川南退耕竹林水土保持功能研究与综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬头黄竹(Bambusa rigida)和撑绿杂交竹(Bambusa pervariabilis×Dendrocalamopsisdaii)是我国丛生竹资源的重要组成部分,同时也是我国南方重要的经济竹种和生态建设竹种,不仅生长快、产量高,在造纸、编织和纤维利用等领域有明显优势,而且还具有较好的生态功能,在我国竹产业的发展和生态建设中发挥了不可替代的作用。川南地处长江上游,雨量充沛,但多年来对陡坡地不合理的开垦和种植,使得该地区的土壤退化和水土流失现象十分严重。实施退耕还林工程以来,硬头黄竹和撑绿杂交竹(以下简称撑绿竹)作为当地的常用竹种,便因其较好的经济价值和生态功能,在退耕还林工程实施过程中得到了广泛的应用和推广。为探寻退耕竹林的水土保持作用,本文采用野外观测和室内试验相结合的方法,以硬头黄竹和撑绿竹的非退耕竹林(YCK1、CCK2)和农耕地(NCK0)为对照,对硬头黄竹的退耕5a(Y5)、10a(Y10)林和撑绿竹的退耕5a(C5)、10a(C10)林的群落结构及生产力特征、土壤理化性质、水源涵养功能、土壤抗侵蚀能力和经济效益进行系统分析,在此基础上建立了退耕竹林主要生态功能和经济效益综合指标评价体系,并运用该指标体系对实验竹林进行了综合评价,为川南退耕竹林竹种选择和可持续经营提供理论依据。主要结论如下:
     1不同退耕年限丛生竹群落结构及生产力差异明显。研究表明,退耕5a硬头黄竹林地胸径和株高低于退耕10a林和非退耕林;撑绿竹胸径和树高变化趋势与硬头黄竹变化规律相反,退耕5a撑绿竹胸径和树高最好,反映了撑绿竹的成林周期短于硬头黄竹。硬头黄竹和撑绿竹的胸径和株高之间均存在极显著的相关关系,可以用模型H=2.29D+0.670和H=0.939D+5.813表达。两种丛生竹林物种多样性的丰富度指数和均匀度指数均随着退耕年限的延长而降低,且物种多样性水平均表现为草本层>灌木层>乔木层,但是两者地上生物量积累量差异较大,硬头黄竹地上部平均单株生物量大小依次为:YCK1(3.65kg)> Y10(3.48kg)> Y5(3.18kg);撑绿竹为:C5(4.31kg)> CCK2(4.01kg)>C10(3.50kg);生物量积累量可采用相对生长式模型W=a(D2H)b来模拟。
     2退耕竹林土壤质量明显提高。采用加权综合指数法,对不同竹林土壤质量进行综合评价,硬头黄竹土壤质量综合指数顺序为:Y5> YCK1> NCK0>Y10;撑绿竹为:C5> C10> NCK0>CCK2,均以退耕5a竹林土壤质量最优,而非退耕撑绿竹和退耕10a硬头黄竹林土壤质量较差,均低于农耕地。退耕5a硬头黄竹林和撑绿竹林土壤具有良好的持水能力和土壤孔隙度,且其土壤主要化学元素含量较高,因而综合指数得分较高。退耕时间不同,主要养分元素含量存在明显差异,两种退耕丛生竹林土壤N和K含量均随着退耕年限的增加而降低,而P含量随着退耕年限的增加呈升高的趋势。
     3竹林内的林冠层、枯落物层和土壤层的水源涵养功能与竹种和退耕年限密切相关。树冠平均截留量占竹林水源涵养总量的39.31%,硬头黄竹林冠截留量排列顺序为Y5>Y10>YCK1,退耕5a竹林截留量最高,可占该地区降雨量的15.24%;撑绿竹冠层截留量的排列顺序为C5> CCK2> C10,最高为年降雨量的15.68%。不同退耕年限竹林叶面积指数介于1.253~3.419之间,与林冠截留量显著正相关。枯落物层水源涵养量仅占竹林水源涵养量的0.68%。硬头黄竹林冠截留量排列顺序为Y10> YCK1>Y5,撑绿竹冠层截留量的排列顺序为C10>CCK2>C5,两种退耕竹林枯落物储量、最大拦蓄量及有效拦蓄量均随退耕年限的增加而增加,浸泡时间(t)与枯落物层持水量(S)和吸水速率(V)之间的关系可以用模型S=k lnt+p和V=k tn拟合。土壤层是林地涵养水源的主体,占各竹林水源涵养量的57.62~62.50%,硬头黄竹林0~60cm土层土壤储水量的排列顺序为:Y(52997.24t·hm-2)>YCK1(2447.86t·hm-2)>Y10(2381.67t·hm-2);撑绿竹为CCK2(2709.28t·hm-2)>C5(2680.54t·hm-2)>C10(2250.93t·hm-2)。故在竹林水源涵养总量方面,硬头黄竹为退耕5a林最高(487.09mm),其次为退耕10a林(413.33mm),最低为非退耕竹林(403.92mm);而撑绿竹以退耕5a最高,其次为非退耕林,最低为退耕10a竹林,其值分别为461.35mm,433.51mm和378.32mm。
     4退耕竹林抗侵蚀力明显优于农地,且随退耕年限的增加而增加。不同退耕年限硬头黄竹林土壤抗侵蚀能力的排列顺序为:Y10>YCK1>Y5>NCK0,分别较农耕地提高68.35%,39.26%和37.77%;而撑绿竹为C10> CCK2>C5>NCK0,较农耕地分别提高44.63%,43.05%和22.67%,均已退耕10a土壤抗侵蚀能力最高,退耕竹林有效地提高土壤抗侵蚀能力,且随着退耕年限的延长,土壤抗侵蚀能力增加。通过主成分分析和因子分析,表明水稳性团聚体含量、土壤渗透性、平均重量直径和几何平均直径与土壤理化性质、土壤抗侵蚀性指标之间存在着显著或极显著的相关关系,可以作为衡量该地区土壤抗侵蚀能力大小的综合参数。
     5对不同类型竹林主要生态功能进行定量评价,结果表明硬头黄竹主要生态功能综合指数的排列顺序为Y5>YCK1>Y10>NCK0,撑绿竹为C5> CCK2> C10> NCK0,两种竹林均表现为退耕5a竹林的主要生态功能最高,其次为非退耕竹林,最低为退耕10a竹林,且竹林生态功能均优于农耕地。退耕竹林经济效益综合分析表明退耕10a竹林产生的经济效益显著高于退耕5a竹林和农耕地。
     总体而言,硬头黄竹的发笋成竹率、株秆生物量所占比例和竹材经济价值要显著高于撑绿竹,且在土壤质量改良和林地水源涵养方面较撑绿竹更有优势,但成林周期长,地上部单株生物量也相对较低;而撑绿竹单株生物量大、径级较粗,还具有较好的林冠截留能力和快速生长能力,土壤抗侵蚀能力较强,也不失为一种较好的生态建设竹种。
Bambusa(B) rigida and Bambusa pervariabilis×Dendrocalamopsis(D) daii are theimportant part of sympodial bamboo resource in China, while also belong to the importantbamboo species for economic in southern of China, furthermore, they are not only havingfaster growing and higher yields, but also have obvious advantage in the field of paper making,weaving, fiber utilization et al; Therefore, the irreplaceable role is played in the developmentof China's bamboo industry. Southern of Sichuan province is located in the upper reaches