胆酸类聚集体在材料合成中的模板调控作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物矿化是研究生物矿物及其复杂多级结构形成过程的科学。化学工作者在这一领域的工作大致可以分为三个方向:(1)对生物材料的分析;(2)设计体外模型环境对生理条件进行模拟,如凝胶体系;(3)开发新的材料合成仿生方法,如模板法。
     在本论文的工作中,我们首先利用仿生模板法合成了具有中空结构的二氧化硅微球,之后研究了无机晶体在水凝胶体系中的高度取向生长,最后在多孔聚合物基体上制备了导电聚合物杂化材料。分别概述如下:
     (1)使用胆酸盐聚集体为模板,在温和的条件下(室温,水体系,一步反应)制备了具有中空结构的二氧化硅微球。运用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对产品结构进行了表征。动态光散射(DLS)和相差显微镜(PCM)分析表明,胆酸与苄胺在水溶液中形成了粒径分散的囊泡状聚集体。红外光谱分析表明产品中存在胆酸盐分子,证实了模板作用的存在。分别以正丁胺和二乙胺为有机胺添加剂时,产品都是中空球与粉末结构的混合物,而添加三乙胺只得到粉末结构。3-三氨丙基三乙氧基硅烷(APES)作为共结构指示剂与胆酸、胆酸铵和胆酸钠分别形成聚集体,也可以作为模板合成中空结构硅球,但产物中存在部分实心球。结果表明,有机模板与无机前体间的氢键相互作用为形态转录能否实现的决定性因素。
     (2)小分子水凝胶是近年来得到迅速拓展的一个研究领域。水凝胶是模仿生物矿化的重要体系,能够对矿物生长产生重要影响。我们在胆酸酯类小分子水凝胶中发现了KCl晶体高度取向生长以及形成的对称性枝晶图案。利用SEM及光电子能谱仪(EDS)对晶体形貌及成分进行了分析。研究表明,KCl初始浓度和凝胶密度不会改变枝晶取向性,而凝胶类型对晶体形态有较大影响。在L-胱氨酸衍生物小分子水凝胶中得到了宏观无序的KCl水草状枝蔓晶图案。对凝胶因子亲水部分在水溶液条件下对KCl晶体生长的影响进行了分析,发现了有机物对晶体特定晶面的特殊吸附作用。水凝胶体系不仅为晶体成核提供了位点,对成核晶面和晶体生长速度的取向性进行了选择和调控,还利用内部扩散受限而稳定的微环境,将晶体的局部对称性通过周期性生长转录给枝晶整体图案。
     (3)导电聚合物材料由于自身的特性及其在高科技领域的潜在应用而吸引了人们的目光。聚苯胺(PANI)材料由于其独特的电学、热电和光学性质以及良好的环境稳定性,成为导电聚合物家族中优秀的一员。在多孔聚合物基体上制备PANI复合物,能够改善其机械稳定性和加工性能。我们采用水辅助法从CHCl3溶液中制备了具有蜂窝状有序多孔结构的聚碳酸酯(PC)薄膜,并以之为模板制备了PANI/PC复合薄膜材料。反应过程中首先通过氢键作用在PC膜表面对苯胺单体进行预吸附,再经过一步化学氧化聚合在原位合成了PANI层。运用SEM、FT-IR、热重分析(TGA)和四极探针法分别对得到的PANI/PC复合膜的表面和截面形态、分子间相互作用、热力学稳定性和导电能力进行了表征和分析,证实了复合膜具有蜂窝状有序多孔结构,PANI与PC层之间形成了氢键相互作用,PANI热稳定性得到提高并具有较好导电能力。
     总之,具有预先形成的有序结构的有机基体,能够有效指导无机和有机材料的生长,这为制备新颖材料提供了新方法,也为对生物矿化过程的深入理解提供了更多信息。
Biomineralization is the study on the complex hierarchical structures of materials produced biologically, and the processes that lead to these biomaterials. In this field, the efforts of chemists can be roughly divided into three different areas:(1) the analysis of biological materials;(2) the design of new model systems to mimic physiological environment in vitro, such as hydrogel media; and (3) the development of new strategies of bioinspired material synthesis, like template methods.
     In this work, we have synthesized hollow silica microspheres by a biomimetic template method at first, and then have studied the highly oriented growth of inorganic KCl crystals in hydrogel media; at last, we have prepared conductive polymer composite materials based on a porous polymer substrate. It can be summarized as follows:
     (1) Hollow spherical silica has been successfully fabricated in mild conditions (room temperature, no organic solvent, one-step method) using cholic acid aggregates as templates in basic solutions. The structures of the synthesized silica materials were analyzed by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The vesicle morphologies of the self-assembly aggregates of cholic acid in the presence of benzylamine were confirmed by Dynamic Light Scattering (DLS) and Phase Contrast Microscopy (PCM). The cholates were identified in FT-IR spectrum, confirmed the existence of organic templates. The mixture of hollow spherical and granular structure was obtained when n-butylamine or diethylamine was used as amine additives instead, while only granule in the case of diethylamine. The aggregates of 3-amino- propyltriethoxysiline (APES) with cholic acid, ammonium cholate and sodium cholate, have also been used as templates to prepare hollow silica spheres, where there were solid spheres existed in the products. The results were ascribed to the hydrogen bonding interactions between the organic templates and the inorganic precursors.
