光子晶体光纤参量放大器与超连续光源理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是围绕以下项目展开的:国家自然科学基金项目《光子晶体光纤及其在量子通信中的应用的研究》(60578043),北京市共建项目《光子晶体光纤及WDM系统中若干重要技术的研究》(XK100130637)和《现代通信系统中新型探测技术与接收模块的研究》(XK100130737)。
     结合课题的要求和主要目标,在对光子晶体光纤(PCFs)传输特性研究的基础上,对其应用展开研究。由于光子晶体光纤(PCF)在色散与非线性方面具有普通单模光纤没有的特性,它能在一个较宽的频带内保持单模特性,它的零色散点可以在800nm~1600nm之间变化,它的纤芯可以比较小而产生较大的非线性,γ值在850nm处可达到240W~(-1).km~(-1)。利用它做成有源器件,在光通信中,特别是波分复用系统中是很有前途的,如宽带色散补偿、光脉冲压缩、波长变换、超连续谱产生和光放大器等。本文对光子晶体光纤在光纤通信系统中的应用:如光纤参量放大器技术、波长变换技术及超连续光源方面的应用进行了理论与实验研究。光纤参量放大器是即掺铒光纤放大器(EDFA)、拉曼放大器(RA)及半导体光放大器(SOA)后出现的一种光放大器,光纤参量放大器以其高增益、宽带宽等优点,应用潜力非常广泛,发展潜力巨大;波长变换则是全光网及光交换过程中的关键技术之一,利用这一技术可以实现在线开关等全光操作过程;超连续光源则是基于超连续谱的宽带波长可任意提取的超宽带光源,它提供了一种在很宽的光谱范围内产生超短脉冲的非常经济的技术和方法,从而作为新一代多载波光源受到业界广泛关注。本文的主要工作与创新点(黑体部分)介绍如下:
     1.利用色散平坦光子晶体光纤构建了光纤参量放大器,完成了光子晶体光纤中的参量放大器实验,实验中观测的增益带宽为28nm。理论上分析了光子晶体光纤参量放大器的增益特性、相敏特性和带宽特性,数值模拟分析了光子晶体光纤的非线性系数、色散、泵浦功率以及光纤长度等参数对参量放大的增益和带宽的影响。
     2.利用光纤中的四波混频进行了波长变换的实验研究,成功进行了1550nm波长附近的波长变换,实际测量波长变换带宽为3dB带宽为28nm,最高转换效率为-26dB,同时也实现了全光频移型的光开关操作。
     3.详细介绍了光子晶体光纤的几个突出优点:单模传输特性、高非线性效应、可控色散特性和双折射特性。在此基础上,讨论了光子晶体光纤在有源器件中的应用,同时介绍了它在各应用领域中的优势。
     4.利用脉宽为1.6ps脉冲,以50MHz被动锁模光纤环激光器为光源,在色散平坦光子晶体光纤中进行超连续谱产生的实验,当泵浦平均功率为26mW时,经过光子晶体光纤后得到20dB带宽为240nm的超连续谱。同时,系统分析了自相位调制、四波混频和受激拉曼散射等因素对光子晶体光纤中超连续谱产生的影响。
     5.以色散平坦光子晶体光纤为非线性介质,利用光纤的非线性效应,进行了飞秒脉冲产生超连续谱的实验。激光器产生120fs的激光脉冲,经一段约1米和的普通单模尾纤被展宽为689fs,利用此光源,以波长1550nm为中心波长,获得了20dB谱宽达480nm的超连续谱。
     6.在飞秒脉冲在色散平坦光子晶体光纤产生超连续谱的基础上,利用阵列波导光栅对超连续谱进行切处滤波,在1550nm波长附近,实现了32波长的飞秒脉冲输出,这种光源可以用于WDM系统的多信道传输过程,也可以作为波长可调的多波长飞秒脉冲激光器使用,有良好的利用价值。
The works of this dissertation are supported by the National Natural Science Foundation Project "Photonic crystal fiber and its application in quantum communication research" (60578043) , the Foundation Project from the Education Commission of Beijing " A number of important research of Photonic Crystal Fiber and Its Application in WDM system" (XK100130637) , and "The research of New detection technologies and receiver module in Modern communication system (XK100130737) ".
     Combined with the requirements of the subject and the main objective, on the basis of the research of transmission characteristics of photonic crystal fibers (PCFs), we Study of its application. As far as photonic crystal fiber is concerned, it is the fiber with a periodic microstrucure in air-glass. Compared with conventional single-mode fiber, PCF has some unique characteristics such as controllable dispersion and high nonlineatity. It can support endlessly single mode over a broad spectral range, as well as the zero-dispersion wavelength can vary from 800nm to 1600nm. PCF has high level of nonlinieatity due to the small core diameter, and values as high asγ=240W~(-1).km~(-1) at 850nm have been reported. Since the first PCF is invented in 1996, it has gained intense attention. Active devices based on PCF can expect a series of new applications in optical communication such as broadband dispersion compensation, optical pulse compression, wavelength conversion, supercontinuum generation and optical amplification. In this paper, we study the applications of PCF in optical communication such as fiber-optic parametric amplifier, wavelength conversion and supercontinuum light source technology. Fiber-based optical parametric amplifier is a new optical amplifier after Raman amplifier and the Erbium-doped fiber amplifier (EDFA). Optical parametric amplifier has a wide range of potential applications with its high-gain, wide bandwidth, etc. Wavelength conversion is one of the key technologies in all-optical networks and optical switching. And supercontinuum light source has a ultra-broadband, it provides us the techniques and methods to get ultrashort pulses over a large range of wavelength, it has been widely concerned in recent years. The main contents and achievements of this dissertation are as follows.