ofthe Yangtze River, rich in rainfall, however, due to the unreasonable reclamation andcultivation of steep slopes over the years, soil degradation and soil erosion is becoming moreand more serious. And because of their good economic value and ecological function, B.rigidaand B. pervariabilis×D. daii which as the local common species of bamboo, were widelypromoted and application at the period of Grain for Green Project (GTGP).In order to explorethe water and soil conservation function of de-farmed plantation of bamboo, the methods offield observation and indoor test were taken to systematic analysis community structure and thefeature of productivity, soil properties, water conservation features, soil resistance to erosionand economic benefits of stands which included5-year(Y5) and10-year(Y10) de-farmed B.rigida plantation,5-year(C5) and10-year(C10) de-farmed B. pervariabilis×D. daii plantation,and the control-managing B. rigida plantation (YCK1), B. pervariabilis×D. daii plantation(CCK2) and slope farmland (NCK0). Based on the analysis mentioned above, the comprehensiveindex evaluation system of ecological functions and economic benefits of de-farmed bambooforests was established, and then, the assessment result of different stands was obtained by thissystem. The aim was to provide a theoretical basis for the choice of bamboo species andsustainable management of de-farmed land in south Sichuan province.The main conclusionsare as follows:
     1The differences of community structure and the feature of productivity among differentplots were significant. The results showed that Y5had lower bamboo diameter at breast height(DBH) and height than Y10and YCK1, while C5was better than C10and CCK2, so, B.pervariabilis×D. daii need less time than B. rigida when they grew up to forset. In addition, there was a significant relationship between DBH and tree height both in B. rigida and B.pervariabilis×D. daii, and the regression equation is H=2.29D+0.670and H=0.939D+5.813.Richness index and evenness index of species diversity were reduced with the increase ofde-farmed years, and the order of species diversity level was: herb layer> shrub layer> treelayer. Biomass in different stands are differ with B. rigida and B. pervariabilis×D. daii forests,and the average individual biomass order was YCK1(3.65kg)> Y10(3.48kg)> Y5(3.18kg)and C5(4.31kg)> CCK2(4.01kg)> C10(3.50kg)respectively. In study region, all the standsbiomass could be excellent simulated by relative growth model: W=a(D2H)b.
     2Soil quality and soil properties could be improved by returning farmland to bambooforest. The soil quality of different stands had been evaluated through weighted compositeindex method (WCIM), the comprehensive index order of B. rigida was Y5> YCK1> NCK0>Y10,and B. pervariabilis×D. daii was C5> C10> NCK0> CCK2,5-year de-farmed forests had bettersoil quality than the other stands, because they had better water-holding capacity, soil porosity,and higher content of chemical elements. The main nutrient elements were difference betweendifferent de-farmed time forests, the content of N and K decreased with the increasing ofde-framing time, but P had opposite trend.