     (2) Low-molecular-weight (LMW) hydrogel is one of the quickly expanded research fields in recent years. Hydrogel system is an important kind of artificial media for biomineralization simulation. We have observed the oriented growth of potassium chloride (KC1) crystals and the dendritic patterns with high symmetry grown from the novel kind of LMW hydrogels derived from cholic acid. It was characterized by SEM equipped with Electron Energy Disperse Spectroscopy (EDS). The orientation of the patterns can hardly be changed by the concentration of either solutes or hydrogel matrix. The type of the hydrogel had great influence on KCl crystal morphologies, since the seaweed-like patters disordered in macroscopy have been obtained from another kind of LMW hydrogel derived from L-cystine. Crystal habit modifications of KCl crystals in aqueous solutions added with the hydrophilic groups of the hydrogelators through the special adsorptions with the specific crystal faces were studied. The hydrogel media have not only provided the sites for nucleation, selected the orientations of nucleating faces and crystal growth rates, but also allowed the translation of local symmetries to the whole dendritic patterns through periodic growth under the mass diffusion limited but stable microenvironment.
     (3) In the family of conductive polymer materials, which have attracted much attention because of their special features and potential applications in hi-tech aspects, polyaniline (PANI) is unique due to its electronic, thermoelectric and optical properties and good environmental stabilities. Preparation of PANI composites on porous polymer substrate could improve its mechanical stability and processibility. We have prepared conducting composite materials by the synthesis of PANI layers by a simple one-step chemical oxidative polymerization, based on the surface of a honeycomb ordered porous polycarbonate (PC) film prepared via water-assisted method from PC/CHCl3 solutions. Aniline monomers were pre-organized on the surfaces of the PC film through hydrogen bonding, and a PANI film was obtained by oxidation in situ. The surface and cross-section structures of the PANI/PC composite film were characterized by SEM, confirmed the role of the PC film as template. The results of thermogravimetric analysis (TGA) of the PANI/PC composite film showed higher thermal stability than PANI itself. The FT-IR spectrum confirmed the existence of hydrogen bonding interactions between PC and PANI. The electrical conductivity of the PANI/PC composite film was determined by the four-probe technique.
     In conclusion, the organic matrix with pre-organized ordered morphologies can serve as templates to modulate the growth of inorganic and organic materials. It could provide new strategies for material preparation and more information for deeply understanding biomineralization.
引文
[1]Estroff L A. Introduction:Biomineralization. Chem Rev.,2008,108:4329-4331
    [2]Meldrum F C, Colfen H. Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. Chem Rev.,2008,108:4332~4432
    [3]Cusack M, Freer A. Biomineralization:Elemental and Organic Influence in Carbonate Systems. Chem Rev.,2008,108:4433-4454
    [4]Evans J S. "Tuning in" to Mollusk Shell Nacre-and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganic-Organic Composites. Chem Rev.,2008,108:4455~4462
    [5]Richter, Occurrence H G. Morphology and Taxonomic Implication of Crystalline and Siliceous Inclusions in the Secondary Xylem of the Lauraceae and Related Families. Wood Science and Technology,1980,14:35~44
    [6]Brutchey R L, Morse D E. Silicatein and the Translation of Its Molecular Mechanism of Biosilicification into Low Temperature Nanomaterial Synthesis. Chem Rev,2008,108: 4915~4934
    [7]Currey J D. Mechanical Properties of Mother of Pearl in Tension. Proceedings of the Royal Society of London. Series B, Biological Sciences,1977,196(1125):443~463
    [8]Mann S. On the Nature of Boundary-Organized Biomineralization (BOB). J Inorg BioChem, 1986,28:363~371
    [9]Heuer A H, Fink D J, Laraia V J, et al. Innovative Materials Processings Strategies:A Biomimetic Approach. Science,1992,255(5048):1098~1105
    [10]Kroger N, Lorenz S, Brunner E, et al. Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis. Science,2002,298:584~586
    [11]Rajam S, Heywood B R, Walker J B A, et al. Oriented Crystallization of CaCO3 under Compressed Monolayers. Part 1.-Morphological Studies of Mature Crystals. J Chem Soc, Faraday Trans,1991,87:727~734