     1. Using a 40m long dispersion flattened photonic crystal fiber, we propose an OPA based on PCF. The results show that the gain bandwidth is 28nm. And the gain characteristics, phase-sensitive property and bandwidth of optical parametric amplifier (OPA) based on PCF are addressed theoretically. The relationship between the properties of PCF, such as nonlinearity and dispersion, and characteristics of OPA are analyzed.
     2. Wavelength conversion based on four-wave mixing is studied experimentally. Wavelength conversion around 1550nm is achieved, the maximum conversion efficiency and the 3 dB band is about -26dB and 28nm respectively.
     3. Several prominent merits of PCF, such as property of single mode transmission, high nonlinearity, controllable dispersion and birefringence are systematically reviewed. Also, applications of PCF in active devices and potential advantages are introduced.
     4. By using 50MHz mode-locking fiber ring laser, Supercontinuum is obtained from dispersion-flattened PCF. The bandwidth of 240nm (at 20dB level) is achieved by launching 1.6ps pulses into a section of PCF. Moreover, the effects to the spectral broadening of SPM、FWM and SRS are analyzed.
     5. By using passively mode-locking fiber ring laser, SC is obtained from dispersion-flattened PCF. The results show that bandwidth of 480nm (at 20dB level) can be achieved by launching 689fs pulses into a section of PCFs.
     6. Based on a femtosecond pulse pump power, we achieve a spectrally sliced pulse source which utilizes supercontinuum generated in a dispersion-flattened PCF and spectral slicing in an arrayed waveguide grating. All 32 channels exhibit almost constant pulsewidth and excellent noise properties. This pulse source can be used in WDM system, and also can be used as a wavelength turnable femtosecond pulse laser.
引文
[1]Eli Yablonovitch,inhibited spontaneous emission in solid-state physics and electronics.Phys.Rev Letters.58(20),1987,pp.2059-2062.
    [2]S.John,Strong localization of photons in certain disordered dielectric super-lattices,Phys.Rev Letters.58(23),1987,pp.2486-2489.
    [3]J.C.Knight,T.A.Birks,P.St.J.Russell,et al,Pure silica single-mode fiber with hexagonal photonic crystal cladding,OFC'96,paper PD3-1.
    [4]J.C.Knight,T.A.Birks,P.St.J.Russell,et al,All-silica single-mode optical fiber with photonic crystal cladding,Opt.Letter.,21(19),1996,pp.1547-1549.
    [5]K.Kurokawa,K.Tajima,K.Tsujikawa,et al.,Penalty-free Dispersion-Managed Soliton Transmission Over a 100-kin Low-Loss PCF,J.Light-wave Technol.,24(1),2006,pp.32-37.
    [6]B.Zsigri,C.Peucheret,M.D.Nielsen,et al,Demonstration of Broadcast Transmission and wavelength Conversion Functionalities Using Photonic Crystal Fibers,IEEE Photon Technol.Letters.,18(21),2006,pp.2290-2292
    [7]Jay E.Sharping,Mark A.Foster,and Alexander L.Gaeta,Octave-spanning high-power microstructure fiber-based optical parametric oscillators,Opt.Express,15(4),2007,pp.1474-1479.
    [8]K.Sasaki,S.K.Varshney,K.Wada,Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band,Opt.Express,15(5),2007,pp.2654-2668.
    [9]Qiuguo Wang,Bo-jun Yang,Lan Zhang,Hu Zhang and Li He,Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber,Chinese Opts Letters.vol.5,pp.538-539,2007.
    [10]Shinde Y.S.and Kaur Gahir,H.,Dynamic Pressure Sensing Study Using Photonic Crystal Fiber:Application to Tsunami Sensing.Photonics Technology Letters,IEEE Volume 20,Issue 4,Feb.15,2008 Page(s):279- 281
    [11] Chen H.-R. Lin, K.-H., Lin, J.-H., et al, Stress-Induced Versatile Tunable Long-Period Gratings in Photonic Crystal Fibers. Photonics Technology Letters, IEEE, Volume 20, Issue 17, Sept.1, 2008 Page(s):1503 - 1505
    [12] Abdur Razzak, S.M.; Namihira, Y., Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers, Photonics Technology Letters, IEEE,Volume 20, Issue 4, Feb. 15, 2008 Page(s):249 -251
    [13] Nahar, N.K.; Rojas, R.G., Coupling Loss From Free Space to Large Mode Area Photonic Crystal Fibers, Lightwave Technology, Journal of Volume 26, Issue 22, Nov.15,2008 Page(s):3669-3676
    [14] Tse, M. L. V., Tam, H. Y., Fu, L. B., Thomas, B. K., Dong, L., Lu, C., Wai, P.K. A , Fusion Splicing Holey Fibers and Single-Mode Fibers: A Simple Method to Reduce Loss and Increase Strength. Photonics Technology Letters, IEEE Volume 21, Issue 3, Feb.1, 2009 Page(s):164 -166
    [15] De Matos, C.J.S., Modeling Long-Pass Filters Based on Fundamental-Mode Cutoff in Photonic Crystal Fibers, Photonics Technology Letters, IEEE Volume 21, Issue 2, Jan.15, 2009 Page(s):112 - 114
    [16] J. Hansryd and Peter A. Andrekson, Broad band continuous wave pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency, IEEE Photon. Technol. Letter., 2001,13(3):194-196
    [17] Marinc, M.E., et al., Broadband fiber optical parametric amplifiers. Opt.Let., 1996. 21(8):pp.573-575.