     3Bamboo species and de-farmed time were closely related to water conservation functionof canopy layer, litter layer and soil layer of forests. The average interception rate of canopyaccount for39.31%of the amount of water conservation, and the order of B. rigida wasY5>Y10>YCK1, the best was Y5, account for15.24%of rainfall; the order of B. pervariabilis×D.daii was C5>CCK2> C10, C5account for15.68%of rainfall. Leaf area index was ranged from1.253to3.419, and it also had a significant positive correlation with canopy interceptioncapacity. Water-holding capacity of litter layer account for0.68%. The order of B. rigida wasY10>YCK1>Y5, and B. pervariabilis×D. daii was C10>CCK2>C5. Litter storage, and its maximuminterception capacity and effective interception increased with the increasing of de-farmedyears. Immersion experiment also showed that the fitting models between immersion time (t)and litter water-holding capacity (S), water absorption rate (V) were S=k lnt+p and V=k tn. Thesoil layer is the main body of water conservation, accounting for57.62~62.50%of the wholebamboo forest water conservation, the sequence B. rigida was Y5(2997.24t·hm-2)>YCK1(2447.86t·hm-2)>Y10(2381.67t·hm-2), and B. pervariabilis×D. daii was CCK2(2709.28 t·hm-2)>C5(2680.54t·hm-2)>C10(2250.93t·hm-2). So, in the aspect of water conservation,for B. rigida, Y5was the best (487.09mm), Y10taken the second place (413.33mm), and thelast was YCK1(403.92mm); for B. pervariabilis×D. daii, C5>CCK2>C10, respective value was461.35mm,433.51mm and378.32mm.
     4De-farmed plantations had better soil anti-erodibility than farmland, and increased withthe extending of de-farmed time. The order of soil anti-erodibility under B. rigida stands wasY10>YCK1>Y5>NCK0, enhanced68.35%,39.26%and37.77%than farmland, respectively, andthe order of B. pervariabilis×D. daii was C10> CCK2>C5>NCK0, enhanced44.63%,43.05%and22.67%separately.10-year de-farmed plantations were the best than the other stands insoil anti-erodibility. Thus, de-farming can significantly improve the ability of soilanti-erodibility, and the longer de-farmed times, the higher soil anti-erodibility level enhanced.In addition, principal component analysis and factor analysis of different anti-erodibilityindexes indicated that content of water stable aggregates, soil permeability, the mean weightdiameter and geometric mean diameter had existed significant or highly significant correlationwith soil properties, soil anti-erodibility indexes, so they can be used as a comprehensivelyquantitative index to evaluate the soil erosion resistance
     5Main ecological functions of different bamboo forest were quantitative evaluated byWCIM, the results showed that the decreasing order of it in different B. rigida wasY5>YCK1>Y10>NCK0, and the B. pervariabilis×D. daii was C5>CCK2>C10>NCK0,5-yearde-farmed stands had the best ecological functions, then were management plantations, and thelast were10-year de-farmed stands. However, both of de-farmed stands had not reachedsignificant level to control, respectively, in addition, forest stands had better ecologicalfunction than farmland. In economic benefit aspect,10-year de-farmed plantation significantlyhigher than5-year de-farmed plantation and farmland.
     In a word, in the respect of bamboo emerging rate, biomass rate of culm and the value ofbamboo wood, B. rigida are better than B. pervariabilis×D. daii, meanwhile, it has moreadvantage on improving soil quality and water conservation of forest, but it needs to spendmore time to grow up to forest, and also has lower biomass than B. pervariabilis×D. daii.Regard to B. pervariabilis×D. daii, besides higher individual biomass and DBH, it has betterability on canopy interception and fast growth either, superadded its high soil anti-erodibility, B. pervariabilis×D. daii could also belong to a better ecological construction species of bamboo.
引文
[1]李世东.中国退耕还林研究[M].科学出版社,2004
    [2]江泽慧.世界竹藤[M].沈阳:辽宁科学技术出版社,2002
    [3]梁佳,谢双喜,张雯,等.赤水市7种丛生竹生长情况调查分析[J].贵州农业科学,2010,38(6):171~176
    [4]杨明义,田均良,刘普灵.用137Cs法研究农耕地坡面土壤侵蚀空间分布特征初报[J].水土保持研究,1997,4(2):96~99
    [5]周益权,顾小平,李本祥,等.川南地区3种丛生竹竹秆特性研究[J].福建林学院学报,2010,30(1):45~50
    [6]李世东,翟洪波.世界林业生态工程对比研究[J].生态学报,2002,22(11):1976~1982
    [7]方向京.金沙江流域(滇东北段)退耕还林模式及其配套技术研究[D].北京林业大学博士论文,2005
    [8]安和平.北盘江中游地区土壤抗蚀性及预测模型研究[J].水土保持学报,2000,14(4):38~42
    [9]史东梅,吕刚,蒋光毅,等.马尾松林地土壤物理性质变化及抗蚀性研究[J].水土保持学报,2005,19(6):35~39
    [10]朱显谟.黄土高原地区植被因素对于水土流失的影响[J].土壤学报,1960,8(2):110~120
    [11]徐建明,蒋新,刘凡,等.中国土壤化学的研究与展望[J].土壤学报,2008,45(5):817~829
    [12]曹建华,陶忠良,赵春梅,等.不同树龄橡胶树枯落物养分归还比较[J].热带作物学报,2011,32(1):1~6
    [13]崔鸿侠,唐万鹏,胡兴宜,等.杨树人工林连栽对土壤生物学性质的影响[J].湖北林业科技,2009,159:7~10
    [14]秦钟,周兆德.土壤物理性质变化简析[J].海南大学学报(自然科学版),2002,20(4):379~385
    [15]和文祥,谭向平,王旭东,等.土壤总体酶活性指标的初步研究[J].土壤学报,2010,47(6):1232~1236
    [16] Bonell M. Progress in the understanding of runoff generation dynamics in forests[J]. Journal ofHydrology,1993,150:217~275
    [17] Bonell M. Selected challenges in runoff generation research in forests from the hills lope to headwaterdrainage basin scale [J]. Journal of the American Water Resources Association,1998,34(4):765~785
    [18] McCulloch J G, Robinson M. History of forest hydrology [J]. Journal of Hydrology,1993,150:189~216
    [19] Whitehead P G, Robinson M. Experimental basin studies—An international and historical perspectiveof forest impacts [J].Journal of Hydrology,1993,145:217~230
    [20] Stednick J D. Monitoring the effects of timber harvest on annual water yield [J]. Journal of Hydrology,1996,176:79~95
    [21]马传栋.城市生态经济学[M].北京:经济日报出版社,1989
    [22]马雪华.森林水文学[M].北京:中国林业出版社,1993
    [23]陈信雄.森林水文学[M].台湾:千华出版公司,1979
    [24]张志强,余新晓,赵玉涛,等.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113~116
    [25]张志强,王礼先,余新晓,等.森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(l):79~84
    [26] Calder I R. Water use by forestslimits and controls [J]. Tree Physiology,1998,18:625~631
    [27] Jones J A. Hydrologic Processes and peak discharge response to forest removal, regrowth and roads in10small experimental basins, western Cascades, Oregon [J]. Water Resources Research,2000,36:2621~2642.
