引入压力测试情景的样本数据应用EGARCH(1,1)—M模型估计了动态VaR和ES值,结果表明压力测试情景对估计结果的影响较为显著,在95%置信水平下,将EGARCH(1,1)—M模型估计的动态VaR进行了Kupiec检验,证明了其能够较为准确地测度SHCI收益率的动态风险。
Classical Theories for risk measurement estimate loss CDF of asset portfolios by sample data of profit-loss series, then get the probable loss in a given confidential level. But in recent years, people found that CDF on the basis of loss data worked better in central area equivalent of high frequency and low loss data, but performed poorly in tails consisting of low frequency and high loss data. In general, just the extreme events in distribution’s tails are able to cause catastrophic effect for quite a number of institution and individual investors because lacking effective prediction and adequate reserve fund of risks. So tail risk measurement has already been the crucial topic in the field of financial risks. This paper focuses on financial risks measurement and management on extreme values, and can provide some effective methods to theoretical investigation and empirical analysis. It is undoubtedly meaningful to risk identification and management when the influences of financial crisis still exist, financial market is also in the regulatory period, and the crisis in second round might be truth.
     Extreme value theory and stress testing are important analysis tools to extreme events, and had been involved in VaR model in recent years. People got some satisfactory results when used these two tools to tail risk measurement. But there are still some problems in applications of extreme model and stress testing. Researchers and practitioners of risk management are making great efforts to improve them. This paper discussed some problems which have major sense to model effectiveness. Such problems involved threshold selection, tail dependence of sample data and estimation of extremal index, risk measurement of coherent stress testing, etc. We got some satisfactory results. Meanwhile, on the basis of researches on risk measurement for asset portfolio, we also discussed topics of systematic risk management, from the standpoint of macro-prudential regulations, presented some suggestions.
     The main contents and conclusions are summarized as follows: the first chapter introduces theoretical and practical sense, present some research achievements about extreme value theory and stress testing, summarize contents, methods and innovations of this paper. The second chapter introduces foundations of extreme value theory such as research objects and Fisher-Tippett theorem, GEV and GPD model, estimation on shape parameter in GEV. The third chapter discusses threshold selection basing on change point theory. The forth chapter studies estimations on tail dependence and extremal index, calculates tail index of SHCI and S&P500, compares the results. Then we review blocks method, reciprocal cluster method, run method and Ferro-Segers method on extremal index calculations, and get results in all methods. Finally we present a new econometric way to get extremal index, and prove its effectiveness. The fifth chapter discusses risk measurement in a coherent stress testing framework, makes GPD be the specific distribution of stress testing, involved stress scenario in sample data, uses historical simulation, EGARCH(1,1)-M model in empirical test. The sixth chapter starts on reactions of major economic entities on the financial crisis, discusses systematic risk management in extreme conditions, analyzed principle and framework of macro-prudential regulation, and its difference and connection to micro-prudential regulation. We also give some advices.
     This paper is mainly for theory and supports by empirical analysis. Its key tools are quantitative researches, supplement by qualitative analyses. The primary innovations include as theoretical and practical sides.
     Theoretical innovations are as follows: presents a new method for threshold selection basing on change point theory; presents a econometric way to calculate extremal index, discusses principle of this method; introduce GPD as stress scenario distribution, constructs a coherent stress testing framework; discusses systematical risk management in extreme conditions, gives some advices about macro-prudential regulations.
     Empirical innovations are as follows: uses second-order difference method of threshold selection in VaR model, improves existing methods, and calculate SHCI’s VaR in different confidence levels; compares the tail indexes between SHCI and S&P500; calculates the extremal indexes of SHCI and S&P500 by blocks method, reciprocal cluster method, run method and Ferro-Segers method, uses the results to VaR calculation; get extremal indexes of SHCI and S&P500 in econometric way, and this result is close to the original ones; apply EGARCH(1,1)-M model to estimate dynamic VaR and ES, the consequence shows that stress scenario has prominent influence to VaR estimation, in 95% level, dynamic VaR estimated by EGARCH(1,1)-M model can meet Kupiec test.
引文
[1]陈守东,孔繁利,胡铮洋.基于极值分布理论的VaR与ES度量[J].《数量经济技术经济研究》,2007,3:118—124.
