不同管理措施对长江口芦苇群落土壤呼吸及生长、生理的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以碳为基础的温室气体排放对全球气候变化有重要的影响。增加或维持土壤碳的持有能力作为一种碳减排的替代性战略途径正在受到各国政府和科学家的重视。《京都议定书》提出可以通过增加生态系统中的碳库来补偿经济发展中的碳排放。不同管理措施强烈地影响着土壤碳库动态。河口湿地是陆地生态系统碳库的重要组成部分,具有独特的物质循环和能量收支方式,对人为或自然的干扰极为敏感。
     本研究以崇明东滩芦苇群落作为研究对象,跟踪监测了不同管理措施下土壤呼吸、芦苇生长、生理特征及土壤有机碳含量的变化,研究了不同管理措施对土壤呼吸季节动态及芦苇生长和生理特征的影响,分析了土壤呼吸动态变化规律及其控制因子,并结合土壤有机碳含量比较了管理措施对土壤碳持有能力的影响。以期为增加碳汇为目的的湿地管理提供科学依据。
     主要研究结论如下:
     1)土壤呼吸强度表现为:晚期刈割+还田(LMR,0.44±0.054mol·m-2·d-1)>对照(CK,0.39±0.052mol·m-2·d-1)>晚期刈割+不还田(LMNR,0.35±0.051mol·m-2·d-1)>早期刈割+还田(EMR,0.33±0.048mol·m-2·d-1)>早期刈割+不还田(EMNR,0.26±0.036mol·m-2·d-1)。LMR措施显著提高了土壤呼吸强度,也即增加了碳输出;而LEMR、EMNR、EMNR措施均不同程度的降低了土壤呼吸强度,即减少了碳输出;还田时土壤呼吸强度高于不还田(EMR>EMNR,LMR>LMNR,p<0.05),晚期刈割时土壤呼吸强度高于早期刈割(LMR>EMR,LMNR>EMNR,p<0.05)。
     2)土壤表层(5cm)温度和含水量能够很好地解释土壤呼吸的变化。单因子拟合结果表明土壤表层温度可以解释土壤呼吸变化的70.2%-87.3%,土壤表层含水量可以解释土壤呼吸变化的64.2%,而双因子拟合表明可以解释90%以上的土壤呼吸变化。
     3)土壤呼吸的季节变化与土壤表层(5cm)温度变化趋势一致,在2009年全年呈单峰曲线,均在8-9月份达到呼吸最大值,1-2月份达到呼吸最小值。对生长季和非生长季的土壤呼吸与表层土壤温度、含水量的分析显示,在植物的生长季表层土壤含水量是影响土壤呼吸的关键因子,而在植物的非生长季表层土壤温度是影响土壤呼吸的关键因子。
     4)在生长初期(4-5月份),管理措施均降低了芦苇株高,增加了基径,但单株生物量和叶面积差异不显著。生长后期,EMR措施增加了芦苇的株高和叶面积,但是总鲜重、总干重降低,基径无显著差异;EMNR措施增加了芦苇的株高、叶面积、总鲜重、总干重,基径无显著差异。管理措施对芦苇底面积的影响不显著,但均使芦苇顶叶面积显著增加。株高/基径×10-2这一指标揭示了管理措施可能造成芦苇的径向生长和横向生长的不协调。
     5)管理措施对光合生理特征的影响不同。还田促进光合生理进程,光合-光响应(Pn-PAR)曲线上调,表现出正效应,不还田则抑制芦苇的光合生理活动,Pn-PAR曲线下移。对光合参数的研究表明,管理措施导致最大净光合速率(Pmax)和光饱和点(LSP)下降。还田时,暗呼吸速率(Rd)和光补偿点(LCP)显著降低;不还田时,Rd和LCP显著增加。同时,管理措施均显著降低了植株气孔导度(Gs)和蒸腾速率(Tr),但增加了胞间C02浓度(Ci)以及水分利用效率(WUE)。
     6)不同管理措施导致土壤容重有一定程度的下降,表明管理措施对土壤结构有一定的改善作用。土壤有机碳含量及有机碳储量的变化趋势一致,均表现为EMR>LMR>CK>LMNR>EMNR,这说明不同管理措施可以显著地影响土壤有机碳的积累和分解,EMR、LMR措施可提高土壤有机碳含量,LMNR、EMNR显著降低土壤有机碳含量。
     7)通过土壤呼吸和土壤有机碳含量的差异性比较发现:EMR措施可以增加土壤的碳持有能力,EMNR、LMNR措施可以维持土壤的碳持有能力,而LMR措施效果不佳。
The influences of carbon-based greenhouse gas emissions on global climate change have caused numerous attentions. Increasing or maintaining soil carbon holding capacity as carbon emissions reduction alternative strategic approaches is subject to the attentions of governments and scientists. The Kyoto Protocol proposed that we can increase carbon pools in ecosystem to compensate carbon emissions resulted from economic development. Different management practices have strong influences on the dynamics of soil carbon. Estuarine wetland, which has unique material circulation and energy budget, is an important part of terrestrial ecosystem carbon pools. It is extremely sensitive to human or natural disturbances.