    [12]Crenshaw M A. The Soluble Matrix from Mercenaria Mercenaria Shell. Biomineralization, 1972,6:6-11
    [13]Weiner S, Addadi L. Design Strategies in Mineralized Biological Materials. J Mater Chem, 1997, (5):689~702
    [14]Kato T, Sugawara A, Hosoda N. Calcium Carbonate-Organic Hybrid Materials. Adv Mater, 2002,14:869~877
    [15]Sommerdijk N A J M, de With G. Biomimetic CaCO3 Mineralization Using Designer Molecules and Interfaces. Chem Rev,2008,108:4499~4550
    [16]Falini G, Albeck S, Weiner S, et al. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science,1996,271(5245):67~69
    [17]Dickerson M B, Sandhage K H, Naik R R. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chem Rev,2008,108:4935~4978
    [18]Bommel K J C van, Jung J H, Shinkai S. Poly (L-lysine) Aggregates as Templates for the Formation of Hollow Silica Spheres. Adv. Mater,2001,13:1472~1476
    [19]Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science,1998,282(5391):1111-1114
    [20]Deng Z, Chen M, Gu G, et al. A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property. J Phys Chem B,2008,112:16~22
    [21]Kim S-W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. J Am Chem Soc,2002,124:7642~7643
    [22]Xu X, Asher S A. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals. J Am Chem Soc,2004,126:7940~7945
    [23]Zhu Y, Shi J, Shen W, et al. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angew Chem Int Ed,2005,44:5083~5087
    [24]Corma A, Diaz U, Arrica M, et al. Organic-Inorganic Nanospheres with Responsive Molecular Gates for Drug Storage and Release. Angew Chem Int Ed,2009,48:6247~6250
    [25]王洁欣,文利雄,和平,等.新型球形纳米空心SiO2的模板合成方法研究.化学学报,2005,63(14):1298-1302
    [26]Li Y, Shi J, Hua Z, et al. Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability. Nano Letters,2003,3:609~612
    [27]Li L, Ding J, Xue J. Macroporous Silica Hollow Microspheres as Nanoparticle Collectors. Chem Mater 2009,21:3629~3637
    [28]Tanev P T, Pinnavaia T J. Biomimetic Assembly of Porous Lamellar Silica Molecular Sieves with a Vesicular Particle Architecture. Supramol Sci,1998,5:399~404
    [29]Kim S-S, Liu Y, Pinnavaia T J. Ultrastable MSU-G Molecular Sieve Catalysts with a Lamellar Framework Structure and a Vesicle-Like Particle Texture. Microporous Mesoporous Mater,2001,44~45:489~498
    [30]Hentze H-P, Raghavan S R, McKelvey C A, Kaler E W. Silica Hollow Spheres by Templating of Catanionic Vesicles. Langmuir,2003,19:1069~1074
    [31]Pevzner S, Regev O, Lind A, et al. Evidence for Vesicle Formation during the Synthesis of Catanionic Templated Mesoscopically Ordered Silica as Studied by Cryo-TEM. J Am Chem Soc,2003,125:652~653
    [32]Rana R K, Mastai Y, Gedanken A. Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles. Adv Mater,2002,14:1414~1418
    [33]Tan B, Lehmler H-J, Vyas S M, et al. Fluorinated- Surfactant- Templated Synthesis of Hollow Silica Particles with a Single Layer of Mesopores in Their Shells. Adv Mater,2005, 17:2368~2371
    [34]Wang B, Shan W, Zhang Y, et al. Topological Transformation of Vesicular Mesostructured Silica. Adv Mater,2005,17:578~582
    [35]Scott C, Wu D, Ho C-C, et al. Liquid-Core Capsules via Interfacial Polymerization:A Free-Radical Analogy of the Nylon Rope Trick. J Am Chem Soc,2005,127:4160~4161
    [36]Zasadzinski J A, Kisak E, Evans C. Complex Vesicle-Based Structures. Curr Opinion Colloid Interface Sci,2001,6:85~90
    [37]McKelvey C A, Kaler E W, Zasadzinski J A, et al. Templating Hollow Polymeric Spheres from Catanionic Equilibrium Vesicles:Synthesis and Characterization. Langmuir,2000,16: 8285-8290
    [38]Hirschberg K, Miller C M, Ellenberg J, et al. Lippincott-Schwartz. Kinetic Analysis of Secretory Protein Traffic and Characterization of Golgi to Plasma Membrane Transport Intermediates in Living Cells. J Cell Biol,1998,143:1485~1503
    [39]Hubert D H W, Jung M, Frederik P M, et al. Vesicle-Directed Growth of Silica. Adv Mater, 2000,12:1286~1290
    [40]Ogura T, Shibata H, Sakai K, et al. Direct Preparation of Highly Ordered Multilayer-type Silica Nanocapsules Using Spontaneously Formed Vesicles as Templates. Chem Lett,2009, 38:120~121
    [41]lmai H, Oaki Y, Kotachi A. A Biomimetic Approach for Hierarchically Structured Inorganic Crystals through Self-Organization. Bull Chem Soc Jpn,2006,79:1834~1851
    [42]Rees G D, Robinson B H. Microemulsions and Organogels:Properties and Novel Applications. Adv Mater,1993,5 (9):608~619