    [2]陈希孺.变点统计分析简介[J].数理统计与管理,1991,vol.No.1-4:1—43.
    [3]邓兰松,郑丕锷.平稳收益率序列的极值VaR研究[J].数量经济技术经济研究,2004,9:52—57.
    [4]冯金余.基于DCC - MV GARCH模型的证券组合VaR测度与拓展模型[J].统计与信息论坛,2009,2:64—71.
    [5]桂文林.上证股指极值模型估计和VaR计算[J].数学的实践与认识,2008,10:66—73.
    [6]韩德宗,王兴锋,杨敏敏,楼迎军.基于极值谱风险测度的动态保证金水平设定[J].管理科学,2009,2(1):86—94.
    [7]何琳洁,文凤华,马超群,基于一致性风险价值的投资组合优化模型研究[J].湖南大学学报(自然科学版),2005年,2:125—128.
    [8]何信,张世英,孟利.动态一致性风险度量[J].系统工程理论方法应用,2003年,第12卷,3:243—247.
    [9]花拥军,张宗益.极值BMM与POT模型对沪深股市极端风险的比较研究[J].管理工程学报,2009,4:104—108.
    [10]蒋祥林,王春峰.基于SWARCH的VaR及压力测试值的一致性估计[J].管理科学,2005,2(1):68—73.
    [11]李锋,刘澄.基于极值理论的金融风险研究[J].商业经济,2010,5:115—118.
    [12]李健全.系统性风险新认识与我国宏观审慎监管探索[J].金融与经济,2010,7:52—55.
    [13]李婷婷,汪飞星.基于极值理论和Bootstrap方法的E—VaR研究和实证分析[J].价值工程,2007,3:102—106.
    [14]刘晓星.风险价值、压力测试与金融系统稳定性评估[J].财经问题研究,2009,9:58—65.
    [15]欧阳资生.极值估计在金融保险中的应用[M].中国经济出版社,2006.
    [16]邵锡栋,连玉君,黄性芳.交易间隔、超高频波动率与VaR——利用日内信息预测金融市场风险[J].统计研究,2009,1:96—102.
    [17]史道济.实用极值统计方法[M].天津科学技术出版社,2006.
    [18]史道济,张春英.尾部指标估计中的阈值选择[J].天津理工大学学报,2006,12(6):78—81.
    [19]宋家山,李勇,彭诚,王彪,方兆本.极值理论中阈值选取的Hill估计方法改进[J].中国科学技术大学学报,2008,9:1104—1108.
    [20]王敬,刘华. LOF流动性风险度量与实证研究[J].大连理工大学学报(社会科学版),2009,1:16—21.
    [21]王旭,史道济.极值统计理论在金融风险中的应用[J].数量经济技术经济研究,2001,8:109-111.
    [22]王宗润,周艳菊.基于GARCH - EVT模型的人民币汇率风险测度研究[J].西南民族大学学报(人文社会科学版),2010,6:193—196.
    [23]文凤华,马超群,兰秋军,任德平,杨晓光,一致性风险价值及其在中国证券市场的应用[J].中国管理科学,2004年,第12卷,专辑:197—203.
    [24]徐炜,黄炎龙. GARCH模型与VaR的度量研究[J].数量经济技术经济研究,2008,1:120—132.
    [25]杨鹏.压力测试及其在金融监管中的应用[J].上海金融,2005,1:27—30.
    [26]杨青,薛宇宁,蒋科,极端金融风险度量模型述评——基于一致性原理的VaR改进方法[J].复旦学报(自然科学版),2009年,6:784—792.
    [27]叶五一,缪柏其.应用复合极值理论估计动态流动性调整VaR [J].中国管理科学,2008,6(3):44—49.
    [28]叶五一,缪柏其.应用改进Hill估计计算在险价值[J].中国科学院研究生院学报,2004,21(3):305—309.
    [29]益智,杨敏敏.基于极值谱风险测度的金融市场风险度量[J].商业经济与管理,2009,8:71—77.
    [30]詹原瑞,刘久彪.跳跃—扩散模型框架下基于鞍点近似的信用组合一致性风险度量[J].系统工程理论与实践,2008年,第10期,24—30.