    [28] Huber L, Gillespie T J. Modeling leaf wetness in relation to plant disease epidemiology [J]. AnnualReview of phytopathology,1992,30:553~577.
    [29] Paw U K T, Falk M, Suchanek T H, et al. Carbon dioxide exchange between an old growth forest andthe atmosphere [J]. Ecosystems,2004,7:513~524
    [30]郭明春,于澎涛,王彦辉,等.林冠截持降雨模型的初步研究[J].应用生态学报,2005,16(9):1633~1637
    [31]刘世荣,孙鹏森,王金锡,等.长江上游森林植被水文功能研究[J].自然资源学报,2001,16(5):45~56
    [32] H rmann G. et al. Calculation and simulation of wind controlled canopy interception of a beech forestin Northern German [J]. Agricultural and Forest Meteorology,1996,79:131~148.
    [33]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996,203~207
    [34] Calder I R, Wright I R. Gamma ray attenuation studies of interception from Sitkas Pruee: Someevidence for an additional transport mechanism [J]. Water Resources Research,1986,22:409~427
    [35] Bouten W, Bosveld F C. Microwave transmission: A new tool in forest hydrological research [J].Journal of Hydrology,1991,125:313~370
    [36] Bouten W P, Swart J. F., De Water E.. Microwave transmission: A new tool in forest hydrologicalresearch [J]. Journal of Hydrology,1991,124:119~130
    [37] Xingguo Mo, Suxia Liu, Zhonghui Lin, et al. Simulating temporal and spatial variation ofevapotranspiration over the Lushi basin[J]. Journal of Hydrology,2004(285):125~142
    [38] Vrugt J A, Dekker S C, Bouten W. Identification of rainfall interception model parameters frommeasurements of rainfall and forest canopy storage [J]. Water Resources Research,2003,39(9):125
    [39]周晓峰,赵惠勋,孙慧珍.正确评价森林水文效应[J].自然资源学报,2001,16(5):420~426
    [40]于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1999.1~34
    [41]李凌浩,林鹏,何建源,等.森林降水化学研究综述[J].水土保持学报,1994,8(1):84~96
    [42] Rutter A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests,1:Derivation of the Model from observations in a plantation of Corsican pine [J]. Agric, Meterorol,1971,9:367~384
    [43] Gash J H C. An analytical model of rainfall interception by forests [J]. Quart J R Met Soc,1979,105:43~53
    [44] Valente F, et al. Modeling interception loss for two sparseeucalypt and pine forests in central Portugalusing reformulatedRutter and Gash analytical models. Journal of Hydrology,1997,90:141~162
    [45] Whelan M J and Anderson J M. Modeling spatial patterns ofthroughfall and interception loss in aNorway spruce (Picea abies)plantation at the plot scale. Journal of Hydrology,1996.186:335~354
    [46]吴饮孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水十的作用评价[J].水土保持学报,1998,4(2):23~28
    [47]程金花,张洪江,史玉虎.林下地被物保水保土作用研究进展[J].中国水土保持科学,2003,l(2):96~101
    [48]闫俊华,周国逸,唐旭利,等.鼎湖山3种演替群落凋落物及其水分特征对比研究[J].应用生态学报,2001,12(4):509~512
    [49]吴钦孝,刘向东,苏宁虎.山杨次生林枯枝落叶蓄积量及其水文作用[J].水土保持学报,1992,6(1):71~76
    [50]吴钦孝,刘向东,赵鸿雁,等.森林集水区水文效应的研究[J].人民黄河,1994,(12):25~27
    [51]吴钦孝,赵鸿雁,汪有科.黄土高原油松林地产流产沙及其过程研究[J].生态学报,1998,18(2):151~157
    [52]陈丽华,余新晓,张东升,等.贡嘎山冷杉林区苔醉层截持降水过程研究[J].北京林业大学学报,2002,24(4):60~63
    [53] Kelliher F M. Evaporation and canopy characteristics of coniferous forests and grasslands [J].Oecologia,1989,95:153~163
    [54]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):108~110
    [55]高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,15(5):60~64,75
    [56]朱劲伟.小兴安岭红松阔叶林的水文效应[J].东北林学院学报,1982(4):17~24
    [57]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16~22