    [43]Pan G, Mu G, Xiao L L. Understanding the Growth Mechanism of CuI Crystals during Gel Growth Experiments. Cryst Res Technol,2008,43 (5):496~501
    [44]Oaki Y, Hayashi S, Imai H. A Hierarchical Self-Similar Structure of Oriented Calcite with Association of an Agar Gel Matrix:Inheritance of Crystal Habit from Nanoscale. Chem Commun,2007:2841~2843
    [45]Imai H, Oaki Y. Emergence of Morphological Chirality from Twinned Crystals. Angew Chem Int Ed,2004,43(11):1363~1368
    [46]Oaki Y, Imai H. Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media. Cryst Growth Des,2003,5:711~716
    [47]Annarelli C, Reyes L, Fornazero J. On the Control of Crystal Growth in Bovine Serum Albumin-Sodium Chloride Thin Film Gels. Crystal engineering,1999,2(1):79~89
    [48]Volkmer D, Fricke M, Agena C, et al. Interfacial Electrostatics Guiding the Crystallization of CaCO3 underneath Monolayers of Calixarenes and Resorcarenes. J Mater Chem,2004,14: 2249~2259
    [49]Volkmer D, Fricke M, Gleiche M, et al. Elucidating the Role of Charge Density on the Growth of CaCO3 Crystals Underneath Calix[4]arene Monolayers. Mater Sci Eng C,2005, 25(2):161~167
    [50]Fricke M, Volkmer D. Crystallization of Calcium Carbonate Beneath Insoluble Monolayers: Suitable Models of Mineral-Matrix Interactions in Biomineralization? Top Curr Chem,2007, 270:1~41
    [51]Checa A G, Okamoto T, Ramirez J. Organization Pattern of Nacre in Pteriidae (Bivalvia: Mollusca) Explained by Crystal Competition. Proc R Soc B,2006,273:1329~1337
    [52]Liu T, Wang S, Wang M, et al. Self-Organization of Periodically Structured Single-Crystalline Zinc Branches by Electrodeposition. Surf Interface Anal,2006; 38:1019~1023
    [53]Shu D J, Li D W, Pan W, et al. A Lateral Growth Mode Leading to Successive Rotation of Crystallographic Orientation. Surf Interface Anal,2006,38:1024~1027
    [54]Shu D J, Wang M, Liu F, et al. Nucleation-Mediated Lateral Growth on Foreign Substrate. J Phys Chem C,2007,111(3):1071~1075
    [55]Pan W, Mao Y W, Shu D J, et al. Formation of Regular Zigzag Branch of CsCl Crystallites on Glass Substrate:A New Lateral Growth Mechanism Leading to Long-Range Ordering. J Crystal Growth,2007,307:171~176
    [56]Zhang M Z, Wang Y, Yu G W, et al. Formation of Copper Electrodeposits on an Untreated Insulating Substrate. J Phys Condens Matter,2004,16:695~704
    [57]Wang S, Zhang K Q, Xu Q Y, et al. Oscillations in ElectroChemical Deposition of Zinc. J Phys Soc Jpn,2003,72(6):1574~1580
    [58]Zhao S R, Qiu Z H, Yang M L. Crystallographic Symmetry Effect on the Nucleation in Non-equilibrium Aggregation Pattern. Physica A,2008,387 (22):5355~5361
    [59]赵珊茸,邱志惠,王蓉,等.一些溶液法生长的晶体非平衡枝状形貌及其对称性分类.人工晶体学报,2009,38(4):957-963
    [60]Ben-Jacob E, Garik P. The Formation of Patterns in Non-Equilibrium Growth. Nature,1990. 343(8):523~530
    [61]Estroff L A, Hamilton A D. Water Gelation by Small Organic Molecules. Chem Rev 2004, 104:1201-1217
    [62]Tamiaki H, Ogawa K, Enomoto K, et al. Supramolecular Gelation of Alcohol and Water by Synthetic Amphiphilic Gallic Acid Derivatives. Tetrahedron,2010,66:1661~1666
    [63]Ma M, Kuang Y, Gao Y, et al. Aromatic-Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water to Form Nanofibers and Supramolecular Hydrogels. J Am Chem Soc,2010,132 (8):2719~2728
    [64]Chen Q, Lv Y, Zhang D, et al. Cysteine and pH-Responsive Hydrogel Based on a Saccharide Derivative with an Aldehyde Group. Langmuir,2010,26 (5):3165~3168
    [65]Xu X D, Chen C S, Lu B, et al. Coassembly of Oppositely Charged Short Peptides into Well-Defined Supramolecular Hydrogels. J Phys Chem B,2010,114 (7):2365~2372
    [66]Lee K Y, Mooney D J. Hydrogels for Tissue Engineering. Chem Rev,2001,101:1869~1880
    [67]Adams D J, Butler M F, Frith W J, et al. A New Method for Maintaining Homogeneity during Liquid-Hydrogel Transitions Using Low Molecular Weight Hydrogelators. Soft Matter,2009,5:1856~1862
    [68]Wang G, Cheuk S, Yang H, et al. Synthesis and Characterization of Monosaccharide-Derived Carbamates as Low-Molecular-Weight Gelators. Langmuir,2009,25(15):8696~8705
    [69]Vemula P K, Cruikshank G A, Karp J M, et al. Self-Assembled Prodrugs:An Enzymatically Triggered Drug-Delivery Platform. Biomaterials,2009,30:383~393
    [70]Bommel K J C van, Friggeri A, Shinkai S. Organic Templates for the Generation of Inorganic Materials. Angew Chem Int Ed,2003,42:980~999