    [31]张金清.金融风险管理[M].复旦大学出版社,2009.
    [32]张昇平,周春阳,吴冲锋.组合风险与单个资产风险间的定量关系—基于一致性风险测度的视角[J].系统管理学报,2008年,1:15:—20.
    [33]张晓蓉,徐剑刚. VaR ES与一致性风险测度[J].《上海管理科学》,2006,4:78—80.
    [34]赵树然,任培民.极值理论在高频数据中的VaR和CVaR风险价值研究[J].运筹与管理,2007,12(6):128—132.
    [35]张晓慧从中央银行政策框架的演变看构建宏观审慎性政策体系[J].中国金融,2010,23:13—16.
    [36]钟波,陈珂.运用基于Bayes估计的阈值模型计算VaR [J].北京工商大学学报(自然科学版),2008,9(5):71—74.
    [37]周孝华,唐秋燕.沪深300指数极值VaR的分析与计算[J].统计与决策,2008,10:96—98.
    [38]周子衡.从VaR到ST的历史演进[J].《金融实务》,2010年,3:32—35.
    [39] Aban I , Mcerschaert. Generalized Least-squarese estimations for thethickness of heavy tails [J]. Journal of Statistical Planning and Inference,2004,119:341—352.
    [40] Acerbi C, Tasche D. The coherence of expected shortfall [J]. Banking Finance,2002,26(7):1487—1503.
    [41] Acharya V. A theory of systemic risk and design of prudential bank regulation1 [J]. Journal of Financial Stability,2009,5:1224—2551.
    [42] Andreev,Oleg B Okunev,Sergey Eu Tinyakov. Extreme value theory and peaks over threshold model: An application to the Russian stock market [J]. New York Science Journal,2010,3(6):102—107.
    [43] Aragones J R, Blanco C,Dowd K. Incorporating Stress Tests into Market Risk Modeling [J]. Derivatives quarterly,2001,Spring:44—49.
    [44] Arrouchi M E,Imlahi A. Optimal choice of kn-records in the extremevalue index estimation [J]. Statistics & Decisions,2005,23:101–115.
    [45] Artzner F,Delbaen J,M Eber, D Heath. Coherent Measure of Risk [J]. Math. Of Finance 1999,9:203—228.
    [46] Bali T G. An extreme value approach to estimating volatility and value at risk [J]. Journal of Business,2003,76(1):83—108.
    [47] Barry D,Hartigan J. A Bayesian analysis for change point problems [J].JASA,1993,88:309—319.
    [48] Beirlant J, Dierckx G, Goegebeur Y,Matthys G. Tail index estimation and an exponential regression model [J]. Extremes,1999,2(2):177-200.
    [49] Beirlant J,Dierckx G,Starica C. On exponential representations of log-spacings of extreme order statistics. [C] Technical report, Catholic University Leuven, 1999.
    [50] Beirlant J,Guillou A. Pareto index estimation under moderate right censoring [J]. Scandinavian Actuarial Journal,2001,2:111—125.
    [51] Beirlant J,Goegebeur Y,Segers J,Teugels J. Statistics of Extremes: Theory and Applications [M]. Wiley,Chichester,2004.
    [52] Beirlant J, Vynckier P,Teugels J L. Tail index estimation, Pareto quantile plots, and regression diagnostics [J]. Amer. Statist. Assoc,1996,91:1659—1667.
    [53] Berkowitz. A Coherent Framework for Stress-Testing [J]. Journal of Risk,1999,2:1—11.
    [54] Bermudez P D, Turkman M, A predictive approach to tail probability estimation [J]. Extremes,2001,4:295—314.
    [55] Bodie Z,Merton R C. Finance [M]. Harper collins Colledge Press,2000.
    [56] Borio C. Towards a macro-prudential framework for financial supervision andregulation ? [C]. CESifo Economic Studies,2003,49(2):181—216.
    [57] Borio C, W White. Whether monetary and financial stability ? [C]. BIS Working Papers,No.147,February 2004.
    [58] B Q Miao. Inference in a model with at most one slope-change point [J]. Journal of Multivariate Analysis,1988,27:375—391.