    [58]张建国,李吉跃.北方主要造林树种耐旱机理及其分类模型的研究—叶保水力及维持膨压[J].河北林学院学报,1995,10(3):187~193
    [59]钟祥浩,程根伟.森林植被变化对洪水的影响分析—以长江上游典型小流域和洪水事件为例[J].山地学报,2001,19(5):413~417
    [60]张立恭.土壤抗侵蚀能力研究概述[J].四川林勘设计,1996(1):1~3
    [61]高维森,王佑民.土壤抗蚀抗冲性研究综述[J].水土保持通报,1992,12(5):59~63
    [62]王礼先.水土保持学[M].北京:中国林业出版社,2005
    [63]王艾萍,潘少奇.洛宁县土壤可侵蚀性研究[J].安徽农业科学,2009,37(28):13684~13686
    [64]李勇,吴钦孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性能的研究—Ⅰ.油松人工林根系对土壤抗冲性的增强效应[J].水土保持学报,1990,4(1):1~10
    [65]韩鲁艳,贾燕锋,王宁,等.黄土丘陵沟壑区植被恢复过程中的土壤抗蚀与细沟侵蚀演变[J].土壤,2009,41(3):483~489
    [66]曾光,杨勤科,姚志宏.黄土丘陵沟壑区不同土地利用类型土壤抗侵蚀性研究[J].水土保持通报,2008,28(2):6~9,38
    [67]韩学坤,吴伯志,安瞳昕,等.溅蚀研究进展[J].水土保持研究,2010,17(4):46~51
    [68]樊萍,宋维秀,魏国良.单雨滴降雨对结皮土壤溅蚀的影响[J].青海大学学报,2005(1):59~61
    [69]赵晓光,吴发启.单雨滴溅蚀规律及其对溅蚀土粒的分选作用[J].水土保持学报,2001,15(1):43~45
    [70]龚伟,颜晓元,蔡祖聪,等.长期施肥对华北小麦—玉米轮作土壤物理性质和抗蚀性影响研究[J].土壤学报,2009,46(3):520~525
    [71]蒋定生.地面坡度对降水入渗影响的模拟实验[J].水土保持通报,1984,4(4):55~58
    [72]王峰,石辉,周立江,等.土壤抗冲性研究进展[J].山地农业生物学报,2010,29(6):528~537
    [73]杨智,兰雪,戴全厚,等.黔中地区不同岩性土壤抗冲抗蚀性研究进展[J].水土保持研究,2010,17(4):6~9
    [74]卫志勇,王晓冰.植被根系与土壤抗蚀抗冲性的研究综述[J].内蒙古林业调查设计,2011,34(2):103~106
    [75]杜钦,杨淑慧,任文玲,等.植物根系固岸抗蚀作用研究进展[J].生态学杂志,2010,29(5):1014~1020
    [76]蒋有绪.生物多样性研究进展与入世后的对策[J].世界科技研究与发展,2003,25(5):1~4
    [77]徐慧,彭补拙.国外生物多样性经济价值评估研究进展[J].资源科学,2003,25(4):102~109
    [78] Peters C M, Gentry A. H, Mendelsohn R O. Valuation of an Amazonian rain forest[J]. Nature,1989,339(6227):655~656
    [79]白顺江.雾灵山森林生物多样性机生态服务功能价值仿真研究[D].北京:北京林业大学,2006
    [80] Cary G, Mittelbach, Steinel C F, et a1. What is the observed relation between species richness andproductivity [J]. Ecology,2001,82(9):2381~2396
    [81] Waide R. B, Willig M, Steiner C F, et a1. The relationship between productivity and species richness[J].Annual Review of Ecology and Systematics,1999,30:257~300
    [82]邱波,王刚.生产力与生物多样性关系研究进展[J].生态科学,2003,22(3):265~270
    [83]高东,何霞红.生物多样性与生态系统稳定性研究进展[J].生态学杂志,2010,29(12):2507~2513
    [84] Ives A R, Carpenter S R. Stability and diversity of ecosystems [J]. Science,2007,317:58~62
    [85] Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade long grasslandexperiment [J]. Nature,2006,441:629~632
    [86] McCann K S. The diversity-stability debate [J]. Nature,2000,405:228~233
    [87] Olson J S, Watts J A, Allison L J. Major world Ecosystems Complexes Ranked by Carbon in liveVegetation: A Database.1983, Oak Ridge National Laboratory
    [88] Dixon R K, Brown S, Houghton R A. et al. Carbon Pools and Flux of Global Forest Ecosystem[J].Science,1994,264(14):185~190
    [89]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[J].广西植物,2002,22(4):305~310
    [90] Batjes N H, Brides E M, et al. A Review of Soil Factors and Processes that Control Fluxes of Heat.Moisture and Greenhouse Gases[R]. International Soil Reference and Information Center, Wageningen,1994,97~148
    [91]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518~522
    [92] Zhao Q G, Li Z. Nutrient cycling in Agroecosystems [M]. Netherland:Kluwer Academic Publishers,1997:1~6
    [93]李意德,曾庆波,吴仲民,等.我国热带天然林植被C贮存量的估算[J].林业科学研究,1998,12(2):156~162
    [94]骆土寿,陈步峰,陈永富,等.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究,2000,13(2):123~128
    [95]黄承才.浙江省毛竹林和茶园土壤碳库的研究[J].绍兴文理学院学报,2001,21(l):56~57
    [96]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548~552