    [71]Sone E D, Zubarev E R, Stupp S I. Semiconductor Nanohelices Templated by Supramolecular Ribbons. Angew Chem Int Ed,2002,41:1705~1709
    [72]Hartgerink J D, Beniash E, Stupp S I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science,2001,294(5547):1684~1688
    [73]Abdallah D J, Weiss R G. Organogels and Low Molecular Mass Organic Gelators. Adv Mater, 2000,12,1237~1247
    [74]Esch J H van, Feringa B L. New Functional Materials Based on Self-Assembling Organogels: From Serendipity towards Design. Angew Chem Int Ed,2000,39:2263~2266
    [75]Terech P, Weiss R G, Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem Rev,1997,97:3133~3160
    [76]Estroff L A, Addadi L, Weiner S, et al. An Organic Hydrogel as a Matrix for the Growth of Calcite Crystals. Org Biomol Chem,2004,2:137~141
    [77]Nonappa, Maitra U. Unlocking the Potential of Bile Acids in Synthesis, Supramolecular/ Materials Chemistry and Nanoscience. Org Biomol Chem,2008,6(4):657~669
    [78]Mukhopadhyay S, Maitra U. Chemistry and Biology of Bile Acids. Curr Sci,2004,87: 1666~1683
    [79]Hofmann A F. Bile Acids:The good, the Bad, and the Ugly. News Physiol Sci,1999,14: 24~29
    [80]Blow D M, Rich A. Studies on the Formation of Helical Deoxycholate Complexes. J Am Chem Soc,1960,82,3566~3571
    [81]Virtanen E, Kolehmainen E. Use of Bile Acids in Pharmacological and Supramolecular Applications. Eur J Org Chem,2004, (16):3385~3399
    [82]Tamminen J, Kolehmainen E. Bile Acids as Building Blocks of Supramolecular Hosts. Molecules,2001,6:21~46
    [83]Hebling C M, Thompson L E, Eckenroad K W, et al. Sodium Cholate Aggregation and Chiral Recognition of the Probe Molecule (R,S)-1,1'-Binaphthyl-2,2'- diylhydrogenphosphate (BNDHP) Observed by 1H and 31PNMR Spectroscopy. Langmuir,2008,24:13866~13874
    [84]Funasaki N, Fukuba M, Kitigawa T, et al. Two-Dimensional NMR Study on the Structures of Micelles of Sodium Taurocholate. J Phys Chem B,2004,108:438~443
    [85]Reis S, Moutinho C G, Matos C, et al. Noninvasive Methods to Determine the Critical Micelle Concentration of Some Bile Acid Salts. Anal BioChem,2004,334:117~126
    [86]Carey M C, Small D M. Micellar Properties of Dihydroxy and Trihydroxy Bile Salts:Effects of Counterion and Temperature. J Colloid Interface Sci,1969,31:382~396
    [87]Norman A. The Conductance of Conjugated and Unconjugated Bile Acid Salts in Aqueous Solutions. Bile Acids and Steroids Acta Chem Scand,1960,14:1300~1309
    [88]Kratohvil J P, Hsu W P, Jacobs M A, et al. Concentration-Dependent Aggregation Patterns of Conjugated Bile Salts in Aqueous Sodium Chloride Solutions. Colloid Polym Sci,1983,261: 781~785
    [89]Mukerjee P, Cardinal J R. Solubilization as a Method for Studying Self-Association: Solubility of Naphthalene in the Bile Salt Sodium Cholate and the Complex Pattern of Its Aggregation. J Pharm Sci,1976,65:882~886
    [90]Sobotka H, Czeczowiczka N. The Gelation of Bile Salt Solutions. J Colloid Sci,1958,13: 188~191
    [91]Maitra U, Mukhopadhyay S, Sarkar A, et al. Hydrophobic Pockets in a Nonpolymeric Aqueous Gel:Observation of such a Gelation Process by Color Change. Angew Chem Int Ed, 2001,40:2281-2283
    [92]Gundiah G, Mukhopadhyay S, Tumkur U G, et al. Hydrogel Route to Nanotubes of Metal Oxides and Sulfates. J Mater Chem,2003,13:2118~2122
    [93]Kalyanikutty K P, Nikhila M, Maitra U, et al. Hydrogel-Assisted Synthesis of Nanotubes and Nanorods of CdS, ZnS and CuS, Showing Some Evidence for Oriented Attachment. Chem Phys Lett,2006,432,190~194
    [94]Ono Y, Nakashima K, Sano M, et al. Template Effect of Cholesterol-based Organogels on Sol-Gel Polymerization Creates Novel Silica with a Helical Structure. Chem Lett,1999, (28): 1119~1120
    [95]Zhang J, Wang X D, Zhao B H, et al. Facile Synthesis of Narrowly Dispersed Silver Nanoparticles in Hydrogel, Chem Lett,2006,35:40~41
    [96]Zhang J, Zhao B H, Meng L H, et al. Controlled Synthesis of Gold Nanospheres and Single Crystals in Hydrogel. J Nanoparticle Res,2007,9:1167~1171
    [97]Meng L H, Lu Y, Wang X D,et al. Facile Synthesis of Straight Polyaniline Nanostick in Hydrogel. Macromolecules,2007,40 (9):2981~2983
    [1]Bommel K J C van, Jung J H, Shinkai S. Poly (L-lysine) Aggregates as Templates for the Formation of Hollow Silica Spheres. Adv Mater,2001,13:1472~1476
    [2]Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science,1998,282(5391):1111~1114
    [3]Adachi M, Harada T, Harada M. Formation of Huge Length Silica Nanotubes by a Templating Mechanism in the Laurylamine/Tetraethoxysilane System. Langmuir,1999,15: 7097~7100