     Phragmites community, which is typical vegetation in east Beach of Chongming Island, was taken as the research object. Mowing and straw returning of Phragmites, two main normal management practices in Phragmites production and wetland ecosystem, were carried out in the end of2008. Measurements of soil respiration、soil surface(0-5cm depth) temperature and humidity,together with growth and physiological characteristics and soil organic carbon content was conducted during the year of2009.The effects of management practices on soil respiration dynamics and related control factors were studied. At the same time, responses of growth and physiological characteristics of Phragmites to different management practices were also discussed. Futhermore, connecting with soil organic carbon content, the influences of different management practices on soil carbon holding capacity were compared. This study has great reference value for the management of wetlands with purpose of increasing soil carbon sequestration.
     The major results are summarized as follows:
     1)Under different management practices, annual average soil respiration showed that:late mowing+straw returning (LMR,0.44±0.054mol·m-2·-d-1)>control samples (CK,0.39±0.052mol·m-2·d-1)>late mowing+no straw returning(LMNR,O.35±0.051mol·m-2·d-1)> early mowing+straw returning (EMR,0.33±0.048mol·m-2·d-1)> early mowing+no straw returning (EMNR,0.26±0.036mol·m-2·d-1).LMR increased soil respiration significantly, suggesting that increased soil carbon emission; however, LMNR,EMR,EMNR reduced soil respiration to varying degree, suggesting that reduced soil carbon emission; soil respiration under management of straw returning is higher than that of no straw returning(EMR>EMNR, LMR>LMNR, p<0.05), soil respiration under management of late mowing is higher than that of early mowing (LMR>EMR, LMNR>EMNR, p<0.05).
     2) The soil surface temperature and water content can explain changes of soil respiration well. Single factor fitting results showed that soil surface (5cm) temperature can explain70.2%-87.3%of soil respiration variation, soil surface (5cm) water content can explain64.2%of soil respiration variation, two-factors fitting results can explain more than90%of soil respiration variation.
     3) Seasonal variation patterns of soil respiration and soil surface (5cm) temperature are consistent, showed a single-peak curve in the year of2009, maximum of respiration was achieved during August-September, minimum of respiration was achieved during January-February. Respective analysis of soil respiration and soil surface (5cm) temperature、soil surface (5cm) water content during growing season and non-growing season indicated that:during growing-season, soil surface (5cm) water content is the dominant factor that affecting soil respiration; during non-growing season, soil surface (5cm) temperature is the dominant factor that affecting soil respiration.
     4) In the initial growth period (April and May), management practices reduced plant height and increased stem diameter significantly, however, differences of individual biomass and leaf area were not significant. During late growth stage, EMR increased plant height and leaf area, but reduced total fresh weight and total dry weight, stem diameter had no significant difference; EMNR increased plant height, leaf area, total fresh weight and total dry weight. Stem diameter had no significant difference. The area of bottom leave did not change remarkably, but the area of top leave increased significantly. The indicator that height/diameter×10-2indicated that management practices may result in uncoordinated between radial-growth and cross-growth of Phragmites.