    [18] Marinc, M.E., et al., Broadband fiber optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra. Opt. Letter,1996.21 (17):p. 1354-1356.
    [19] Marine, M .E, et al., High-Nonlinearity Fiber Optical Parametric Amplifier with Periodic Dispersion Compensation. IEEE J. Light wave Technol., 1999.17(2):p.210-215
    [20] Ho, M. C, et al .,200-nm-Bandwidth Fiber Optical Amplifier Combining Parametric and Raman Gain IEEE.J. Light wave Technol., 2001.19 (7):p.977-981.
    [21] Kim, J., et al., Gain Enhancement in Cascaded Fiber Parametric Amplifier with Quasi-Phase Matching: Theory and Experiment. IEEE.J. Light-wave Technol., 2001.19 (2):p. 24 7-251.
    [22] French, S .E. and J .L.B lows. Continuous Wave Parametric Amplifier with 27dB Gain and Low Noise Figure Pumped With a Frequency-modulated Source. in OFC.2002.
    [23] Boggio, J. M. C, et al. Demonstration of 26dB on-off gain of a two-pump fiber optical parametric amplifier. in Optical Fiber Communication Conference.2002.
    [24] Radic, S., et.al.,Continuous-Wave Parametric Gain Synthesis Using Nondegenerate Pump Four-Wave Mixin g. IEEE.Photon Technol.Lett.,2002.14(10):p. 14 06-1408.
    [25] Radic,S , etal ., Record performance of parametric amplifier constructed with highly nonlinear fibre. Electron .Lett, 2003. 39(29): p .838-839
    [26] Wong, K .K.Y, et al., Continuous-Wave Fiber Optical Parametric Amplifier With 60dB Gain Using a Novel Two-Segment Design.IEEE.Photon.Technol.Lett.,2003.15(12):p. 1707-1709.
    [27] Provino, L., et al., Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement. J.Opt.Soc.Am.B ,2003.20(7):p.l532-1537.
    [28] Provino, L., et al. Broadband and Flat Parametric Gain with a Single Low-power Pump in a Multi-section Fiber Arrangement.in OFC.2002.
    [29] Provino,L .,et al .Broadband and Flat Parametric Gain with a Single Pump in a Multi-section Nonliner Fiber Arrangement.in CLEO.2002.
    [30] Wong,K .K.Y.,et al .Fiber optical parametric amplifier and wavelength converter with record 360nm gain band width and 50dB signal gain.in CLEO.2003.
    [31] Marhic, M.E., K.K.-Y Wong, and L.G Kazovsky, Wide-Band Tuning of the Gain Spectra of One-Pump Fiber Optical Parametric A mplifiers.IEEE.J.Sel.Top.Quantum Electron.,2004.10 (5):p.1133 -1141
    [32] Wong, K.K.Y., M.E. Marhic, and L.G Kazovsky, Temperature control of the gain spectrum of fiber optical parametric amplifiers.Optics Express,2005.13(12):p.4666-4673.
    [33] Sharping, J.E., et al., Four-wave mixing in microstructure fiber. Opt. Lett.,2001. 26(14):p.1048-1050.
    [34] Tang, R., et al., Microstructure-fibre-based optical parametric amplifier with gain slope of 200dB/ W/km in the telecom range. Electron.Lett,2003.39(2):p.195-196.
    [35] Wataru Imajuku and Atsushi Takada, Inline Optical Phase-Sensitive Amplifier with Pump Light Source Controlled by Optical Phase-Lock Loop, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.17. NO.4.1999
    [36] Blows, J. L.and S .E.French, Low-noise-figure optical parametric amplifier with a continuous-wave frequency-modulated pump.Opt.Lett., 2002.27(7):p.491-493.
    [37] Wong, K.K.Y., et al., Continuous-wave fiber optical parametric wavelength converter with +40dB conversion efficiency and a 3.8dB noise figure. Opt.Lett., 2003.28(9):p.692-694.
    [38] Inoue, K and T. Mukai, Experimental Study on Noise Characteristics of a Gain-Saturated FiberOptical Parametric Amplifier.IEEE.J. Lightwave Technol., 2002.20(6):p.969-974.
    [39] Voss, P.L., R.Tang, and P.Kumar, Measurement of the photon statistics and the noise figure of a fiber- optic parametric amplifier. Opt. Lett., 2003.28(7):p.549-551.
    [40] Voss, P.L .and P.Kumar, Raman-noise-induced noise-figure limit for X ~((3))parametric amplifiers.Opt.Lett., 2004.29(5):p.445-447.
    [41] Tang, R., et al., Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation. Opt. Lett.,2004.29(20):p.2372-2374
    [42] Kylemark, P., et al., Noise Characteristics of Fiber Optical Parametric Amplifiers. IEEE.J. L ightwave Technol., 2004.22(2):p.409-416.