    [97]王金叶,车克钧,张学龙,等.祁连山森林土壤碳的初步研究[J].甘肃农业大学学报,1996,(4):356~360
    [98]刘广路,范少辉,漆良华,等.不同垦复时间毛竹林土壤性质变化特征研究[J].江西农业大学学报,2011,33(1):68~75
    [99]肖复明,范少辉,汪思龙,等.毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J].水土保持学报,2008,22(2):131~134
    [100]余林.皖南毛竹林密度效应研究[D].中国林业科学研究院博士论文,2011
    [101]高志勤.不同毛竹纯林枯落物养分含量和贮量的比较[J].南京林业大学学报(自然科学版),2006,30(3):51~54
    [102] Singh J S, Raghuvanshi A S, Singh R S, et al.1989. Microbial biomass acts as a source of plantnutrients in dry tropical forest and savanna [J]. Nature,399,499~500
    [103] Takamatsu T, Kohno T, Ishida K, et al. Role of the dwarf bamboo (Sasa) community in retaining basiccations in soil and preventing soil acidification in mountainous areas of Japan[J]. Plant and Soil1997,192:167~179
    [104]谢锦忠.中国不同竹产区土地利用变化对生态环境影响的比较研究[D].中国林业科学研究院.2006
    [105]徐秋芳,姜培坤,俞益武等.不同林用地土壤抗蚀性能研究[J].浙江林学院学报,2001,18(4):362~365
    [106] Huber A and IrouméA.Variability of annual rainfall partitioning for different sites and forest covers inChina [J].Journal of hydrology,2001,248:78~92
    [107] Koichi Takahashi, Shigeru Uemura, Jun-Ichirou Suzuki, et al. Effects of understory dwarf bamboo onsoil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northernJapan[J].Ecological Research,2003,18:767~774
    [108] Hikaru Komatsu, Yuka Onozawaa, Tomonori Kume, et al.Stand-scale transpiration estimates in aMoso bamboo forest: II Comparison with coniferous forests [J]. Forest Ecology and Management,2010,1295~1302
    [109]吴炳生.毛竹林群落类型水源涵养功能的初步研究[J].竹子研究汇刊,1992,11(4):18~25
    [110]杨正礼.我国退耕还林研究进展与基本途径探讨[J].林业科学研究,2004,17(4):512~518
    [111]何汉杏,葛汉栋,庄昌盛,等.张家界市漩水林场毛竹林水文生态效益初步研究报[J].生态效益计量,2001,21(4):11~15
    [112]王冬云,张卓文,苏开君,等.广州流溪河流域毛竹林的水文生态效应[J].浙江林学院学报,2008,25(1):37~41
    [113]王彦辉,刘永敏.江西省大岗山毛竹林水文效应研究[J].林业科学研究,1993,6(4):273~279
    [114]温远光,刘世荣.我国主要森林生态系统类型降雨截持规律的数量分析[J].林业科学,1995,31(4):289~298
    [115]张昌顺,范少辉,谢高地.闽北毛竹林枯落物层持水功能研究[J].林业科学研究,2010.23(2):259~265
    [116]笪志祥,楼一平,董文渊,等.梁山慈竹在退耕还林中的水土保持效应研究[J].浙江林业科技,2007,27(3):22~27
    [117]谢锦忠,傅懋毅,马占兴,等.麻竹人工林水文生态效应[J].林业科学研究,2005,18(6):682~687
    [118]吴炳生.毛竹林群落类型水源涵养功能的初步研究[J].竹子研究汇刊,1992,11(4):18~24
    [119]温钦舒.大型丛生竹水土保持效益试验初探[J].亚热带水土保持2006,18(3):19~22
    [120]刘蔚漪,范少辉,漆良华,等.闽北不同类型毛竹林水源涵养功能研究[J].水土保持学报,2011,25(2):92~96
    [121]郑郁善,洪伟编著.毛竹经营学[M].厦门大学出版社.1998:52~64
    [122] Isagi Y, Kawahara T, Kamo K, et al. Net production and carbon cycling in a bamboo Phyllostachyspubescens stand [J]. Plant Ecology,1997,130:41~52
    [123]周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].浙江大学博士论文,2006
    [124]韩枫.浅谈世界各国对森林生态效益评价的研究[J].四川林勘设计,2010,3:6~10
    [125]米锋,李吉跃,杨家伟.森林生态效益评价的研究进展[J].北京林业大学学报,2003,25(6):77~83
    [126]王珠娜,潘磊,余雪标,等.退耕还林生态效益评价研究进展[J].西南林学院学报,2007,27(1):91~96
    [127]钟晓娟,赵岩,孙保平,等.盐池县退耕还林生态效益评价[J].中国水土保持,2010(9):34~38
    [128]尹少华,宋笑月,肖建武,等.湖南省退耕还林工程生态效益评价[J].中南林业科技大学学报,2010,30(5):35~39
    [129]杨光,丁国栋,孙保平,等.黄土丘陵沟壑区退耕还林工程对植被恢复影响的研究—以陕西吴旗县为例[J].水土保持研究,2005,12(6):76~78
    [130]姚清亮,陆贵巧,杜剑,等.关于承德市退耕还林工程生态效益评价研究[J].河北农业大学学报,2009,32(6):57~61
    [131]周文渊,赵岩,郭建英,等.安定区退耕还林工程的生态效益评价[J].中国农学通报,2009,25(20):115~120
    [132]笪志祥.赤水退耕还林中梁山慈竹生态效益的研究[D].中国林业科学研究院硕士论文,2007
    [133]古丽努尔·沙布尔哈孜,尹林克,热合木都拉·阿地拉.塔里木河中下游退耕还林还草综合生态效益评价研究[J].水土保持学报,2004,18(5):80~83
    [134]刘刚才,李兰,周忠浩,等.紫色土丘陵区坡耕地退耕对水土流失的影响及其效益评价[J].中国水土保持科学,2005,3(4):32~36
    [135] Margalef R. Information theory in ecology [J]. General Systems,1958,3(1):36~71