     5) Responses of photosynthetic physiological characteristics of Phragmites to management practices were different. Straw-returning could promote photosynthetic physiological processes:the net photosynthetic rate-light intensity (Pn-PAR) curves moved upward, showing positive effects; no straw-returning restrain photosynthetic physiological activities with Pn-PAR curves jumping down. Study on photosynthetic parameters showed that management practices reduced maximum photosynthetic rate (Pmax) and light saturation point (LSP). Under the management of straw returning, dark respiration rate (Rd), light compensation point (LCP) reduced significantly; under the management of no straw returning, Rd and LCP increased significantly. All management practices in this research reduced stomatal conductance (Gs) and transpiration rate (Tr) significantly, whereas increased intercellular CO2concentration (Ci) and water use efficiency (WUE).
     6) Management practices lead to soil bulk density to a certain degree, indicating that management practices could improve soil physical structure. Changes of soil organic carbon content and organic carbon storage were consistent, presented as follows:EMR>LMR>CK>LMNR>EMNR, which suggest that management practices could affect accumulation and decomposition of soil organic carbon significantly. EMR and LMR could increase soil organic carbon content significantly, LMNR and EMNR could reduced soil organic carbon content significantly.
     7) Combining analysis of soil respiration and soil organic carbon, we can infer that:EMR could increase soil carbon holding capacity, EMNR and LMNR could maintain soil carbon holding capacity, effect of LMR on soil carbon holding capacity was unsatisfactory.
引文
[1]Baldoeehi D.2003. Assessing the eddy covariance exchange rates of ecosystems: Past, Present [J]. Agricultural and Forest Meteorology,9:479-492.
    [2]Bassman J H, Zwier J C.1991. Gas exchange characteristics of Populus trichoc-arpa, Populus deltoids and Populus trichocarpa × P.Deltoids clones [J].Tree Physiology,1 (5):145-159.
    [3]Bouwmann A F, Germon J C.1998.Special issue:Soils and climate change: introduction [J]. Biology and Fertility of Soils,27:219.
    [4]Buyanovsky G A.1986. Soil respiration in a winter wheat ecosystem [J]. Soil Science Society of America Journal,50:338-344.
    [5]Canadell J G.2002.Land use effects on terrestrial carbon sources and sinks [J]. Science in China (Series C),45(Suppl.):1-9.
    [6]Chabreck R H.1976. Management of wetlands for wildlife habitat improvement [M]. In:Estuarine Processes (ed. WileyM), Academic Press, New York:226-233.
    [7]Chiara Bertora, Laura Zavattaro, Dario Saceo, Stefano Monaco, Carlo Grignani. 2009. Soil organic matter dynamics and losses in manured maize-based forage-systems [J].European Journal of Agronomy,30:177-186.
    [8]Clark D L, Wilson M V.2001.Fire, mowing and hand-removal of woody species in restoring a native wetland prairie in the Willamette Valley of Oregon [J]. Wetlands,21:135-144.
    [9]Cowie N R, Sutherland W J, Ditlhogo M K, James R.1992.The effects of conservation management of reed beds. Ⅱ.The flora and litter disappearance [J]. Journal of Applied Ecology,29:277-284.
    [10]Davidson E A, Belk E, Boone R D.1998.Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J],Global Change Biology,4:212-227.
    [11]Fang C M, Moncrieff J B.1998. An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2 flux measurement [J]. Functional Ecology,12(2):319-325.
    [12]Fang C, Moncrieff J B.2001. The dependence of Soil CO2 efflux on temperature [J]. Soil Biology and Biochemistry,33:155-165.
    [13]Farquhar G D, Sharkey T D.1982. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology,33:317-345.
    [14]Frank A B.2002.Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains [J]. Environment Pollution,116:397-403.
    [15]Freeman J, Valerie A O.2008.Relationships between soil respiration and soil moisture [J]. Soil Biology and Biochemistry,40:1013-1018.
