用户名: 密码: 验证码:
基于数字全息技术的粒子场粒度测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子、化工、机械、冶金、制药、环境保护等工业和科学技术的发展,人们经常需要精确测量一些微粒的尺寸和形状,粒子粒度的测量对工农业生产、环保、国防和人类健康有重要意义。在需要对微粒进行粒度测量的许多领域中,有多种可供选择的粒度测量方法。近年来,随着高分辨率CCD及计算机技术的高速发展,数字同轴全息技术因其能够实现三维粒子场的动态测量和细节信息获取,成为粒度测量方法的一个研究热点。本文围绕粒子场粒度测量,在粒子场数字同轴全息的数字记录和再现、提高再现像质量和粒子场再现像的图像分析这三方面开展研究,具体做了如下的研究工作。
     首先从光衍射理论出发,系统分析了数字全息记录和再现的数学描述,研究比较了菲涅耳变换法、卷积法这两种常用的数字全息再现算法。详细推导了数字全息再现的小波变换再现算法,对卷积算法和小波变换算法进行了仿真实验和比较。对粒子场数字同轴全息的平面波记录系统和球面波记录系统进行了理论分析,建立了粒子场测量光路系统和测量模型。
     其次,针对粒子场数字全息再现像质量的提高,研究了小波阈值降噪的理论基础,建立了再现像散斑噪声模型。基于边缘检测的小波阈值散斑噪声去除思路,提出了两种具体的散斑噪声去除算法。第一种算法中对小波变换模极大值边缘检测算法进行了改进,提出了一种双阈值基础上的自适应阈值算法实现更精确的边缘检测,并将改进的小波模极大值边缘检测算法和基于Neyman-Pearson准则的小波阈值去噪应用到数字全息再现像散斑噪声抑制中。第二种算法中对小波阈值函数进行了改进,提出了一种折中阈值函数,该阈值函数既保证了重构图像的平滑性,又能更好地突出图像局部特征的性质,并将改进的折中阈值函数应用到数字全息再现像散斑噪声抑制中。实验结果表明,两种方法在消除数字全息再现像的散斑噪声同时,较好地保持了图像边缘,提高了再现像质量。
     最后,在基于典型全息图分析方法研究的基础上,采用全息图再现像分析方法对粒子场粒度进行测量。系统研究了数字同轴全息成像系统的点扩散函数,对粒子图像直径与真实直径之间的关系进行了理论分析。提出了一套数字图像处理方法从粒子场再现像中获得粒子空间位置、粒度信息。对粒子场全息再现像分析中的粒子提取和粒子定位这两个关键问题进行了研究,采用边缘检测方法实现粒子与背景分离的粒子提取方法;并提出了一种基于小波变换模值平均值的粒子定位算法,从变换域的角度进行粒子聚焦判别,实现粒子精确定位。研究了链码技术和区域目标面积计算方法,采用基于Freeman8-链码的区域面积计算方法进行粒度计算,以提高粒度计算效率和精度。最后利用本文提出的图像处理方法对标准粒子场进行了实验测量,实验结果证明了该图像分析处理方法的可行性。
With the development of science and technology in electronics, chemicals,machinery, metallurgy, pharmaceuticals and environmental protection, the accuratemeasurement of the particle size and shape is needed. The particle size measurement isvery important to the industrial and agricultural production, the environmental protection,national defense and human health significance. In many particle size measurement areas,there are many measurement methods to choice. In recent years, with the rapiddevelopment of the high-resolution CCD and computer technology, the digital in-lineholographic particle size measurement method has become a hot research focus becauseit can realize dynamic measurement and get details information of the three-dimensionalparticle field. This paper carries out research about the particle size measurement in threeaspects. It is the recording and reconstruction of particle field digital in-line holographic,the quality improving of reconstruction image and the analysis of particle fieldreconstruction image. The main research works of the thesis are as follows:
     First of all, based on the optical diffraction theory of light, the mathematicaldescription of digital holographic recording and reconstruction is analyzed. And thedigital holographic reconstruction algorithm of the Fresnel transform method is comparedwith the convolution method. The wavelet transform reconstruction algorithm of digitalholographic is detailed derived, and the simulation experiments and the comparing aredone to the convolution algorithm and the wavelet transform algorithm. The digitalin-line holographic recording system theory of plane wave and spherical wave of theparticle field are analyzed. And the particle field measurement optical system andmeasurement model are established.