    [4]Hubert D H W, Jung M, Frederik P M, et al. Vesicle-Directed Growth of Silica. Adv Mater, 2000,12:1286~1290
    [5]Wang X D, Yang W L, Tang Y, et al. Fabrication of Hollow Zeolite Spheres. Chem Commun, 2000,2161~2162
    [6]Imai H, Takahashi N, Tamura R, et al. Formation of Whiskers of Silicate Mesostructures. Langmuir,2001,17:17~20
    [7]Jung J H, Ono Y, Shinkai S. Sol-Gel Polycondensation of Tetraethoxysilane in a Cholesterol-Based Organogel System Results in Chiral Spiral Silica. Angew Chem Int Ed. 2000,39:1862~1865
    [8]Jung J H, Ono Y, Hanabusa K, et al. Creation of Both Right-Handed and Left-Handed Silica Structures by Sol-Gel Transcription of Organogel Fibers Comprised of Chiral Diaminocyclo-hexane Derivatives. J Am Chem Soc,2000,122:5008~5009
    [9]Jung J H, Ono Y, Sakurai K, et al. Novel Vesicular Aggregates of Crown-Appended Cholesterol Derivatives Which Act as Gelators of Organic Solvents and as Templates for Silica Transcription. J Am Chem Soc,2000,122:8648~8653
    [10]Jung J H, Ono Y, Shinkai S. Sol-Gel Polycondensation in a Cyclohexane-Based Organogel System in Helical Silica:Creation of both Right- and Left-Handed Silica Structures by Helical Organogel Fibers. Chem Eur J,2000,6:4552~4557
    [11]Che S, Garcia-Bennett A E, Yokoi T, et al. A Novel Anionic Surfactant Templating Route for Synthesizing Mesoporous Silica with Unique Structure. Nature Mater,2003,2:801~805
    [12]Che S, Liu Z, Ohsuna T, et al. Synthesis and Characterization of Chiral Mesoporous Silica. Nature,2004,429:281-284
    [13]Che S, Li H, Lim S, et al. Synthesis Mechanism of Cationic Surfactant Templating Mesoporous Silica under an Acidic Synthesis Process. Chem Mater,2005,17:4103~4113
    [14]Gao C, Sakamoto Y, Sakamoto K, et al. Synthesis and Characterization of Mesoporous Silica AMS-10 with Bicontinuous Cubic Pn3m Symmetry. Angew Chem Int Ed,2006,45: 4295~4298
    [15]Gao C, Qiu H, Zeng W, et al. Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem Mater,2006,18:3904~3914
    [16]Han L, Ruan J, Li Y, et al. Synthesis and Characterization of the Amphoteric Amino Acid Bifunctional Mesoporous Silica. Chem Mater,2007,19:2860~2867
    [17]Han L, Sakamoto Y, Terasaki O, et al. Synthesis of Carboxylic Group Functionalized Mesoporous Silicas (CFMSs) with Various Structures. J Mater Chem,2007,17:1216~1221
    [18]Wang J, Xiao Q, Zhou H, et al. Budded, Mesoporous Silica Hollow Spheres:Hierarchical Structure Controlled by Kinetic Self-Assembly. Adv Mater,2006,18:3284~3288
    [19]Yokoi T, Yoshitake H, Yamada T, et al. Amino-Functionalized Mesoporous Silica Synthesized by an Anionic Surfactant Templating Route. J Mater Chem,2006,16, 1125~1135
    [20]Israelachvili J N, Mitchell D J, Ninham B W. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J Chem Soc Faraday Trans 2,1976,72:1525~1568
    [21]Kondo Y, Uchiyama H, Yoshino N, et al. Spontaneous Vesicle Formation from Aqueous Solutions of Didodecyl-dimethylammonium Bromide and Sodium Dodecyl sulfate Mixtures. Langmuir,1995,11:2380~2384
    [1]Ben-Jacob E, Garik P. The Formation of Patterns in Non-Equilibrium Growth. Nature,1990, 343(8):523~530
    [2]Zhao S R, Qiu Z H, Yang M L, et al. Crystallographic sSymmetry Effect on the Nucleation in Non-Equilibrium Aggregation Pattern. Physica A,2008,387:5355~5361
    [3]赵珊茸,邱志惠,王蓉,等.一些溶液法生长的晶体非平衡枝状形貌及其对称性分类.人工晶体学报,2009,38(4):957-963
    [4]Liu T, Wang S, Wang M, et al. Self-Organization of Periodically Structured Single-Crystalline Zinc Branches by Electrodeposition. Surf Interface Anal,2006; 38:1019-1023
    [5]Shu D J, Li D W, Pan W, et al. A Lateral Growth Mode Leading to Successive Rotation of Crystallographic Orientation. Surf Interface Anal,2006,38:1024~1027
    [6]Shu D J, Wang M, Liu F, et al. Nucleation-Mediated Lateral Growth on Foreign Substrate. J Phys Chem C,2007,111(3):1071~1075
    [7]Checa A G, Okamoto T, Ramirez J. Organization Pattern of Nacre in Pteriidae (Bivalvia: Mollusca) Explained by Crystal Competition. Proc R Soc B,2006,273:1329~1337
    [8]Wang M, Li D-W, Shu D-J, et al. Consecutive Rotation of Crystallographic Orientation in Lateral Growth. Phys Rev Lett,2005,94:125505
    [9]Oaki Y, Imai H. Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media. Cryst Growth Des,2003,3:711~716
    [10]Estroff L A, Addadi L, Weiner S, et al. An Organic Hydrogel as a Matrix for the Growth of Calcite Crystals. Org Biomol Chem,2004,2(1):137~141.