    [16]Gajri P R, Arora V K, Chaudhary M R.1994.Maize growth response to deep tillage, straw mulching and farmyard manure in coarse textured soils of NW India [J]. Soil Use Manage,10:15-20.
    [17]Goulden M L, Munger J W, Fan S M.1996. Measurements of carbon sequestration by Long-term eddy covariance:methods and a critical evaluation of accuracy [J]. Global Change Biology,2(3):169-182.
    [18]Grogan P, Jonasson S.2006. Ecosystem CO2 production during winter in a Swedish subarctic region:The relative importance of climate and vegetation type [J]. Global Change Biology,12:1479-1495.
    [19]Guntinas M E, Gilsoters F, Leiros M C, Trasar-Cepeda C.2009. CO2 emission from soils under different uses and flooding conditions [J]. Soil Biology & Biochemistry,41:2598-2601.
    [20]Houghton R A, Hackler J L.2003. Sources and sinks of carbon from land-use change in China [J]. Global Biogeochemical Cycles,17(2):1034-1053.
    [21]IPCC.2001. Climate change 2001:the science of climate[R]. Cambridge: Cambridge University Press.
    [22]Janssens I A, Ceulemans R.1998. Spatial variability in forest floor CO2 efflux assessed with a calibrated soda lime technique [J]. Ecology Letters,1(2):95-98.
    [23]Janssens I A, Kowalski A S, Ceulemans R.2001. Forest floor CO2 flux estimated by eddy covariance and chamber-based model [J]. Agricultural and Forest Meteorology,106(1):61-69.
    [24]Johnson-Randall L A, Foote A L.2005. Effects of managed impoundments and herbivory on wetland plant production and stand structure [J]. Wetlands,25: 38-50.
    [25]Johnston C A, Groffman P, Breshears D D.2004.Carbon cycling in soil [J]. Frontiers in Ecology and the Environment,2(10):522-528.
    [26]Keith H, Jacobsen K L, Raison R J.1997.Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus Pauciflora forest [J].Plant and Soil,190:127-141.
    [27]Lal R.2004. Offsetting China's CO2 emissions by soil carbon sequestration [J]. Climatic Change,65:263-275.
    [28]Liu S.2002. International research on environmental and ecological consequence of land use and cover change [J]. World Forestry Research,15(6):38-45.
    [29]Liu S P, Nie X T, Dai Q G, Huo Z Y, Xu K.2007. Effect of interplanting with zero tillage and straw manure on rice growth and rice quality [J].Rice Science, 14(3):204-210.
    [30]Marland G, Andres R J, Boden T A, et al. Global, Regional, and National CO2 Emission Estimates from Fossil Fuel Burning, Cement Production and Gasflaring:1751-2005[AO/BO]. Carbon Dioxide Information Analysis Center, Oak Ridge National Laborary, Oak Ridge, Tennessee,U.S.A. http://cdiac.ornl.gov/trends/emis/overview.html
    [31]Marland G, Rotty R M.1984. Carbon dioxide emissions from fossil fuels:a procedure for estimation and results for 1950-1982[J]. Tellus,36B:232-261.
    [32]Marland G, West T O, Schlamasinger B, Canella L.2003. Managing soil organic carbon in agriculture:the net effect on greenhouse gas emissions [J]. Tellus,55B: 613-621.
    [33]McLean A, Wikeam S.1985.Rough fescue response to season and intensity of defoliation [J].Journal of Range Management,38:100-103.
    [34]Mielnick P C, Dugas W A.2000. Soil CO2 flux in a tall grass prairie [J]. Soil Biology and Biochemistry,32(2000):221-228.
    [35]Nakane K, Tsubota H, Yamamoto M.1984. Cycling of soil carbon in a Japanese red pine forest I.Before a clearfelling[J].Journal of Plant Research,91(1)39-60.
    [36]Nie J, Zhou J M, Wang H Y, Chen X Q, Du C W.2007.Effect of long term rice straw return on soil glomalin, carbon and nitrogen [J].Pedosphere,17 (3):295-302.
    [37]Oberbauer S F, Gillespie C T, Cheng W, Gebauer R, Sala Serra A, Tenhunen J D. 1992. Environmental-effects on CO2 efflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, USA [J]. Oecologia,92 (4):568-577.