    [136]李菁,骆有庆,石娟.生物多样性研究现状与保护[J].世界林业研究,2011,24(3):26~31
    [137]张昌顺.闽北不同类型毛竹林生态功能研究[D].中国林业科学研究院博士论文,2008
    [138]孟宪宇.测树学(第二版).北京:中国林业出版社[M],1996
    [139] Williams C B. Area and number of species [J]. Nature,1943,152(3853):264~267
    [140] Whittaker R. Evolution and measurement of species diversity [J]. Taxon,1972,21(2/3):213~251
    [141]唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(专1):9~27
    [142]项文化,田大伦,闫文德.森林生物量与生产力研究综述[J].中南林业调查规划,2003,(3):57~60
    [143]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势口[J].应用生态学报,2004.15(8):1468~1472
    [144]鲁顺保,饶玮,彭九生,等.立地条件对毛竹生物量的影响研究.浙江林业科技,2008,28(4):22~27
    [145]郑郁善,邱尔发,陈礼光,等.肿节少穗竹生物产量模型研究[J].竹子研究汇刊,2000,19(4):12~17
    [146]吴富桢.测树学实习指南[M]北京:中国林业出版社,1994
    [147]彭在清,林益明,刘建斌,等.福建永春毛竹种群生物量和能量研究[J].厦门大学学报(自然科学版),2002,41(5):579~583
    [148]林新春,方伟,俞建新,等.苦竹各器官生物量模型[J].浙江林学院学报,2004,21(2):168~171
    [149]马乃训,吴玲玲,张文燕,等.优良经济竹种红竹生物量的研究[J].竹子研究汇刊,1994,13(01):31~41
    [150]宁晨,闫文德,叶生晶,等.喀斯特城市亮叶桦意杨混交林生态系统生物量及生产力研究[J].中南林业科技大学学报,2011,31(5):162~166
    [151]国家林业局.中华人民共和国林业行业标准—森林土壤分析方法(LY/T1210~1275).1999
    [152]张华,张甘霖.土壤质量指标和评价方法[J].土壤,2001,6:326~333
    [153]蒋俊明,朱维双,刘国华,等.川南毛竹林土壤肥力研究[J].浙江林学院学报,2008,25(4):486~490
    [154] Short J R. Soils of Mall in Washington DC: I. Statistical summary of properties [J], Soil Sci. Soc. Am J,1986(50):699~705
    [155]马建华,张丽,李亚丽.开封市城区土壤性质与污染的初步研究[J].土壤通报,1999,30(2):93~96
    [156]边振兴,王秋兵沈阳市公园绿地土壤养分特征的研究[J].土壤通报,2003,34(4):284~290
    [157]邢素丽,刘孟朝,韩保文.12年连续施用秸秆和钾肥对土壤钾素含量和分布的影响[J].土壤通报,2007,38(3):486~490
    [158]廖育林,郑圣先,鲁艳红,等.长期施钾对红壤水稻土水稻产量及土壤钾素状况的影响[J].植物营养与肥料学报,2009,15(6):1372~1379
    [159]张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029~2033
    [160] Campo J, Maass J M, Jaramillo V J, et al. Calcium, potassium, and magnesium cycling in a Mexicantropical dry forest ecosystem[J]. Biogeochemistry,2000,49:21~36
    [161] Saif H T, Smeck N E, Bigham J M. Pedogenic influence on base saturation and calcium/magnesiumratios in soils of Southeastern Ohio[J].Soil Science Society of America Journal,1997,61:509~515
    [162] Shaw J N, West L T, Hajek B F. Ca-Mg ratios for evaluating pedogenesis in the piedmont province ofthe southeastern United States of America. Canadian Journal of Soil Science,2001,81:415~421
    [163] Johnston A E, Goulding K W T, Poulton P R. Soil acidification during more than100years underpermanent grassland and woodland at Rothamsted. Land Use and Management,1986,2:3~10
    [164]王秀珍,黄敬峰,李云梅,等.水稻叶面积指数的多光谱遥感估算模型研究[J].遥感技术与应用,2003,18(2):57~65
    [165]张佳华,符淙斌.利用遥感反演的叶面积指数研究中国东部生态系统对东亚季风的响应[J].自然科学进展,2002,12(10):1098~1100
    [166]唐红玉,肖风劲,张强,等.三江源区植被变化及其对气候变化的响应[J].气候变化研究进展,2006,2(4):177~180
    [167]周光益,曾庆波,黄全,等.热带山地雨林林冠对降雨的影响分析[J].植物生态学报,1995,19(3):201~207
    [168] Harlchi A, Rapp M. Stenlflow determination in forest Stands [J]. For. Ecol. Manage.,1997,97:231~235
    [169]王馨,张一平.西双版纳热带季节雨林与橡胶林林冠的持水能力[J].应用生态学报,2006,17(10):1782~1788
    [170]尹光彩,周国逸,刘景时,等.鼎湖山针阔叶混交林生态系统水文效应研究[J].热带亚热带植物学报,2004,12(3):195~201
    [171] Marin C, Bouten W, Sevink J. Gross rainfall and its partitioning into throughfall, stemflow andevaporation of intercepted water in four forest ecosystems in western Amazonia [J]. JournalHydrology.2000,237:40~57
    [172]程根伟,余新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟[M].2004,99~100
    [173]时忠杰,王彦辉,徐丽宏,等.六盘山主要森林类型枯落物的水文功能[J].北京林业大学学报,2009,31(1):91~99