     Secondly, in order to improve the particle field digital holography reconstructionimage quality, the theoretical basis of the wavelet threshold denoising is studied, anddigital holography speckle noise model is established. And two specific speckle noiseremoval algorithms based on the ideas of edge detection and wavelet transformthresholding noise removal are put forward. In the first method, the wavelet modulus maxima edge detection algorithm is improved, and the adaptive threshold based on a dualthreshold algorithm is proposed to achieve more accurate edge detection. The improvedalgorithm and wavelet threshold denoising based on the Neyman-Pearson criterion areapplied to suppress the speckle noise of digital holographic reconstruction images. In thesecond method, the wavelet threshold function is improved. A compromise thresholdfunction is proposed, and the threshold function can both ensure the smoothness of thereconstructed image, and better highlight the local features of the image. And theimproved compromise threshold function is applied to digital holographic reconstructedimages speckle noise suppression. Experimental results show that the two methods cansuppress digital holography speckle noise and keep better the edge of the imagesimultaneously, and the reconstructed image quality is improved.
     Finally, the hologram reconstruction image analysis method is used to measure theparticle size of the particle field. The point spread function of the digital the in-lineholographic imaging system is systematical studied, and the relationship between theparticle image diameter and the true diameter is theoretical analyzed. A set of digitalimage processing method is proposed to obtain the particle spatial location and particlesize from the reconstructed images. The two key issues of particle extraction and particlepositioning are studied, and the edge detection method is used to separating the particlesfrom the background. And a particle positioning algorithm based on wavelet transformmodulus average value is proposed, the positioning algorithm distinguishes particle focusplane in the transform domain and can achieve precise particle positioning. The chaincode technology and regional target area calculation method are studied, and the Freeman8-chain code target area calculation method is used to calculate the particle size toimprove the efficiency and accuracy of particle size computing. Finally, the imageprocessing method is used in the experimental measurement of the standard particles, andthe experimental results demonstrate the feasibility of the image analysis and processingmethod.
引文
[1]王乃宁,虞先煌.基于米氏散射及夫朗和费衍射的FAM激光测粒仪[J].粉体技术,1996,2(1):1-6.
    [2] Merkus H G. Particle Size Measurements[M]. Springer,2009:299-317.
    [3] Gabor D. A New Microscopic Principle[J]. Nature,1948,161:777-778.
    [4] Goodman J W, Lwrence R W. Digital Image Formulation from Electronically DetectedHolograms[J]. Appl Phys Lett,1967,11(3):77-79.
    [5] Huang T S. Digital Holography[C]. Proc of IEEE,1971,59(9):1335-1346.
    [6] Yaroslavski L P, Kronorod M A, Merzlyakov N S. Reconstruction of Holograms with aComputer[J], Sov Phys Technol Phys,1972,17(4):333-334.
    [7] Onural L, Scot R D. Digital Decoding of In-line holograms[J]. Opt Eng,1987,26(11):1125-1132.
    [8] Haddad W S, Cullen D, Solem J C, et a1. Fourier-transform Holographic Microscope[J]. Applopt,1992,31(24):4973-4978.
    [9] Schnars U, Jilptner W J O. Direct Recording of Holograms by a CCD Target and NumericalReconstruction[J]. Appl opt,1994,33(2):179-18l.
    [10] Yamaguchi I, Zhang T. Phase-shifiting Digital Holography[J]. Opt Lett,1997,22(16):1261-1270.
    [11] Kreis T M, Adams M, Jilptner W J O. Methods of Digihal Holography: A Comparison[C]. Procof SPIE.1997,3098:224-233.
    [12] Kreis T M, Jfipmer W. Suppression of the Dc Term in Digital Holography[J]. Opt Eng,1997,36(8):2357-2360.
    [13] Cuche E, Marquet P, Depeursinge C. Simultaneous Amplitude-contrast and QuantitativePhase-contrast Microscopy by Numerical Reconstruction of Fresnel Off-axis Holograms[J].Appl Opt,1999,38(34):6994-7001.