    [38]Ostendorp W.1995.Effect of management on the mechanical stability of lakeside reeds in Lake onstance-Untersee [J].Acta Oecologica-International Journal of Ecology,16:277-294.
    [39]Ostendorp W.1999. Management impacts on stand structure of lakeshore Phragmites reeds [J]. International Review of Hydrobiology,84:33-47.
    [40]Piao S L, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S, Wang T.2009.The carbon balance of terrestrial ecosystems in China [J]. Nature,458:1009-1013.
    [41]Pielke R A.2005. Land use and climate change [J]. Science,310(5754):1625-1 626.
    [42]Post W M, Emanuel W R, Zinke P J, Stangenbenberger A G.1982.Soil carbon pools and world life zones [J].Nature,298:156-159.
    [43]Raich J W, Schlesinger W H.1992. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus Series B-Chemical and Physical Meteorology,44(2):81-99.
    [44]Raich JW, Tufekcioglu A.2000.Vegetation and soil respiration:correlations and controls [J]. Biogeochemistry,48(1):71-90.
    [45]Richard D B, Eric D, Kathleen S.2004. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard forest [J]. Forest Ecology and Management,196:43-56.
    [46]Russel E J,Appleyard A.1915.The atmosphere of the soil,its composition and the causes of variation[J] Journal of Agricultural Science,7:1-48.
    [47]Russell C A, Voroney R P.1998. Carbon dioxide efflux from the floor of a boreal aspen forest. I. Relationship to environmental variables and estimates of C respired [J]. Canadian Journal of Soil Science,78:301-310.
    [48]Schimel D S.1995. Terrestrial ecosystem and carbon-cycle [J]. Global Change Biology,1:77-99.
    [49]Schlesinger W H.1995. An overview of the C cycle in soils and global change [M]. Florida Raton:CRC Press:9-26.
    [50]Schlesinger W H.1990. Evidence from chronosequence studies for a low carbon-storage potential of soils [J]. Nature,348:232-234.
    [51]Schmalzer P A, Hinkle C R.1992.Soil dynamics following fire in Juncus and Spartina marshes [J]. Wetlands,12,8-21.
    [52]Shao J G, Wei C F, Xie D T.2008.Effects of land management practices on soil water in southwestern mountainous area, China [J].Agricultural Sciences in China,7(7):871-886.
    [53]Sikora L J, McCoy J L.1990.Attempts to determine available carbon in soils [J]. Biology and Fertility of Soils,9:19-24.
    [54]Sims P L, Bradford J A.2001. Carbon dioxide fluxes in a southern plains prairie [J]. Agricultural and Forest Meteorology,109:117-134.
    [55]Smith P, Martino D, Cai Z C, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, TowPrayoon S, Wattenbach M, Smith J. 2008.Greenhouse gas mitigation in agriculture [J]. Philosophical Transactions of the Royal Society,363:789-813.
    [56]Sparling G P, Shepherd T G, Kettles H A.1992. Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping, and after restoration to pasture in soils from the Manawatu region, New Zealand [J]. Soil and Tillage Research,24:225-241.
    [57]Staddon P L, Ramsey C B, Ostle N, Ineson P, Fitter AH.2003.Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C[J]. Science, 300(5 622):1138-1146.
    [58]Susane T, Jill L B, Jennifer W H.1999.Carbon cycling in boreal wetlands:A comparison of three approaches [J].Journal of Geophysical Research,104(22):27 673-27682.
    [59]Tang X L, Zhou G Y, Liu S G, Zhang D Q, Liu S Z, Li J, Zhou C Y.2006. Dependence of soil respiration on soil temperature and soil moisture in successional forests in southern China [J]. Journal of Integrative Plant Biology, 48(6):654-663.
    [60]Vanden Bygaart A J, Gregorich E G, Angers D A, Stoklas U F.2004.Uncertainty analysis of soil organic carbon stock change in Canadian cropland from 1991 to 2001 [J]. Global Change Biology,10:983-994.
