多场耦合条件下增压器涡轮叶轮结构强度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡轮增压器能在不加大发动机排量的情况下较大幅度地提高发动机功率及扭力,减少汽车尾气中的有害气体量,已经成为汽油机、柴油机的高性能配套装置。车用涡轮增压器中的气体流动为脉动的非稳态流动,再加上排放的气体温度很高,所以大幅度提高涡轮承载负荷能力成为当前先进涡轮发动机设计的重要技术追求。采用流固耦合方法在多场条件下对涡轮叶轮进行结构强度分析能够比较真实地模拟实际情况,使计算结果更加精确、可信。
     本文应用CFX-ANSYS软件对涡轮进行了耦合分析,认为由叶片变形和其他因素所引起的流场变化现象不予考虑。本文首先在CFX中对涡轮内部废气区域的流场进行了稳态计算,通过与试验结果对比得出该计算结果的准确性,在此基础上以稳态计算结果为初场对流场进行瞬态计算,得到流固交界面处流场的温度及压力。采用建立表面效应单元的方式将在不同排气压力情况下流场计算结果映射到涡轮叶片上作为载荷,对涡轮叶轮进行温度场的计算,得到固体的温度场分布。在综合考虑旋转离心力、热应力、叶片表面气流激振力这三种因素的情况下对涡轮叶轮进行结构强度计算,得到涡轮叶轮的应力及应变。在整个排气循环中,整体叶轮温度波动范围在770K-1072K,应力波动范围在131MPa-686MPa,应变波动范围在0.594mm-1.790mm,符合材料的许用应力,该叶轮结构是可靠的。
     本文的结论对该型号增压器涡轮的结构强度分析以及改进设计有一定的参考价值。
Turbocharger can greatly improve the engine power and torque , reduce harmful gas intail gas without increasing the delivery capacity of engine. It has become the gasoline engine,diesel engine with high performance matching device.The gas flow in vehicle turbocharger ispulsation of unsteady flow ,at the same time the temperature of the gas is high, greatlyimprove the turbine load becomes the current advanced turbine engine design importanttechnical pursuit. Using the fluid-solid coupling method in field under the condition of theturbine impeller structure strength analysis can simulate the actual situation, the calculatedresults are more accurate, credible.
     This paper argues that the blade deformation and other factors caused by the change offlow field phenomenon will not be considered with studying of the fluid structure Interactiontheory.It analysis the weakly interaction with CFX-ANSYS software.At first ,the papercalculate the flow field of the exhaust gas region in steady, through the comparison withexperimental results shows that the calculation results of the stability,then do transientcalculation on the basis of the result.The computational result is mapped to the turbine bladesby using surface effect element on the calculation of the temperature field of turbine impeller.In considering the centrifugal force of the rotation, thermal stress, leaf surface airflowexciting-vibration force of these three factors in the case of the turbine impeller structurestrength analysis. In the whole cycle of integral impeller exhaust, temperature fluctuations inthe range of 770K-1072K, stress fluctuation range in 131MPa-686MPa, strain fluctuationrange in 0.594mm-1.790mm.
     The conclusion of this paper has some reference value in analysis of the structurestrength and improved design of this type turbocharger.
引文
[1]史绍熙,苏万华.内燃机燃烧研究中的几个前沿问题[J].内燃机学报,1990,22.8:47-48.
    [2]魏春源,张卫正,葛蕴珊.高等内燃机学[M].北京:北京理工大学出版,2001:216-222.
    [3]王兴海,谢程宁.排气压力波对柴油机性能影响的分析[J].柴油机.2007,29.5:14-17.
    [4]屠仁勇,何路.径流式叶轮三元流动计算分析及改型讨论[J].上海交通大学学报.1984,18.4:68-76.
    [5]罗惕乾,程兆雪,谢永曜.流体力学[M].北京:机械工业出版社,2003:122-125
    [6]黄海波.涡轮叶片中流场和温度场计算及实验研究[D].硕士学位论文.北京:中国科学院,2002.
    [7]吴荣仁,宣海军等.涡轮增压器叶轮超速预过载处理技术的研究[J].内燃机学报.2002,20.1:53-56.
    [8]邢广笑,曾凡明,袁利国.涡轮增压柴油机在脉冲负载下的瞬态特性仿真与试验研究[J].船海工程.2010,39.2:89-93.
    [9]黄若,孟令广.增压器压气机叶轮低周疲劳强度有限元计算分析[J].内燃机工程.2006,27.4:55-57.
    [10]张虹,马朝臣.车用涡轮增压器压气机叶轮强度计算与分析[J].内燃机工程.2007,28.1:62-66.
    [11]王大伟,苗学问,洪杰.某发动机涡轮叶片使用寿命可靠性分析[J].北京航空航天大学学报.2006,32.8:904-907.
    [12]李强,王云开,陈明飞.废气涡轮增压器瞬态特性分析及改进措施[J].科技与教育.2009,18.6:28-30.
    [13]江帆,陈维平等.基于动网格的离心泵内部流场数值模拟[J]. FLUIDMACHINERY.2007,35.7:20-24.
    [14]李娜.涡轮增压器压气机叶片静态和动态特性研究及优化设计[D].硕士学位论文.大连:大连交通大学,2007.