    [11]Zhang J. Zhao B H, Meng L H, et al. Controlled Synthesis of Gold Nanospheres and Single Crystals in Hydrogel. J Nanoparticle Res,2007,9:1167~1171
    [12]Zhang J, Wang X D, Zhao B H.et al. Facile Synthesis of Narrowly Dispersed Silver Nanoparticles in Hydrogel, Chem Lett,2006,35:40~41
    [13]Meng L H, Lu Y, Wang X D,et al. Facile Synthesis of Straight Polyaniline Nanostick in Hydrogel. Macromolecules,2007,40 (9):2981~2983
    [14]Rees G D, Robinson B H. Microemulsions and Organogels:Properties and Novel Applications. Adv Mater.,1993,5(9):608~619
    [15]Dennis J, Henish H K. Nucleation and Growth of Crystals in Gels. J Electrochem Soc,1967, 114(3):263~266
    [16]Robert M C, Lefaucheux F. Crystal growth in gels:Principle and applications. J Cryst Growth,1988,90:358~367
    [17]Cecal A, Palamaru M, Juverdeanu A, et al. Radiochemical Study of the Kinetics of Crystal Growth in Gels. J Cryst Growth,1996,158:181~184
    [18]Moreno A, Juarez-Martinez G, Hernandez-Perez T, et al. Physical and Chemical Properties of Gels:Application to Protein Nucleation Control in the Gel Acupuncture Technique. J Cryst Growth,1999,205:375~381
    [19]Annarelli C, Reyes L, Fornazero J, et al. On the Control of Crystal Growth in Bovine Serum Albumin-sodium Chloride Thin Film Gels. Crystal Engineering,1999,2(1):79~89
    [20]Bella S D, Garcia-Ruiz J M. Banding Structures in Induced Morphology Crystal Aggregates of CaCO3. J Mat Sci,1987,22:3095~3102
    [21]Meldrum F C, Colfen H. Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. Chem Rev,2008,108 (11):4332~4432
    [22]Suzuki M, Saruwatari K, Kogure T, et al. An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation. Science,2009,325:1388~1390
    [23]张健.水凝胶中无机高分子纳米结构的制备:[硕士学位论文].天津:南开大学,2006
    [24]Meyers M A, Lin A Y-M, Chen P Y, et al. Mechanical Strength of Abalone Nacre:Role of the Soft Organic Layer. J Mechanical Behavio Biomedical Materials,2008, Ⅰ:76~85
    [25]Lin A Y-M, Chen P Y, Meyers M A. The Growth of Nacre in the Abalone Shell. Acta Biomaterialia,2008,4:131~138
    [26]Meyers M A, Lim C T, Li A, et al. The Role of Organic Intertile Layer in Abalone Nacre. Mater Sci Engineering C,2009,29:2398~2410
    [27]Kotachi A, Miura T, Imai H. Morphological Evaluation and Film Formation with Iso-Oriented Calcite Crystals Using Binary Poly (Acrylic Acid). Chem Mater,2004,16: 3191~3196
    [28]Granasy L, Pusztai T, TegzeG, et al. Growth and Form of Spherulites. Phys Rev E,2005,72: 011605
    [29]Martin T A. N-Acyl- and N-Sulfonylcysteine Derivatives. J Med Chem,1969,12(5): 950~953
    [30]Menger F M, Caran K L. Anatomy of a Gel. Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations. J Am Chem Soc,2000,122:11679~11691
    [1]Trivedi D C, Dhawan S K. Shielding of Electromangnetic Interference Using Polyaniline. Synth Met,1993,59:267~272
    [2]杜仕国.屏蔽电磁波干扰塑料及其开发动向.塑料科技,1995,2:1-3
    [3]Jonas F, Schader L. Conductive Modifications of Polymers with Polypyrroles and Polythiophenes. Synth Met,1991,41(1-3):831~836
    [4]Jonas F, Heywang G. Technical Applications for Conductive Polymers. Electrochim Acta, 1994,39(8/9):1345~1347
    [5]Stenger-Smith J D. Intrinsically Electrically Conducting Polymers. Synthesis, Characterization and Their Applications. Prog Polym Sci,1998,23(1):57~79
    [6]张金勇,李季,王献红,等.导电聚苯胺无溶剂防腐涂料的制备方法[P].CN1243852A.2000-02-09
    [7]张清华,王献红,景遐斌.聚苯胺的合成及其光谱特性.化学世界,2001,(5):242-244
    [8]沙兆林,苏广均,施磊,等.导电聚苯胺的合成.南通工学院学报,2000,16(1):25-27
    [9]Singh R, Arora V, Tandon R P, et al. Charge Transport and sStructural Morphology of HCl-Doped Polyaniline. J Mater Sci,1998,33:2069~2080
    [10]Pud A, Ogurtsov N, Korzhenko A, et al. Some Aspects of Preparation Methods and Properties of Polyaniline Blends and Composites with Organic Polymers, Prog Polym Sci. 2003,28:1701~1753
    [11]Malinauskas A. Chemical Deposition of Conduction Polymers, Polym,2001,42:3957~3972