    [43] McKinstrie, C.J., S.Radic,and M.G.Raymer, Quantum noise properties of parametric amplifiers driven by two pump waves.Optics Express,2004.12(21):p.5037-5066.
    [44] Marhic, M.E., et al., Pump-to-Signal Transfer of Low-Frequency Intensity Modulation in Fiber Optical Parametric Amplifiers.IEEE.J. Lightwave Technol., 2005.23(3):p.l049-1055.
    [45] Ysman, F., Q. Lin, and GP Agawal, Pump-noise transfer in dual-pump fiber-optic parametric amplifiers: w alk-off efects. Opt. Lett.,2005.30(9):p.1048-1050.
    [46] Durecu-Legrand, A., et al., Impact of Pump OSNR on Noise Figure for Fiber-Optical Parametric Amplifiers.IEEE.Photon.Technol.Lett., 2005.17(6): p.1178-1180.
    [47] Boggio, J.M.C., et al., Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion. Opt.Commun., 2005.24 9:p.451-472.
    [48] Cappellini, G.and S.Trillo, Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability efects. J.Opt.Soc.Am.B,1991.8(4):p.824-838.
    [49] Kikuchi, K. and C.Lorananasane, Design of Highly Eficient Four-Wave Mixing Devices Using Optical Fibers. IEEE.Photon.Technoi.Lett.,1994.6(8):p.992-994.
    [50] Wabnitz, S.,Nonlinear enhancement and optimization of phase-conjugation efficiency in optical fibers. IEEE .Photon.Technol.Lett., 1995.7(6):p.652-654.
    [51] Inoue, K .and T .Mukai, Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier.Opt.Lett.,2001.2 6(1):p.10-12.
    [52] Marhic, M.E., et al., 92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier.OPt.Lett, 2001.26(9):p.620-622.
    [53] Boggio, J.M.C., et al., Broad-Band 88% Eficient Two-Pump Fiber Optical Parametric Amplifier. IEEE. Photon. Technol. Lett., 2003.15(11):p.1528-1530.
    [54] Floridia.C .,et al ..Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers.Opt.Commun., 2003.223: p.381-388.
    [55] Per Kylemark, Magnus Karlsson, Peter A.Andrekson. et.al., Impact of Phase Modulation and Filter Characteristics on Dual-Pumped Fiber Optical Parametric Amplification, IEEE PHOTONICS TECHNOLOGY LETTERS. VOL. 18. NO. 2. 2006.
    [56] Per Kylemark, Jian Ren, Yauheni Myslivets, et al., Impact of Pump Phase-Modulation on the Bit-Error Rate in Fiber Optical Parametric Amplifier Based Systems. IEEE PHOTONICS TECHNOLOGY LETTERS,VOL. 19. NO. 2. 2007.
    [57] F. Yaman, Qiang Lin, Student Member, et.al., Impact of Pump-Phase Modulation on Dual-Pump Fiber-Optic Parametric Amplifiers and Wavelength Converters., IEEE PHOTONICS TECHNOLOGY LETTERS.VOL.17, NO.10, 2005.
    [58] J. A. Levenson, I. Abram, Th. Rivera, et al, Reduction of quantum noise in optical parametric amplification, J. Opt. Soc. Amer. B, 1993, 10:2233-2238
    [59] W. Imajuku and A. Takada, Theoretical analysis of system limitation for AM-DD/NRZ optical transmission systems using in-line phase-sensitive amplifiers,J. Lightwave Technol., 1998, 16:1158-1170
    [60] W. Imajuku, A. Takada, and Y Yamabayashi, Inline coherent optical amplifier with noise figure lower than 3dB quantum limit, Electron. Lett,2000, 36:63-64
    [61] F. S. Yang, M. E. Marhic, and L. G. Kazovsky, CW fiber optical parametric amplifier with net gain and wavelength conversion efficiency>1, Electron.Lett, 1996, 32:2336-2338
    [62] J. Hansryd and P. A. Andrekson, Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier, Electron. Lett, 2001,37:584-585
    [63] P. O. Hedekvist, M. Karlsson, and P. A. Andrekson. Fiber four-wave mixing demultiplexing with inherent parametric amplification, J. Lightwave Technol., 1997, 15:2051-2058
    [64] M.-C. Ho, K. Uesaka and M. E. Marhic, et al, 200-nm-bandwidth fiber optical amplifier combining parametric andraman gain, J. Lightwave Technol., 2001, 19:977-981
    [65] M. Westlund, J. Hansryd and P. A. Andrekson, et al, Transparent wavelength conversion in fiber with 24 nm pump tuning range, Electron. Lett, 2002,38:85-86
    [66] J. Li, J. Hansryd and P.-O. Hedekvist, et al, .300 Gbit/s eye-diagram mesurement by optical sampling using fiber based parametric amplification,Optical Fiber Communication Conf. and Exhibit, Paper PD31, 2001
    [67] Inoue K., and H.Toba, Wavelength Conversion Experiment Using Fiber Four-Wave Mixing. IEEE.Photon. Technol.Lett, 1992.4(1):p.69-72
    [68] Inoue, K., Tunable and Selective Wavelength Conversion Using Fiber Four-Wave Mixing with Two Pump Lights.IEEE.Photon.Technol.Lett,1994.6(12):p.1451-1453.