    [59] Butler J S,B Schachter. Improving Value-at-Risk estimates by combining kernel estimation with historical simulation mimeo , Vanderbilt University and Comptroller of the Currency,1996.
    [60] Chen Zhou. Why the micro2prudential regulation fails ? [2010-03-14]. http:// ssrn1com/ abstract = 1570644.
    [61] Cheng-Kun Kuo,Hung Chen,Chih-Wei Lee. VaR Stress Testing for Two-Stage Transmission Stress Event [J].台湾管理学刊,2002,12(2):21—38.
    [62] Coles S G, An Introduction to Statistical Modeling of Extreme Values. [M].Springer,London,2001.
    [63] Crockett A, Marrying the micro- and macro-prudential dimensions of financial stability. BIS Speeches,2000.
    [64] Cs?rgo S,Deheuvels P,Mason,D.M. Kernal estimator of the tail index of a distribution [J]. Annual of Statistics,1985,13:1050-1077.
    [65] Dacorogna M,Müller U,Pictet O. The Distribution of extremal foreign exchange rate returns in extremely large data sets Discuss paper 95-70,1995,Tinbergen Institute.
    [66] Danielsson J, Using a bootstrap method to choose the samp le fraction in tail index estimation [J]. Journal ofmulti variate analysis,2001,76 (2):226—248.
    [67] Danielsson J,C G de Vries. Beyond the sample: Extreme quantile and probability estimation mimeo,Tinbergen Institute Rotterdam,1997a.
    [68] Danielsson J,C G de Vrie. Tail index and quantile estimation with very high frequency data [J]. Journal of Empirical Finance,1997b,4:241—257.
    [69] Danielsson J, Jorgensen B N , Samorodnitsky G, Sarma M, de Vries C G. Subadditivity re-examined: the case for value-at-risk. 2005,Preprint.
    [70] De Haan L,Rootzen K. On the estimation of high quantiles [J]. Journal of Statistical Planning and Inference,1993,35:1—13.
    [71] Dekkers A,De Haans L. A moment estimator for the index of an extreme-value distribution. [J]. Annual of Statistics,1989,17(4):1833-1855.
    [72] Djakovic V, Goran Andjelic,Jelena Borocki. Performance of extreme value theory in emerging markets: An empirical treatment [J]. African Journal of Business Management,2011,Vol. 5(2):340-369.
    [73] Douglas M Hawkins. Fitting multiple change-point models to data [J]. Computational Statistics & Data Analysis,2001,37:323—341.
    [74] Drees H,Kaufmann E. Selecting the optimal sample fraction in univariate extreme value estimation [J]. Stoch. Proc. Applications,1998,75:149-172.
    [75] Drees H, Laurens de Haan,Sidney Resnick. How to make a Hill plot [J].The annals of Mathematics Statistics,2000,Volume 28,NO.1:254—274.
    [76] Dupuis L A. Exceedances over high thresholds: a guide to threshold selection [J]. Extremes,1998,3(1):251—261.
    [77] Embrechts P,Kl?ppelberg C,Mikosch T. Modelling Extremal Events for Insurance and Finance [M]. Springer,Berlin,1997.
    [78] Embrechts P, McNeil A, Straumann D. Correlation and dependency in risk management: properties and pitfalls [C].Risk Management: Value-at-Risk and beyond, Cambridge University Press, 2002:176—223.
    [79] Ferreira A. On Optimising the estimation of high quantiles of a probability distribution [J]. Statistics,2003,37(5):403—434.
    [80] Ferro C,J Segers. Inference for Clusters of Extreme Values. [J]. Journal of the Royal Statistical Society Ser.2003,65:545-556.
    [81] Feuerverger A,Hall P. Estimating the tail exponent by modelling departure from a Pareto distribution [J]. Ann. Statist,1999,27:760-781.
    [82] Focardi, Sergio M,Frank J,Fabozzi. Fat tails, scaling, and Stable Laws: A critical look at modeling extremal events in financial phenomena [J]. Journal of Risk Finance,2003,Fall:5—26.
    [83] G Matthy, J Beirlant. Adaptive Threshold Selection in Tail Index Estimation Working Paper,[2002-09-17],http://gloriamundi.org/ library_journal_view.asp?journal_id=5185
    [84] Guillou A,Hall P. A diagnostic for selecting the threshold in extreme analysis [J]. Staiest.Soe. Ser,2001,B63:293—305.