    [12]Bhattacharya A, De A. Conducting Composites of Polypyrrole and Polyaniline:a Review. Prog Solid State Chem,1996,24(3):141~81
    [13]Yang J, Hou J, Zhu W, et al. Substituted Polyaniline-Polypropylene Film Composites: Preparation and Properties. Synth Met,1996,80:283~289
    [14]Yang J, Zhao C, Cui D,et al. Polyaniline/Polypropylene Film Composites with High Electric Conductivity and Good Mechanical Properties. J Appl Polym Sci,1995,56:831~836
    [15]Neves S das, De Paoli M-A. Photoelectrochemistry of Polyaniline Supported in a Microporous Cellulose Acetate Membrane. Synth Met,1998,96:49~54
    [16]Ruckenstein E, Park J S. New Method for the Preparation of Thick Conducting Polymer Composites. J Appl Polym Sci,1991,42:925~934
    [17]Ruckenstein E, Yang S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth Met,1993,53:283~292
    [18]Elyashevich G K, Kozlov A G, Gospodinova N, et al. Combined Polyethylene-Polyaniline Membranes. J Appl Polym Sci,1997,64:2665~2666
    [19]Elyashevich G K, Lavrentyev V K, Kuryndin I S, et al. Properties of Polymer Conducting Thin Layers on the Surface of Microporous Polyethylene Films. Synth Met,2001,119: 277~278
    [20]Elyashevich G K, Terlemezyan L, Kuryndin I S, et al. Thermochemical and Deformational Stability of Microporous Polyethylene Films with Polyaniline Layer. Thermochim Acta, 2001,374:23~30
    [21]Martin C R, Parthasarathy R, Menon V. Template Synthesis of Electronically Conductive Polymers-A New Route for Achieving Higher Electronic Conductivities. Synth Met,1993, 55:1165~1170
    [22]Martin C R, Van Dyke L S, Cai Z, et al. Template Synthesis of Organic Microtubules. J Am Chem Soc,1990,112:8976~8977
    [23]Penner R M, Martin C R. Controlling the Morphology of Electronically Conductive Polymer. J Electrochem Soc,1986,133:2206~2207
    [24]Lu Y, Wang L, Zhao B H, et al. Fabrication of Conducting Polyaniline Composite Film Using Honeycomb Ordered Sulfonated Polysulfone Film as Template. Thin Solid Films, 2008,516:6365~6370
    [25]Bormashenko E, Pogreb R, Stanevsky O, et al. Self-Assembled Honeycomb Polycarbonate Films Deposited on Polymer Piezoelectric Substrates and Their Applications. Polym Adv Technol,2005,16:299~304
    [26]Bormashenko E, Pogreb R, Stanevsky O, et al. Mesoscopic and Submicroscopic Patterning in Thin Polymer Films:Impact of the Solvent. Mater Lett,2005,59:2461~2464
    [27]Widawski G, Rawiso M, Francois B. Self-Organized Honeycomb Morphology of Star-Polymer Polystyrene Films. Nature,1994,369:387~389
    [28]Francois B, Pitois O, Francois J. Polymer Films with a Self-Organized Honeycomb Morphology. Adv Mater,1995,7:1041~1044
    [29]Dimitrov A S, Nagayama K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces. Langmuir,1996,12:1303~1311
    [30]Maruyama N, Koito T, Nishida J, et al. Mesoscopic Patterns of Molecular Aggreagates on Solid Substrates. Thin solid films,1998,327~329:854~856
    [31]Zhao B H, Li C X, Lu Y, et al. Polymer Films with a Self-Organized Honeycomb Morphology. Polymer,2005,46:9508~9513
    [32]Zhao B, Zhang J, Wang X, et al. Water-assisted fabrication of honeycomb structure porous film from poly (L-lactide). J Mater Chem,2006,16:509~513
    [33]Zhao B H, Zhang J, Wu H Y, et al. Fabrication of Honeycomb Ordered Polycarbonate Films Using Water Droplets as Template. Thin Solid Films,2007,515:3629~3634
    [34]Lu Y, Zhao B H, Ren Y, et al. Water-Assisted Formation of Novel Molecularly Imprinted Polymer Membranes with Ordered Porous Structure. Polymer,2007,48:6205~6209
    [35]Jeevananda T, Somashekar R, Somashekar R. Studies on SLS Doped Polyaniline and Its Blend with PC. J Appl Polym Sci,2001,82:383~388
    [36]Zhitariuk N I, Moel A L E, Mermilliod N, et al. Polymerization of Pyrrole into Track Membranes. Nucl Instrum Methods Phys Res B,1995,105:204~207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700