    [14] Cuche E, Bevilacqua F, Depeursinge C. Digital Holography for Quantitative Phase-contrastImaging[J]. Opt Lett,1999,24(5):291-293.
    [15] Cuche E, Marquet P, Depeursinge C. Spatial Filtering for Zeroorder and Twin-imageElimination in Digital Off-axis Holography[J]. Appl Opt,2000,39(23):4070-4075.
    [16] Zhang F, G Pedurini, Osten W. Reconstruction Algodthm for High-numerical-apertureHolograms with Diffraction-limited Resolution[J]. Opt Lett,2006,31(11):1633-1635.
    [17] Zhang F C, Yamaguchi I, Yaroslavsky L P. Algorithm for Reconstruction of Digital Hologramswith Adjustable Magnification[J]. Opt Lett,2004,29(14):1668-1670.
    [18] Schnars U, Jtiptner W. Digital Recording and Numerical Reconstruction of Holograms[J]. MeaSci Tech,2002,3(9): R85-R101.
    [19] Nicola S De, Finizio A, Pierattini G, et al. Angular Spectrum Method with Correction ofAnamorphism for Numerical Reconstruction of Digital Holograms on Tilted Planes[J]. OpticsExpress,2005,13(24):9935-9940.
    [20] Zhang F, Pedurini G, Osten W. Reconstruction Algorithm for High-numerical-apertureHolograms with Diffraction-limited Resolution[J]. Opt Lett2006,31(11):1633-1635.
    [21] Wang D Y, Zhao J, Zhang F C, et a1. High-fidelity Numerical Realization of Multiple-stepFresnel Propagation for the Reconstruction of Digital Holograms[J]. Appl Opt2008,47(19):D12-D20.
    [22] Stem A, Javidi B. Analysis of Practical Sampling and Reconstruction from Fresnel Fields[J].Opt Eng,2004,43(1):239-250.
    [23] Buraga-Lefebvre C, Co tmellec S, Lebrun D, et al. Application of Wavelet Transform toHologram Analysis: Three-dimensional Location of Particles[J]. Optics and Lasers inEngineering,2000(33):409-421.
    [24] Liebling M, Blu T, Fresnelets M U. New Multiresolution Wavelet Bases for DigitalHolography[C]. IEEE Trans, Image Process,2003,12(1):29-43.
    [25] Malek M, Co tmellec S, Allano D, et al. Formulation of In-line Holography Process by aLinear Shift Invariant System: Application to the Measurement of Fiber Diameter[J]. OpticsCommunications,2003(223):263-271.
    [26] Liebling M, Blu T, Cuche E. Local Amplitude and Phase Retrieval Method for DigitalHolography Applied to Microscopy[C]. Proc of SPIE2003,5143:210-214.
    [27] Ferraro P, Core C D, Miccio L. Phase Map Retrieval in Digital Holography: Avoiding theUndersampling Effect by a Lateral Shear Approach[J]. Opt Lett,2007,32(15):2233-2235.
    [28] Kakue T, Yonesaka R, Tahara T, et al. High-speed phase imaging by parallel phase-shiftingdigital holography[J]. Optics Letters,2011,36(21):4131-4133.
    [29] Liu J P, Poon T C. Two-step-only Quadrature Phase-shifting Digital Holography[J]. OpticsLetters,2009,34(3):250-252.
    [30] Awatsuji Y, Tahara T, Kaneko A, et al. Parallel Two-step Phase-shifting Digital Holography[J].Applied Optics,2008,47(19):D183-D189.
    [31] Zheng X, Wang Y, Li J. Simultaneous Measurement of Surface Shape and OpticalHomogeneity with Dual-Wavelength Phase-Shifting Digital Holography[C]. SOPO,Symposium on,2011:347-354.
    [32] Tahara T, Ito K, Fujii M. Experimental demonstration of parallel two-step phase-shifting digitalholography[J]. Optics Express,2010,18(18):18975-18980.
    [33] Qiu P, Wang H, Jin H, et al. Study on the Simplified Phase-shifting Digital HolographicMicroscopy[J]. Optik,2010(121):1251-1256.
    [34] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital In-line Holography of Microspheres[J].Applied optics,2002(41):5367-5375.