    [69] Inone, K., Optical level equalisation based on gain saturation in fibre optical parametric amplifier.Electron Lett,36(12),2000.
    [70]Islam,M.N.and Boyraz,Fiber Parametric Amplifiers for Wavelength Band Conversion.IEEE.J.Sel.Top.Quantum Electron.,2002.8(3):p.527-537.
    [71]Tanemura,T.and K.Kikuchi,Polarization-Independent Broad-Band Wavelength Conversion Using Two-Pump Fiber Optical Parametric Amplification without Idler Spectral Broadening.IEEE.Photon.Technol.Lett.,2003.15(11):p.1573-1575.
    [72]Li,Y.,et al.,All-optical 2R regeneration using data-pumped fibre parametric amplification.Eectron.Lett,2003.39(17):p.1263-1264.
    [73]S.Radic,et al.,All-Optical Regeneration in One-and Two-Pump Parametric Amplifiers Using Highly Nonlinear Optical Fiber.IEEE.Photon.Technol.Lett.,2003.15(7):p.957-959.
    [74]McKetraeher,R.W.,J.L.Blows,et al.,Wavelength conversion bandwidth in fiber based optical parametric amplifiers.Optics Express,2003.11(9):p.1002-1007.
    [75]Hansryd,J.and PA.Andrekson,Broad-Band Continuous-Wave-Pumped Fiber Optical Parametric Amplifier with 49-dB Gain and Wavelength-Conversion,Efficiency.IEEE.J.Lightwave Technol.,2001.13(3):p.194-196.
    [76]Hansryd,J.,et al.,Fiber-Based Optical Parametric Amplifiers and Their Applications.IEEE.J.Sel.Top.Quantum Electron.,2002.8(3):p.506-520.
    [77]Torounidis,T.,et al.,Amplification of WDM Signals in Fiber-Based Optical Parametric Amplifiers.IEEE.Photon.Technol.Lett,2003.15(g):p.1061-1063.
    [78]Zhang,W.,et al.,Design of Fiber-Optical Parametric Amplifiers by Genetic Algorithm.IEEE.Photon.Technol.Lett,2004.16(7):p.1652-1654
    [79]王秋国,杨伯君等."Experiment study of wavelength conversion in a dispersion-flattened photonic crystal f iber," Chinese Opts.Lett,vol.5,pp.538-539,2007.
    [80]R.H.Stolen and Chinlon Lin,Self-phase-modulation in silica optical fibers,Phy.Rev.,1978,A17(4):1448-1453
    [81]Alfano R R,Shapiro S L,Observation of self-phase modulation and small scale filaments in crystals and glasses.Phys Rev Lett,1970,24(14):592-594
    [82]Futami F,Generation of wide band and flat supercontinuum over a 280-nm spectral range from a dispersion-flattened optical fiber with normal group-velocity dispersion, IEICE Trans Electron, 1999, E82-C(8): 1531-1538
    [83] A. K. Abeeluck, C. Headley, et al, High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser, Opt. Lett., 2004, 29:2163-2165
    [84] A. Mussot, T. Sylvestre, L. Provino,et al, Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser, Opt. Lett., 2003, 28:1820-1822
    [85] J. M. Harbold, F. (?). Ilday, F. W. Wise,et al, Long-wavelength continuum generation about the second dispersion zero of a tapered fiber, Opt. Lett.2002,27:1558-1560
    [86] J. Teipel, D. Turke, H. Giessen, et al, Diode-pumped, ultrafast, multi-octave supercontinuum source at repetition rates between 500 kHz and 20 MHz using Yb:glass lasers and tapered fiber, Opt. Express, 2005, 13:1477-1485
    [87] T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Super continuum generation in tapered fibers, Opt. Lett. 2000, 25:1415-1417
    [88] J. Teipel, K. Franke, D. T(?)rke, et al, Characteristics of super continuum generation in tapered fibers using femtosecond laser pulses, Appl. Phys. B,2003, 77, 245-250
    [89] S. Coen, A. H. L. Chau, P. St. J. Russell, et al, White-light super continuum generation with 60-ps pump pulses in a photonic crystal fiber, Opt. Lett.2001,26:1356-1358
    [90] S. Coen, A. H. L. Chau, R. Leonhardt, et al, Super continuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J. Opt. Soc. Am. B 2002,19:753-764
    [91] W. J. Wadsworth, N. Joly, J. C. Knight, et al, Super continuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers, Opt. Express 2004, 12, 299-309
    [92] D. V. Skryabin, F. Luan, J. C. Knight, Soliton self-frequency shift cancellation in photonic crystal fibers, Science, 2003, 301(5640):1705-1708
    [93] Y. Q. Yu, S. C. Ruan, C. L. Du et al., Spectral broadening in a polarization maintaining photonic crystal fiber by femtosecond pulses from an optical parametric amplifier, Chin. Phys. Lett., 2005, 22(2):380-383
    [94] Lou JW, et al, Broader and flatter supercontinuum spectra in dispersion tailored fibers. OFC 97, Dallas, TX, 1997, 32-34,
    [95] Okuno T, Onishi M, Nishimura M, Generation of ultra-broad-band super continuum by dispersion-flattened and decreasing fiber, IEEE Photon,Technol. Lett,1998,10(1):72—74
    [96] Mori K, Takara H, Kawanishi S, et al, Flatly broadened super continuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile, 1997,33(21):1806-1807