    [61]Verville J H, Hobbie S E, Chapin F S, Hooper D U.1998. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation [J]. Biogeochemistry,41:215-235.
    [62]Virzo D S, Alfane A, Sapio S.1976. Soil metabolism in Beech Forests of Monte Taburno (Campania Apennines) [J]. Copenhagen,27:144-152.
    [63]Wagai R, Brye K R, Gower S T, Norman J M, Bundy L G.1998. Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin [J]. Soil Biology and Biochemistry,30(12):1501-1509.
    [64]Wang K Y, Kellomaki S, Li C, Zha T.2003.Light and water use efficiencies of Scots pine shoots exposed to elevlated carbon dioxide and temperature[J].Annals of Botany,92:53-64.
    [65]Wang K Y, Zha T, Kellomaki S.2002. Measuring and simulating crown respiration of Scots pine with increased temperature and carbon dioxide enrichm-ent [J]. Annals of Botany,90:325-335.
    [66]Watkinson A R.1980.Density dependence in single-species populations of plants [J]. Journal of Theoretical Biology,83:345-357.
    [67]Wildung R E, Garland T R, Buschbom R L.1975. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils [J].Soil Biology and Biochemistry,7:373-378.
    [68]Wilson G V, GregorMc K C, Boykin D.2008. Residue impacts on run of and soil erosion for different corn plant populations [J].Soil and Tillage Research,99: 300-307.
    [69]Yakir D, Wang X F.1996.Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements [J]. Nature,1996,380 (6574):515-517.
    [70]Yu Y, Guo Z, Wu H, Kahmann J A, Oldfield F.2009.Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000[J]. Global Biogeochemical Cycles,23, GB2021.
    [71]Zha T, Wang K Y, Ismo R.2004. Carbon sequestration and ecosystem respiration for 2 years in a pine forest [J]. Global Change Biology,10:1492-1503.
    [72]Leuning R.1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants [J]. Plant, Cell and Environment,18:339-355.
    [73]Angell R F.1983. Winter diet composition and quality and performance of cattle grazing burned and unburned gulf Cordgrass range land [D]. America:Texas A &M University, College Station, Biochemistry,32:221-228.
    [74]Chabreck R H.1981. Effect of burn date on regrowth rate of Scirpus olneyi and Spartina patens. Proceedings of the Annual Conference Southeastern Associations of Game and Fish Agencies,35:201-210.
    [75]Mohammad S, Jehan B, Mohammad T J,Shah Z.2007.Soil C and N dynamics and maize(Zea may L.)yield as affected by cropping systems and residue management in North-western Pakistan [J].Soil and Tillage Research,94(2007):520-529.
    [76]Swinbank W C.1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere [J]. Journal of Atmospheric Science, 8:135-145.
    [77]安艳飞,周本智,温从辉,王刚.2009.不同经营方式对绿竹地下结构和林分生物量的影响[J].林业科学研究,22(1):1-6.
    [78]陈宝玉,刘世荣,葛剑平,王辉,常建国,孙甜甜,马姜明,施恭.2007.川西亚高山针叶林土壤呼吸速率与不同土层温度的关系[J].应用生态学报,18(6):1 219-1224.
    [79]陈广生,田汉勤.2007.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报,31(2):189-204.
    [80]陈泮勤.2004.地球系统碳循环[M].北京:科学出版社,121-123.
    [81]陈全胜,李凌浩,韩兴国,阎志丹.2003.水分对土壤呼吸的影响及机理[J].生态学报,23(5):972-978.
    [82]陈述悦,李俊,陆佩玲.2004.华北平原麦田土壤呼吸特征[J].应用生态学报,15(9):1552-1560.
    [83]陈素英,胡春胜.1997.太行山前平原农田生态系统土壤呼吸速率的研究[J].生 态农业研究[J].生态农业研究,5(2):42-46.
    [84]陈阅增.1997.普通生物学-生命科学通论[M].北京:高等教育出版社,149-153.
    [85]丁正亮,缪为文.2011.秸秆直接还田效应分析[J].现代农业科技,9:296-299.