    [35]李勇,金洪震.全息图数字再现中消除直透光的一种方法[J].浙江师范大学学报(自然科学版),2004,27(2):122-125.
    [36]徐莹,赵建林,向强,等.无透镜傅里叶变换全息图数值再现中的图像处理[J].光学学报,2004,24(11):1503-1506.
    [37]王亮,冯少彤,聂守平.利用多尺度变换提高数字全息再现像质量[J].光电子.激光,2007,18(5):625-628.
    [38]曾凌,顾济华,周皓.小波变换消除数字全息零级像的应用[J].苏州大学学报(自然科学版).2010(26):56-60.
    [39] Pavillon N, Seelamantula C S, Kühn J, et al. Suppression of the zero-order term in off-axisdigital holography through nonlinear filtering[J]. Applied Optics,2009,48(34):H186-H195.
    [40] Kemper B, Sturwald S, Remmersmann C. Characterisation of Light Emitting Diodes (LEDs)for Application in Digital Holographic Microscopy for Inspection of Micro and NanostructuredSurfaces[J]. Optics and Lasers in Engineering,2008(46)499-507.
    [41] Cai X, Wang H. The Influence of Hologram Aperture on Speckle Noise in the ReconstructedImage of Digital Holography and Its Reduction[J]. Optics Communications,2008(281):232-237.
    [42] Cai X. Reduction of Speckle Noise in the Reconstructed Image of Digital Holography[J]. Optik2010(121)394-399.
    [43] Rong L, Xiao W, Pan F, et al. Speckle Noise Reduction in Digital Holography by Use ofMultiple Polarization Holograms[J]. Chinese Optics Letters,2010,8(7):653-655.
    [44] Maycock J, Hennelly B M, McDonald J B, et al. Reduction of Speckle in Digital Holographyby Discrete Fourier Filtering[J]. JOSA A,2007,24(6):1617-1622.
    [45] Sharma A, Sheoran G, Jaffery Z A. Improvement of Signal Noise Ratio in Digital HolographyUsing Wavelet Transform[J]. Optics and Lasers in Engineering,2008(46):42-47.
    [46] Monroy F A, Garcia-Sucerquia J. Increment of lateral resolution in digital holography byspeckle noise removal[J]. Optik,2010(121):2049-2052.
    [47] Abolhassani M, Rostami Y. Speckle noise reduction by division and digital processing of ahologram[J]. Optik,2012,123(10):937-939.
    [48] Asundi A K, Qu W, Choo O. Digital Holographic Microscope[J]. US Patent App,2009(12)545-560.
    [49] Langehanenberg P, Kemper B, Dirksen D. Autofocusing in Digital Holographic Phase ContrastMicroscopy on Pure Phase Objects for Live CellImaging[J]. Applied Optics,2008,47(19):D176-D182.
    [50] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular andpolarization multiplexing[J]. Applied Optics,2011,50(7): B6-B11.
    [51] Coppola G, Ferraro P, Iodice M, et al. A Digital Holographic Microscope for CompleteCharacterization of Microelectromechanical Systems[J]. Measurement Science and Technology,2004,15(3):529-539.
    [52] Kemper B, Bally G V. Digital Holographic Microscopy for Live Cell Applications andTechnical Inspection[J]. Applied Optics,2008(47):A52-A61.
    [53] Kühn J, Montfort F, Colomb T, et al. Submicrometer Tomography of Cells byMultiple-wavelength Digital Holographic Microscopy in Reflection[J]. Optics Letters,2009(34):653-655.
    [54] Yu X, Cross M, Liu C, et al. Measurement of the traction force of biological cells by digitalholography[J]. Biomed Opt Express,2012,3(1):153-159.
    [55] Thompson B J. Holographic Measurement of Eject from Shocked Metal Surface[J]. Appl Opt,1965,14(3):302-308.
    [56] Jones A R, Sarjeant M, Davis C R, et a1. Application of In-line Holography to Drop SizeMeasurement in Dense Fuel Sprays[J]. Appl Opt,1978,7(3):328-330.
    [57] Haussman G, Lauterbom W. Determination of Size and Position of Fast Moving Gas Bubble inLiquid by Digital3-D image Processing of Hologram Reconstruction[J]. Appl Opt, l980,l9(20):3529-3535.