    [97] Takushima Y, Futami F, Kikuchi K, Generation of over 140nm wide super continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source, IEEE Photon. Technol. Lett., 1998,10(11):1560-1562
    [98] Futami F, Takushima Y, Kikuchi K, Generation of 10GHz,200fs Fourier transform limited optical pulse train from mode-locked semiconductor laser at 1.55 μm by pulse compression using dispersion flattened fiber with normal group-velocity dispersion, Electron Lett, 1998, 34(22): 2129-2130
    [99] Ranka J K, Windeler R S, Stentz A J, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,Opt Lett,2000,25(1):25-27
    [100] Birks T A, Wadsworth W J, Russel P. S. J, Super continuum generation in tapered fibers, Opt Lett,2000,25(9):1415—1417
    [101] Hansen K P, Jensen J R, Pumping wavelength dependence of super continuum generation in photonic crystal fibers, OFC 02,622-624, Paper ThGG8, Anaheim, USA, 2002
    [102] Nishizawa N, Goto T, Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser, Jpn J Appl Phys,2001,40(4B):1365-1367
    [103] K.P Hansen, J. J. Larsen, J. R. Jensen et al, Supercontinuum generation at 800mn in highly nonlinear photonic crystal fibers with normal dispersion,CLEO'2001,ThG2
    [104] A. O. Blanch, and P. S. J. Russell, et al, Pulse breaking and super continuum generation with 200fs pump pulses in photonic crystal fibers,J.Opt.Soc. Am.B,2002,19( 11 ):2567-2572
    [105] M. Seefeldt, A. Heuer, RMenzel, Compact white-light source with an average output power of 2.4W and 900nm spectral bandwidth, Opt.Commun, 2003,216(1-3): 199-202
    [106] K. K. Chow, Y. Takushima, Chinlon Lin et al. Flat super continuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion, OFC 2006, paper OFH5, 2006
    [107] O. Boyraz, J. Kim, M. N. Islam, et al, 10Gb/s multiple wavelength,coherent short pulses ource-based on spectral carving of super continuum generated in fibers, IEEE Light.Tech.,2000,18(12):2167-2174
    [108] N. Nishizawa and T. Goto, Widely wavelength-tunable ultra short pulse generation using polarization maintaining optical fibers, IEEE Selec.Top.Quan. Elect, 2001, 7(4): 518-524
    [109] C.C. Chang, H. P. Sardesai and A. M. Weiner, Code-division multiple-access encoding and decoding of a femtosecond optical pulses over a 2.5km fiber link, IEEE Photon.Technol.Lett., 1999,10(2): 171-173
    [110] T. Morioka, H. Takara, S. Kawaishi et al., Error-free 500Gbit/s all-optical de-multiplexing using low-noise, low jiter super continuum short pulses,IEEE Electron.Lett, 996,32(9):833-834
    [111] K. Mori, T. Morioka and M. Saruwatari, Ultra wide spectral range group-velocity dispersion measurement utilizing super continuum in an optical fiber pumped by a 1.5μ m compact laser source, IEEE Tran. Instru.Measure, 1995,44(3):712-715
    [112] Hard, X. D. Li, C. Chudoba et al, Ultra-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber, Opt.Lett.,2001,26(5):608-610
    [113] D. J. Jones, S. A. Diddams, J. K. Ranka et al., Carrier-envelop phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,Science,2000,288(4):635-659
    
    [114] A .M. Zhetlikov, Holey fibers, Phys. Usp, 2000,170:1203-1224
    [115] S. Kavanish, H. Takara, K. Uchiyama, et al .,1.4Tibt/s(200Gbit/sX7ch) 50km optical transmission experiment, IEEE Electron. Lett,1997,33(20): 1716-1717
    [116] S.Kawanishi,H.Takara,K.Uchiyana,et al, 3Tbit/s(160Gbit/sX19channel) optical TDM and WDM transmission experiment, IEEE Electron. Lett, 1999,35(10):826-827
    [117]K.Mori,K.Sato,H.Takara et al,Supercontinuum lightwave source generating 50GHz spaced optical ITU grid seamlessly over S-,C and L-bands,IEEE Electron.Lett.,2003,39(6):544-546
    [118]K.Abedin and F.Kubota,Supercontinuum generation with mode-spacing of 154GHz in 1460-1680nm region from opticalfiber by using actively mode-locked fiber laser,OFC 2003,233-234,TuL1
    [119]He Li,Yang Bojun,Zhang Xiaoguang,and Yu Li,Supercontinuum generation from dispersion-flattened photonic crystal fiber using picosecond pulses,Chinese Optics Letters,2006,vol.4,no.12,pp.715-717
    [120]Hu ML.,et al.Tunenable fiber with a comma-shaped supercontinuum generation in a core Optics Express,2006,14(5):high-index-step photonic-crystal 1942-1950
    [121]Hu M.L.,et al,Wavelength-tunable hollow-beam generation by a photonic-crystal fiber.Laser Physics Letters,2006,3(6):306-309
    [122]Hu M.L.,et al.Multiplex frequency conversion of unamplified 30-fs Ti:sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber.Optics Express,2004,12(25):6129-6134
    [123]Y.Xu,X.Ren,Z.Wang,et al,Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion,IEE Electronics Letters,43(2),2007,pp.87-88.