    [85] Hall P G. One some simple estimates of an exponent of regular variation [J]. J.R.Statist.Soc,1982,B44(1):37—42.
    [86] Hall P G. Using the bootstrap to estimate mean squared error and select smoothing parameter innonparametric problems [J]. Multivariate Anal,1990,32:177—203.
    [87] Hill B, A Simple General Approch to Inference About the Tail of a Distrebution [J]. The annals of Mathematics Statistics,1975,3:1163—1174.
    [88] Hosking J R. Maximum-likelihood estimation of the parameter for the generalized extreme-value distribution [J]. Applied Statistics,1985,34:301-310.
    [89] Huisman R,Koedijk K G, Kool C. Tail-index estimates in small samples [J]. Journal of Business&Economic Statistics,2001,19(1):208—216.
    [90] Hsing T,Husler J,Leadbetter M R. On the exceedance point process for a stationary sequence [J]. probab.Theory Relat,1988,78:97-112.
    [91] Kotz S,Nadarajah S. Extreme value distrubutions:Theory and application [M]. Imperical College Press,2000.
    [92] Kupiec P. Techniques for Verifying the accuracy of Risk Measurement Models [J]. Journal of Derivatives,1995,3(6):73—84.
    [93] Kwiatkowski J, Riccardo Rebonato. A Coherent Aggregation Framework for Stress Testing and Scenario Analysis [R/OL]. Oxford University Tanaka Business School,Imperial College,[2010-03-22]. www.quarchome.org/ VersionRevisedSubmission.pdf.
    [94] Longin F M. From value at risk to stress testing: The extreme value approach [J].Journal of Banking and Finance,2000,24:1097-1130.
    [95] Matthys G,Beirlant J. Estimating the extreme value index and high quantiles with exponential regression models [J].Statistica Sinica,2003,13:853—880.
    [96] Matthys G,Beirlant J. Adaptive threshold selection in tail index estimation [C]. Extremes and intrgrated risk management,UBS Warburg Press,2000.
    [97] McNeil A J, Estimating the tails fo loss severity distributions using extreme value theory [J].ASTIN Bulletin,1997,27:117—137.
    [98] McNeil A J , Frey R. Estimation of Tail–Related Risk Measures for Heteroskedastic Financial Time Series: An Extreme Value Approach Mimeo,ETH Zurich,1999.
    [99] McNeil A J, Frey R,Embrechts P. Quantitative Risk Management [M]. University Press,Princeton,2005.
    [100] O’Brien G L. Limit theorems for the maximum term of a stationary process [J]. Ann.Probab,1974,2:540—545.
    [101] Pickands J. Statistial inference using extreme order statistics [J]. The annals of Mathematics Statistics,1975,3:119—131.
    [102] Philippe J.B,Potters M. Price Comeparison:Theory of Financial Risks [C]. From Statistical Physics to Risk Management,Cambridge University Press,2000.
    [103] Quagliariallo M. Stress Testing the Banking System : Methodologies and Applications [M]. Cambridge University Press,2008.
    [104] Ramazan G,Frank S. High volatility thick tails and extreme value theory in Value-at-Risk estimation Technical Report,Windsor,2001.
    [105] Resnick S I. Extreme values,Regular Variation and Point Processes [M]. Berlin Speringer-Verlag,1987.
    [106] Rosh D,Scheule H. Stress-testing for Financial Institutions Application, 2009,Regulation and Techniques, Ch1 & 2.
    [107] S.Manganelli,Robert F Engle. Value at risk in finance [C]. Working Paper Series,075,European Central Bank,2001.
    [108] Smith R L. Measuring risk with extreme value theory [M]. Extremes and integrated risk management,UBS Warburg Press,2000.
    [109] Yamai Y, Y Yoshiba. Comparative analyses of expected shortfall and Value-at-risk(3):Their Validity under stress [J]. Monetary and Economic studies,2002,20:181—237.
    [110] Wayne A Taylor. Change-point analysis: a powerful new tool for detecting changes 2000,http://www.variation.com/cpa/tech/changepoint.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700