    [58] Crane J S, Ddunn P, Thompson B J, et a1. Far-field Holography of Ampoule Contaminants[J].Appl Opt,1982,21(14):2548-2553.
    [59] Prikry I, Vest C M. Holographic Imaging of Semitransparent Droplets or Particle[J]. Appl Opt.,1982,21(14):2541-2547.
    [60] Trolinger J D. An Airborne Holography System for Cloud Particle Analysis in WeatherStudies[J]. Advances in Instr,1974(29):6271-6278.
    [61]李茹,王国志,张耀明.含铝推进剂燃烧场全息粒子图像处理系统的研究[J].光子学报,1999,28(12):1108-1112.
    [62] Trolinger J D. Particle Field Holography[J]. Opt Eng,1975,14(5):383-392.
    [63] Murata S, Yasuda N. Potential of Digital Holography in Particle Measurement[J]. Optics LaserTechnology,2000(32):567-574.
    [64] Kim M K, Hayasaki Y, Picart P, et al. Digital holography and3D imaging: introduction tofeature issue[J]. Applied Optics,2013,52(1):DH1-DH4.
    [65]浦世亮.基于激光干涉原理的颗粒场测量技术研究[D].杭州:浙江大学,2007.
    [66]吕且妮.数字全息技术及其在粒子场中的应用研究[D].天津:天津大学,2003.
    [67] Hout R, Katz J. A Method for Measuring the Density of Irregularly Shaped Biological AerosolsSuch as Pollen[J]. Aerosol Sci,2004,35(11):1369-1384.
    [68] Xu W, Jericho M H, Kreuzer H J. Tracking Particle in Four Dimensions with In-lineHolographic Microscopy[J]. Opt Lett,2003,28(3):164-169.
    [69] Darakis E, Khanam T, Rajendran A. Microparticle Characterization Using DigitalHolography[J]. Chemical Engineering Science,2010(65):1037-1044.
    [70] Sun H., Hendry D C., Player M A, et al. In Situ Underwater Electronic Holographic Camera forStudies of Plankton[J]. IEEE J Oceanic Eng,2007(32):373-382.
    [71] Sheng J, Malkiel E, Katz J. Digital Holographic Microscope for Measuring Three-dimensionalParticle Distributions and Motions[J]. Appl.Opt.,2006,45(16):3893-3901.
    [72] Singh V R, Hegde G, Asundi A. Particle Field Imaging Using Digital In-line Holography[J].Current Science,2009(96):391-397.
    [73] Fugal J P, Shaw R A. Cloud Particle Size Distributions Measured with an Airborne DigitalIn-line Holographic Instrument[J]. Atmos Meas Tech Discuss,2009(2):659–688.
    [74] Berg M J, Videen G. Digital Holographic Imaging of Aerosol Particles in Flight[J]. Journal ofQuantitative Spectroscopy&Radiative Transfer,2011(112):1776-1783.
    [75]吴学成,浦兴国,浦世亮.激光数字全息应用于两相流颗粒粒径测量[J].化工学报,2009(60)310-316.
    [76] Bertollini G P, Oberdier L M, Lee Y H. Image Processing System to Analyze DropletDistributions in Sprays[J]. Opt Eng,1985,24(3):464-469.
    [77] Malkiel E, Abras, J N, Katz, J. Automated Scanning and Measurements of ParticleDistributions within a Holographic Reconstructed Volume[J]. Meas Sci Technol,2004(15):601-612.
    [78] Pu S, Pu X, Cen K, et al. Particle Field Characterization by Digital In-line Holography[C]. APIconference Proceedings,2007:767-774.
    [79] Malek M, Allano D, Coetmellee S, et al. Digital In-line Holography: Influence of the ShadowDensity on Particle Field Extraction[J]. Opt Express,2004,12(10):2270-2279.
    [80] McElhinney C P, Hennelly B M, Naughton T J. Extended Focused Imaging for DigitalHolograms of Macroscopic three-dimensional objects[J]. Appl Opt,2008(47):D71-D79.
    [81] Satake S, Yonemoto Y, Kikuchi T, et al. Detection of microbubble position by a digitalhologram[J]. Applied Optics,2011,50(31):5999-6005.