    [1] Birks T. A., Roberts P. J., Russell P., Full 2-D Photonic Bandgaps in Silica/Air Structures. Electronics Letters, 1995, 31:1941-1943.
    
    [2] P. Petropoulos, V. Finazzi, R.C.Moore, et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. OPTICS EXPRESS. 2003. 11:3568-3573
    [3] J .H .Lee, W. Belardi, K. Furusawa, et al., Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. IEEE Photon.Technol.Lett., 2003, 15:440-442.
    [4] Monro T. M., Richardson D. J, Broderick N G R, et al. Modeling large air freaction holey optical fiber. J. Lightwave Technol., 2003, 21 (2): 138-142.
    [5] Saitoh K, Koshiba M. Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion. Opt Express 2003, 11:843-8S2.
    [6] Poli F, Cucinotta A, Selleri S, et al., Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. IEEE Photon Technol.Lett. 2004,16:1065-1067.
    [7] Ortigosa-Blanch A, Knight J C, Wadsworth W J, et al., Highly birefringent photonic crystal fibers. Optics Letters, 2000, 25:1325-1327.
    [8] Ortigosa-Blanch A, Diez A, Gado-Pina M, et al., Ultrahigh birefringent nonlinear microstructured fiber. IEEE Photonics Technology Letters, 2004 16:1667-1669.
    [9] Zhu Z M and Brown T. G.., Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber.Optics Express , 2004, 12:791-796.
    [10] Jian Ju, Wei Jin, and M. Suleyman Demokan, Design of Single-Polarization Single-Mode Photonic Crystal Fiber at 1.30 and 1.55um. Journal of Lightwave Technology, 2006,24(2):825-830
    
    [11] Nielsen M. D, Folkenberg J.R., Mortensen N. A., et al., Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers.Opt. Express, 2004, 12:430-435。
    
    [12] Folkenberg J R, Nielsen M.D., Mortensen N.A, et al., Polarization maintaining large mode area photonic crystal fiber. Opt. Express, 2004 12(5):959-960.
    [13] Gates J C, Hillman C WJ, Baggett J C, et al., Structure and propagation of modes of large mode area holey fibers. Opt. Express, 2004,12(5):847-852.
    [14] K. Kurokawa, K.Tajima, K. Tsujikawa, et al., Penalty-free Dispersion Managed Soliton Transmission Over a 100-km Low-Loss PCF, J.Light-wave Technol., 24(1),2006, pp. 32-37.
    [15] B. Zsigri, C. Peucheret, M. D. Nielsen, et al, Demonstration of Broadcast Transmission and wavelength Conversion Functionalities Using Photonic Crystal Fibers, IEEE Photon. Technol. Lett., 18(21), 2006, pp.2290-2292
    [16] Jay E. Sharping, Mark A. Foster, and Alexander L. Gaeta, Octave-spanning,high-power microstructurefiber-based optical parametric oscillators, Opt.Express, 15(4), 2007, pp. 1474-1479.
    [17] K. Sasaki, S. K. Varshney, K. Wada, Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band,Opt. Express, 15(5), 2007,pp.2654-2668.
    [18] Qiu-guo Wang, Bo-jun Yang, Lan Zhang, et al., Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber,Chinese Opts. Lett., vol. 5, pp. 538-539,2007.
    [19] Shinde, Y.S., Kaur Gahir, et al., Dynamic Pressure Sensing Study Using Photonic Crystal Fiber: Application to Tsunami Sensing. Photonics Technology Letters, IEEE Volume 20, Issue 4, Feb. 15, 2008 Page(s):279 -281
    [20] Chen, H.-R., Lin K.-H., Lin J.-H., et al., Stress-Induced Versatile Tunable Long-Period Gratings in Photonic Crystal Fibers. Photonics Technology Letters, IEEE, Volume 20, Issue 17, Sept. 1, 2008 Page(s): 1503 - 1505
    [21] Abdur Razzak, S.M., Namihira,Y., Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers, Photonics Technology Letters, IEEE,Volume 20, Issue 4, Feb.15, 2008 Page(s):249-251
    [22] Nahar, N.K., Rojas, R.G, Coupling Loss From Free Space to Large Mode Area Photonic Crystal Fibers, Lightwave Technology, Journal of Volume 26, Issue 22, Nov.15, 2008 Page(s):3669 - 3676
    [23] Tse, M. L. V, Tam, H. Y., et al., Fusion Splicing Holey Fibers and Single-Mode Fibers:A Simple Method to Reduce Loss and Increase Strength.Photonics Technology Letters,IEEE Volume 21,Issue 3,Feb.1,2009 Page(s):164-166
    [24]De Matos,C.J.S.,Modeling Long-Pass Filters Based on Fundamental-Mode Cutoff in Photonic Crystal Fibers,Photonics Technology Letters,IEEE Volume 21,Issue 2,Jan.15,2009 Page(s):112-114
    [25]J.Knight,A.Benabid,W.Reeves,et al.,"Holey" Optical Fibers:Cages for Light," 2003,pp.693-694.
    [26]J.C.Knight,"Photonic crystal fibres," Nature,vol.424,pp.847-851,2003.
    [27]P.Russell,"Photonic crystal fibers," Science,vol.299,pp.358-362,2003.