    [174]余新晓,赵玉涛.张志强,等.长江上游亚高山暗针叶林土壤水分人渗特征研究[J].应用生态学报,2003,14(1):15~19
    [175]漆良华,张旭东,周金星,等.湘西北小流域典型植被恢复群落土壤贮水量与入渗特性[J].林业科学,2007,43(3):1~7
    [176]张志强,王礼先,余新晓,等.渗透坡面林地地表径流运动的有效糙率研究[J].林业科学,2000,36(5):22~27
    [177]周玉成,刘硕,田育新,等.湘西南山地典型植物群落森林土壤渗透性能研究[J].水土保持研究,2007,14(5):255~258
    [178]赵西宁,吴发店.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42~45
    [179] Murray C D, Buttle J M. Infiltration and soil water mixing on forested and harvested slopes duringspring snowmelt, Turkey lakes watershed, centra1Ontario[J]. Journal Hydrology,2005,306:1~20
    [180]张昌顺,范少辉,官凤英,等.闽北毛竹林的土壤渗透性及其影响因子[J].林业科学,2009,45(1):36~42
    [181]程金花,张洪江,史玉虎,等.三峡库区几种林下枯落物的水文作用[J].北京林业大学学报,2003,25(2):8~13
    [182]李酉开.土壤农业化学常规分析方法[M].北京:科学出版社,1983:6~8
    [183]代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究[J].水土保持通报,1998,18(6):8~11
    [184] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science,1982,33:141~163
    [185] Oades J M, Waters A G. Aggregate hierarchy in soils[J]. Australian Journal of Soil Research,1991,29:815~828
    [186]杨玉盛,李振问,俞新妥.杉木油桐仙人草复合经营的土壤结构特性与水分性质的研究.南京林业大学学报,1993,17(3):75~79.
    [187]王景燕,胡庭兴,龚伟,等.川南坡地不同退耕模式对土壤团粒结构分形特征的影响[J].应用生态学报,2010,21(6):1410~1416
    [188] Nimmo J R, Perkins K S. Aggregates stability and size distribution. In: Methods of Soil Analysis, Part4-Physical Methods. Soil Science Society of America, Inc. Madison, Wisconsin, USA,2002:317~328
    [189]周虎,吕贻忠,杨志臣,等.保护性耕作对华北平原土壤团聚体特征的影响[J].中国农业科学2007,40(9):1973~1979
    [190]陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力水平中的意义[J].土壤学报,1994,31(1):18~25.
    [191]胡建忠.黄土高原沟壑区人工沙棘林地土壤抗蚀性研究[J].沙棘,1999,12(1):14~20
    [192]庄家尧,张金池,林杰,等.安徽省大别山区上舍小流域植被根系与土壤抗冲性研究[J].中国水土保持科学,2007,5(6):15~20
    [193]李勇,徐晓琴,朱显谟,等.植物根系与土壤抗冲性[J].水土保持学报,1993,7(3):11~18
    [194]张金池,康立新,卢义山,等.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2):43~47
    [195]朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报,1982,3(1):40~44
    [196]蒋志刚,马克平,韩兴国.保护生物学[M].杭州:浙江科技出版社,1997
    [197]高东,何霞红.生物多样性与生态系统稳定性研究进展[J].生态学杂志,2010,29(12):2507~2513
    [198]廖尔华,张世熔,邓良基,等.丘陵区土壤颗粒的分形维数及其应用[J].四川农业大学学报,2002,20(30):242~245
    [199]贾仁甫,王红.动态经济效果评价指标研究[J].河北职业技术师范学院学报,2000,14(4):63~66
    [200]吕爱霞.夏津县黄泛沙地复合经营型杨树人工林生态经济效益研究[D].山东农业大学硕士论文,2006
    [201] Yoder R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosionlosses [J]. Journal of the American Society of Agronomy,1936,28:337~351
    [202] Zhao S, Su J, Yang Y, et al. A fractal method of estimating soil structure changes under differentvegetations on Ziwuling Mountains of the Loess Plateau, China[J].Agricultural Sciences in China,2006,5(7):530~538
    [203]缪驰远,汪亚峰,魏欣,等.黑土表层土壤颗粒的分形特征[J].应用生态学报,2007,18(9):1987~1993
    [204]梁士楚,董鸣,王伯荪,等.英罗港红树林土壤粒径分布的分形特征[J].应用生态学报,2003,14(1):11~14
    [205]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤微团聚体分形特征研究[J].土壤学报,2007,44(3):571~575
    [206]袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961~2966
    [207]孙波,张桃林,赵其国.我国中亚热带缓丘区红粘土红壤肥力的演化I.物理学肥力的演化[J].土壤学报,1999,36(1):35~47
    [208]杨吉华,李红云,李焕平,等.4种灌木林地根系分布特征及其固持土壤效应的研究[J].水土保持学报,2007,2(3):48~51
    [209]骆仁祥,张春霞,王福升,等.毛竹等3个竹种的根系分布特征及其林地土壤抗冲性比较研究[J].竹子研究汇刊,2009,28(4):23~26
    [210]崔浪军,梁宗锁,韩蕊莲,等.沙棘—杨树混交林生物量、林地土壤特性及其根系分布特征研究[J].林业科学,2003,39(6):1~7
    [211]阿拉木萨,蒋德明,裴铁璠.沙地人工小叶锦鸡儿植被根系分布与土壤水分关系研究[J].水土保持学报,2003,17(3):78~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700