    [82] Singh D K, Panigrahi P K. Automatic threshold technique for holographic particle fieldcharacterization[J]. Applied Optics,2012,51(17):3874-3887.
    [83] Kempkes M, Darakis E, Khanam T. Three Dimensional Digital Holographic Profiling ofMicro-fibers[J]. Optics Express,2009(17):2938-2943.
    [84]吕且妮,葛宝臻,高岩.乙醇喷雾场粒子尺寸和速度的数字全息测量[J].光子学报,2010(39):266-269.
    [85]吕且妮,高岩,葛宝臻,等.基于霍夫变换的数字全息粒子尺寸测量[J].中国激光,2009(36):940-944.
    [86] Memmolo P, Distante C, Paturzo M, et al. Automatic focusing in digital holography and itsapplication to stretched holograms[J]. Optics Letters,2011,36(10):1945-1947.
    [87] Tyler G A, Thompson B J. Fraunhofer Holography Applied to Particle Size Analysis: aReassessment[J]. Opt Acta,1976(23):685-700.
    [88] Onural L. Diffraction from a Wavelet Point of View[J]. Optics Letters,1993(18):846-848.
    [89] Macovski A. Hologram Information Capacity[J]. JOSA,1970(60):21-27.
    [90] Collier R J, Burkhardt C B, Lin L H. Optical Holography[M]. New York: Academic Press;1971.
    [91] Xu L, Miao J, Asundi A. Properties of Digital Holography Based on In-line Configuration[J].Opt Eng,2000(39):3214-3219.
    [92] Yaroslavski L P, Merzlyakov N S. Method of Digital Holography[M], Translated from Russianby D Parsons, Consultant Bureau, NewYork,1989.
    [93] Bertaux N, Frauel Y, Réfrégier P, et al. Speckle Removal Using a Maximum-LikelihoodTechnique with Isoline Gray-Level Regularization[J]. JOSA A,2004,21(12):2283-2291.
    [94] Trisnadi J I. Hadamard Speckle Contrast Reduction[J]. Optics Letters,2004,29(1):11-l3.
    [95] Garcia-Sucerquia J, Ramirez J A H. Reduction of Speckle Noise in Digital Holography byUsing Digital Image Processing[J]. Optik,2005(116):44-48.
    [96] Sharma A, Sheoran G. Improvement of Signal-to-Noise Ratio in Digital Holography UsingWavelet Transform[J]. Optics and Lasers in Engineering,2008(46):42-47.
    [97]龙岸文,王礼平.基于多尺度小波变换的双阈值图像散斑噪声消除[J].计算机工程与设计.2006,27(6):1056-1057.
    [98]章琳,汪胜前.基于遗传算法的多小波自适应阈值去噪研究[J].激光与红外,2008,38(2):186-190.
    [99]沈婷梅,顾瑛.光学相干层析成像中散斑噪声减小算法[J].中国激光,2008,35(9):1437-1440.
    [100] Liu S, Wei J, Feng B, et al. An anisotropic diffusion filter for reducing speckle noise ofultrasound images based on separability[C]. Signal and Information Processing AssociationAnnual Summit and Conference (APSIPA ASC),2012.
    [101] Weaver J, Xu Y, Healy D, et al. Filtering MR Images in the Wavelet Transform Domain[J].Magn. Reson. Med,1991(21):288-295.
    [102] Donoho D L, Johnstone I M. Ideal Spatial Adaptation by Wavelet Shrinkage[J]. Biometrika,1994,81(3):425-455.
    [103] Donoho D L. De-noising by Soft-Thresholding[J]. IEEE Trans.Inform.Theory,1995,41(3):613-627.
    [104] Donoho D L, Johnstone I M. Adapting to Unknown Smoothness via Wavelet Shrinkage[J].Journal of the American Statistical Association,1995,90(432):1200-1224.
    [105]姜三平.基于小波变换的图像降噪[M].国防工业出版社,2009:37-41.
    [106] Mallat S, Zhong S. Characterization of Signals from Multiscales Edges[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,1992,14(7):710-732.
    [107]高克芳,杨勇.一种改进的基于小波变换模极大值的边缘检测方法[J].福建农林大学学报(自然科学版).2009,38(4):444-448.