    [86]杜新艳,杨路华,脱云飞,高惠嫣,张振伟.2006.秸秆覆盖对夏玉米农田水分状况、土壤温度及生长发育的影响[J].南北水调与水利科技,4(2):24-26.
    [87]段晓男,王效科,逯非,欧阳志云.2008.中国湿地生态系统固碳现状和潜力[J].生态学报,28(2):463-469.
    [88]房秋兰,沙丽清.2006.西双版纳热带季节雨林与橡胶林土壤呼吸[J].植物生态学报,30(1):97-103.
    [89]高飞,贾志宽,路文涛,韩清芳,杨宝平,侯贤清.2011.秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响[J].生态学报,31(3):777-783.
    [90]巩杰,黄高宝,陈利顶,傅伯杰.2003.旱作麦田秸秆覆盖的生态综合效应研究[J].干旱地区农业研究,21(3):69-73.
    [91]郭长城,胡洪营,李锋民,下橘雅樹,迫田章羲.2009.湿地植物香蒲体内氮磷含量的季节变化及适宜收割期[J].生态环境学报,18(3):1020-1025.
    [92]贾丙瑞,周广胜,王风玉.2005.土壤微生物与根系呼吸作用影响因子分析[J].生态学报,16(8):1547-1552.
    [93]贾庆宇,周莉,谢艳冰,周广胜.2006.盘锦湿地芦苇群落生物量动态特征研究[J],气象与环境学报,22(4):25-29.
    [94]李博.2001.植物竞争-作物与杂草相互作用的实验研究[M].北京:高等教育出版社,9-12.
    [95]李琳,张海林,陈阜,李素娟.2007.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系[J].应用生态学报,18(12):2765-2770.
    [96]李兆富,吕宪国,杨青.2002.湿地土壤CO2通量研究进展[J],生态学杂志,21(6):47-50.
    [97]林洁荣.2005.刈割强度对闽牧42饲用杂交甘蔗的影响[J].福建农林大学学报(自然科学版),34:514-517.
    [98]刘绍辉,方精云.1997.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,117(5):469-476.
    [99]鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社,106-108.
    [100]路文涛,贾志宽,高飞,李永平,侯贤清.2011.秸秆还田对宁南旱作农田土壤 水分及作物生产力的影响[J].农业环境科学学报,30(1):93-99.
    [101]吕国红,周广胜,周莉.2006.盘锦湿地芦苇群落土壤碱解氮及溶解性有机碳季节动态[J].气象与环境学报,22(4):59-63.
    [102]骆亦其,周旭辉,著.姜丽芬,曲来叶,周玉梅,温逸馨,译.2006.土壤呼吸与环境[M].北京:高等教育出版社.
    [103]梅雪英,张修峰.2008.长江口典型湿地植被储碳、固碳功能研究[J].中国生态农业学报,16(2):269-272.
    [104]孟凡乔,关桂红,张庆忠,史雅娟,屈波,况星.2006.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J].环境科学学报,26(6):992-999.
    [105]牟守国.2004.温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究[J].土壤学报,41(4):564-570.
    [106]任文玲,侯颖,杨淑慧,仲启铖,王开运.2011.崇明岛新围垦区不同土地利用条件下的土壤呼吸研究[J].生态环境学报,20(1):97-101.
    [107]邵美红,孙加炎,阮关海.2011.稻田温室气体排放与减排研究综述[J].浙江农业学报,2011,23(1):181-187.
    [108]施积炎,袁小凤,丁贵杰.2000.作物水分亏缺补偿与超补偿效应的研究现状[J].山地农业生物学报,19:226-233.
    [109]石冰.2010.崇明东滩围垦湿地芦苇生长和繁殖对大气温度升高的响应[D].上海:华东师范大学资源与环境科学学院环境科学系.
    [110]宋长春,王毅勇,王跃思,赵志春.2006.人类活动影响下淡水沼泽湿地温室气体排放变化[J].地理科学,26(1):82-86.
    [111]孙轶,魏晶,吴钢,赵景柱.2005.长白山高山冻原土壤呼吸及影响因子分析[J].生态学杂志,24(6):603-606.