    [15]魏鹏飞,吴建军,陈启智.液体火箭发动机涡轮叶片结构特性的有限元分析[J].国防科技大学学报.2005,27.2:39-41.
    [16]陈朝辉,毕玉华,申立中.涡轮增压器压气机叶片模态特性分析[J].拖拉机与农用运输车.2006,33.4:28-31.
    [17]刘志远,郑源.ANSYS-CFX单向流固耦合分析的方法[J].水利水电工计.2009,28.2:29-31.
    [18]花争立,张颖.基于三维线性插值的离心泵叶轮流固耦合模拟[J].装备制造技术.2011,5:3-4.
    [19]董素艳,刘松龄,朱惠人.涡轮级进口温度分布不均匀时流场和温度场的非定常数值模拟[J].西北工业大学学报.2001,20.4:26-29.
    [20]刘高文,刘松龄,许都纯.涡轮叶栅前缘上游端壁气膜冷却的流场实验研究[J].航空动力学报.2001,14.4:30-34.
    [21]常婉帜,戴韧,邢卫东.增压器涡轮性能试验与CFD计算方法的研究[J].车用发动机.2007,32.1:75-78.
    [22] Meitne, P.L,Glassman, A.J. Loss Model for off-design Pefotmance of RadialInflow Turbines with pivoting vane[J]. Variable stators[C].1980,4:21-25.
    [23] Glassman,A.J. Computer Program forDesign Analysisi of Radial-Inflow[J].Turbine[C].1976,7:11-23.
    [24] Nguyen,P,Ni,R.H,Rhie,C.M. Aerodynamics and Heat Transfer Analysis of a lowAspect Ratio Turbine[J]. AIAA Paper.1961,3:33-43.
    [25] Dunn,M.G,Martin,H.L,Stanek,M.J. Heat Flux and Pressure Measurements andComparison with Prediction for a low Aspect Ratio Turbine Stage[J].ASME.J.of Turbomachinery.1986,108.1:101-105.
    [26] Kenyon,J.A,Griffin,J.H,Feiner,D.M. Maximum bladed diskforced responsefrom distortion of a structural mode[J]. Journal ofTurbomachinery.2003,125.2:352-363.
    [27] Dieter Bohn,Tom Heuer. Conjugate flow and heat transfer calculation of ahigh-pressure turbine[J]. nozzle guide vane[R].2001,2:15-26.
    [28] Hylton,L.D,Mihelc,M.S,Turner,M. Analytical and Experimental Evaluation ofthe Heat Transfer Distribution Over the Surfaces of Turbine Vanes[J]. NASATechnical Report.1983,6:61-65.
    [29] Jensen,F.M,Falzon,B.G. Structural testing And numerical simulation of a34m Composite wind turbine blade[J]. Composite Structures.2006,76.2:52-61.
    [30] Joern.R.Mechanicsofcompositematerials.TaylorandFrancis.1986,32.5:110-10
    [31] E.Lund. A methodology for the structural analysis of composite wind turbineblades under geometric andmaterial induced Instabilities[J]. Computers andStructures.2008,8.1092-1109.
    [32] Myounggu Park,Young Ha,Hwang. Analysis of a J69-T-25 engine turbine bladefracture[J]. Engineering Failure Analysis.2002,9:593-601.
    [33] YI Liu. Aerodynamics and heat transfer predictions in a highly loadedturbine blade[J]. International Journal of Heat and fiuld .2007,15.2:60-66.
    [34]武岳.考虑流固耦合作用索膜结构风致动力响应研究[D].博士学位论文.哈尔滨:哈尔滨工业大学,2003.
    [35] Keith Stein,Richard Benney,vinay Kalro.Tayfun E. Tezduyar.Parachutefuid-structure interactions:3-D computation.Comput[J].Methods Appl MechEngrg,2000,1.19:363-356.
    [36]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:33-64.
    [37]杨策,施新.径流式叶轮机械理论及设计[M].北京国防工业出版社,2004:122-135.
    [38]杜平安.有限元法-原理、建模及应用[M].北京:国防工业出版社,2004,74-78.
    [39]温泉,梁德旺.厘米级向心涡轮的三维流动特征分析[J].推进技术.2004,8.4:12-33.
    [40] Roelke,R.J . Miscellaneous Losses[J]. Turbine Design and Application[C],1973,3:22-25.
    [41] Franz J.Laimbok,Gerhard Meister,Simon Grilc. CFD Application in CompactEngine Development[J]. SAE,1998,4:44-47.
    [42]陈汉平.计算流体力学[M].北京:水利电力出版社,1995:79-91.
    [43]杜发荣,吴健,徐斌.内燃机进气道流场的CFD计算.河南科技大学学报.2005,12.6:20-23.
    [44]王勖成,邵敏.新型有限元法基本原理和数值方法[M].北京:清华大学出版社,1992:1-344.
    [45]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004:7-14.
    [46]许元默,帅石金.发动机缸内数值模拟现状及发展方向.小型内燃机与摩托车.2002,15:44-47.
    [47]高秀华。有限单元法原理及应用简明教程[M].北京:化学工业出版社,2010:37-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700