    [108]祝强,徐瑾,张铎.小波模极大值边缘检测算法研究[J].武汉理工大学学报,2008,30(6):849-853.
    [109] Mallat S, Hwang W L. Singularity Detection and Processing with Wavelets[J]. IEEE TransInfo Theory,1992,38(2):617-643.
    [110] Ching P C, So H C, Wu S Q. On Wavelet Denoising and Its Application to Time DelayEstimation[J]. IEEE, Trans. on SP,1999,47(10):2879-2882.
    [111]赵全友,潘保昌.改进的LoG边缘自动白平衡算法[J].计算机应用研究,2009(26):775-777.
    [112] Nasri M, Hossein Nezamabadi-pour. Image Denoising in the Wavelet Domain Using a NewAdaptive Thresholding Function[J]. Neurocomputing,2009(72):1012-1025.
    [113] Gai G, Qu L. Translation-Invariant Based Adaptive Threshold Denoising for Impact Signal[J].Chinese Journal of Mechanical Engineering,2007,17(4):552-555.
    [114] Murakami T. A New Direct Analysis Method for Measuring Particle Size and Location byInline Hologram[J]. Laser Diagnostics and Modeling of Combustion, Spinger-Verlag, Berlin,1987:71-76.
    [115] Onural L, Ozgen M T. Extraction of Three-Dimensional Object-location Information Directlyfrom In-line Hologramsusing Wigner Analysis[J]. J. Opt Soc Am.1992(A9):252-260.
    [116] Soontaranon S, Widjaja J, Asakura T. Direct Analysis of In-line Particle Holograms by UsingWavelet Transform and Envelope Reconstruction Method[J]. Optik,2002,113(11):489-494.
    [117] Soontaranon S, Widjaja J, Asakura T. Improved Holographic Particle Sizing by Using AbsoluteValues of the Wavelet Transform[J]. Optics Communications,2004(240):253-260.
    [118] Soontaranon S, Widjaja J, Asakura T. Extraction of Object Position from In-line Holograms byUsing Single Wavelet Coefficient[J]. Optics Communications,2008(281):1461-1467.
    [119] Widjaja J, Soontaranon S. All Wavelet Analysis of In-line Particle Holograms[J]. Optics andLasers in Engineering,2009(47):1325-1333.
    [120] Caulfield H J. Automated Analysis of Particle Holograms[J]. Opt Eng,1985,24(3):462-463.
    [121] Stanton A C, Caulfield H J, Stewart G W. An Approach for Automated Analysis of ParticleHolograms[J]. Opt. Eng.,1984,23(5):577-582.
    [122] Green S I, Zhao Z. Reconstructed Double-pulsed Holograms: a System for EfficientAutomated Analysis[J]. Appl Opt,1994,33(5):761-767.
    [123] Denis L, Fournie C, Fournel T, et al. Direct Extraction of the Mean Particle Size from a DigitalHologram[J]. Applied Optics,2006(45):944-952.
    [124] Lu J, Shaw R A, Yang W. Improved particle size estimation in digital holography via signmatched filtering[J]. Optics Express,2012,20(12):12666-12674.
    [125] Malek M, Coetmellec S, Allano D, et a1. Formulation of In-line Holography Process by aLinear Shift in Variant System: Application to the Measurement of Fiber Diameter[J]. OpticsCommunications,2003(223):263-271.
    [126] Ge B, Lu Q, Zhang Y. Particle Digital In-line Holography with Spherical Wave Recording[J].China Opt Lett,2003,1(9):517-519.
    [127] Xu W, Jericho M H, Meinertzhagen I A, et a1. Digital In-line Holography of Microspheres[J].Appl Opt,2002,41(25):5367-5375.
    [128] Freeman H. On the Encoding of Arbitrary Geometric Configuration[J]. IRE Trans onElectronic Computer,1961, l0(2):260-268.
    [129]陈士金,汤漾平,邓勇.基于链码的轮廓跟踪技术在二值图像中的应用[J].华中理工大学学报,1998,26(12):26-28.
    [130]杨万扣,任明武,杨静宇.数字图像中基于链码的目标面积计算方法[J].计算机工程,2008,34(1):30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700