    [112]汪青.2006.崇明东滩湿地生态系统温室气体排放及机制研究[D].上海:华东师范大学资源与环境科学学院地理系.
    [113]王鼎国,王志英.2006.麦秸还田形式对土壤肥力及春小麦产量的影响[J].甘肃农业科技,9:7-9.
    [114]王开运.2007.生态承载力复合模型系统与应用[M].北京:科学出版社,278.
    [115]王立刚,邱建军,李维炯.2002.黄淮海平原大区夏玉米农田土壤呼吸的动态研究[J].土壤肥料.6:13-17.
    [116]王平.华北低丘山地不同土地利用方式土壤呼吸差异及其影响因素.2011. 河北农业大学.
    [117]王小彬,武雪萍,赵全胜,邓祥征,蔡典雄.2011.中国农业土地利用管理对土壤固碳减排潜力的影响[J].中国农业科学,44(11):2284-2293.
    [118]王迎红.2005.陆地生态系统温室气体排放观测方法研究、应用及结果比对分析.北京:中国科学院大气物理研究所,博士学位论文.
    [119]王智晨,张亦默,潘晓云.2006.冬季火烧与收割对互花米草地上部分生长与繁殖的影响[J].生物多样性,14(4):275-283.
    [120]温学发,孙晓敏,刘允芳,等.2007.线性和指数回归方法对土壤呼吸C02扩散速率估算的影响[J].植物生态学报,31(3):380-385.
    [121]吴瑾,吴克宁,赵华甫,高硕.2010.土壤有机碳储量估算方法及土地利用调控措施研究进展[J].中国土地科学,24(10):18-24.
    [122]吴志丹,李跃森,王义祥,翁伯琦.2008.经营措施对土壤碳储量和碳通量的影响[J].热带农业科学,28(1):84-91.
    [123]徐世晓,赵亮,赵新全,李英年,古松.2006.青藏高原高寒灌丛非生长季节C02通量特征[J].西北植物学报.26(12):2528-2532.
    [124]许大全.2002.光合作用效率[M].上海:科学技术出版社.
    [125]许新新,李长慧,张静.2007.不同收割期紫花苜蓿产草量与粗蛋白质营养动态分析[J].安徽农业科学,35(18):5460,5534。
    [126]闫明,潘根兴,李恋卿,邹建文.2010.中国芦苇湿地生态系统固碳潜力探讨[J].中国农学通报,26(18):320-323.
    [127]严燕儿.2009.基于遥感模型和地面监测的河口湿地碳通量研究[D].上海:复旦大学生命科学学院.
    [128]姚宝林,施炯林.2008.秸秆覆盖免耕条件下土壤温度动态变化研究[J].安徽农业科学.36(3):1128-1129,1132.
    [129]尹华军,赖挺,程新颖,蒋先敏,刘庆.2008.增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响[J].植物生态学报,32(5):1072-1083.
    [130]于贵瑞,李轩然.2009.中国陆地生态系统管理将持续发挥重要碳汇作用[J].科学时报,2009-12-21.
    [131]于贵瑞,孙晓敏.2008.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,316.
    [132]于贵瑞,孙晓敏.2006.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,402.
    [133]余淑文.1992.植物生理学和分子生物学[M].北京:科学出版社,236-243.
    [134]原保忠,赵松岭,孙颉.2000.苗期刈割伤害对春小麦影响的盆栽实验研究[J].应用生态学报,11:83-86.
    [135]张冬秋,石培礼,张宪洲.2005.土壤呼吸主要影响因素的研究进展[J].地球科学进展,20(7):778-785,
    [136]张容娟,布乃顺,崔军,方长明.2010.土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响[J].生态学报,30(24):6698-6706.
    [137]赵广琦,张利权,梁霞.2005.芦苇与入侵植物互花米草的光合特性比较[J].生态学报,25(7):1604-1611.
    [138]周正朝,上官周平.2005.人为干扰下子午岭次生林土壤生态因子动态变化[J].应用生态学报,16(9):1586-1590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700