    [28]P.Russell,"Applied physics:Photonic crystal fibers," Science,vol.299,pp.358-362,2003.
    [29]J.C.Knight,T.A.Birks,P.St.J.Russell,et al,All-silica single-mode optical fiber with photonic crystal cladding,Opt.Letter.,21(19),1996,pp.1547-1549.
    [30]吴重庆,光波导理论,清华大学出版社,2005.
    [31]J.Broeng,S.E.Barkou,T.Sondergaard,et al,Analysis of air-guiding photonic bandgap fibers,Optics Letters,vol.25,pp.96-98,2000.
    [32]J.Broeng,S.E.Barkou,T.Sondergaard,etal.,Analysis of air-guiding photonic bandgap fibers,optics Letters,vol.25,pp.96-98,2000.
    [33]St.J.Russell et al.,Recent progress in photonic crystal fibers,OFC'00,Paper ThD1,2000
    [34]T.A.Birks et al.,Endlessly single-mode photonic crystal fiber,Opt.Lett.,1997,22:961-963
    [35]Norihiko Nishizawa,Youta Ito,and Toshio Goto,0.78-0.90 μm Wavelength-Tunable Femtosecond Soliton Pulse Generation Using,IEEE Photon.Technol.Lett.,14(7):986-988,2002
    [36]N.A.Mortensen.Effective area of photonic crystal fibers[J].Opt.Exp.,2002,10(7):341-348
    [37]Guobin Ren,Ping Shum,Juanjuan Hu,et al.,Study of Polarization-Dependent Bandgap Formation in Liquid Crystal Filled Photonic Crystal Fibers,Photonics Technology Letters,IEEE,Volume 20,Issue 8,Aprill5,2008 Page(s):602-604
    [38] Ademgil, H.; Haxha, S, Highly Birefringent Photonic Crystal Fibers With Ultralow Chromatic Dispersion and Low Confinement Losses, Lightwave Technology, Journal of, Volume 26, Issue 4, Feb.15, 2008 Page(s):441 -448
    [39] Ming-YangChen, Polarization Maintaining Large-Mode-Area Microstructured Core Optical Fibers, Lightwave Technology, Journal of,Volume 26, Issue 13, July 1, 2008 Page(s): 1862 - 1867
    [40] A. Ferrando, E. Silvestre, P. Andres et al., Designing the properties of dispersion flattened photonic crystal fiber, Opt. Express, 2001,9:687-697
    [41] P. Petropoulos, H. Evendorff-Heidepriem, V. Finazzi, et al., Highly nonlinear and anomalously dispersive lead silicate glass holey fibers, Opt.Express, 2003, 11(26):3568-3573
    [42] T. Sorensen, J. Broeng, A. Bjarklev, et al., Macro-bending loss properties of photoniccrystal fibre, Electronics Letters, 2001, 37(5): 287-289.
    [43] T. P. Hansen, J. Broeng, C. Jakobsen, et al., Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling,Journal of Lightwave Technology, 2004,22(1): 11-15.
    [44] D. Ferrarini, L. Vincetti, M. Zoboli, Leakage properties of photonic crystal fibers, Opt. Exp.,2002,10(23), 1314-1319.
    [45] K. Saitoh, N. A. Mortensen, M. Koshiba , Air-core photonic band-gap fibers: the impact of surface modes, Opt. Exp., 2004, 12(3), 394-400.
    [46] Hyang K. K., Michel J. F. D., Gordon S. K. et al. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers, Opt.Exp., 2004, 12(15), 3436-3442.
    [47] B. R. Washburn, S. E. Ralph, and R. S. Windeler, Ultrashor pulse propagation in air-silica microstructure fiber, Opt. Express, 2002,10(13):575
    [48] K. M. Hilligse, H. N. Paulsen, J. Thgersen, et al., Initial steps of supercontinuum generation in photonic crystal fibers, J. Opt. Soc. Amer., B,2003, 20(9): 1887-1893
    [49] S. Coen, A. H. L. Chau, R. Leonhardt, et al., Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J. Opt. Soc. Amer., B, 2002, 19(4):753-764
    [50] A. L. Gaeta, Nonlinear propergation and continuum generation in microstructured optical fibers, Opt. Lett., 27(11):924-926
    [51] A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002)
    [52] T. Yamamoto, H. Kubota, S. Kawanishi, et al., "Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber," Opt. Express 11, 1537-1540 (2003)
    [53] A. Andersen, C. Peucheret, K. Hilligsoe et al, in: Proc. 5th Intern. Conf. on Transparent Optical Networks: ICTON 2003, Warsaw (Poland) 2003,National Institute of Telecommunications, Warsaw 2003, p.66
    [54] P. J. Roberts, B.J.Mangan,H.Sabert, et al.,Control of dispersion in photonic crystal fibers.J .Opt.Fiber Commun. Rep.,2005,2:435-461
    [55] Lin Zhang, Changxi Yang. Photonic crystal fibers with squeezed hexagonal lattice. Opt. Express, 2004,12:2371-2376.
    [56] Mingyang Chen, Rongjin Yu. Coupling characteristics of dualcore rectangular lattice photonic crystal fibers. J.Opt. A:Pure Appl. 2004, 6,pp:805-808.
    [57] Kunimasa Saitoh, Masanori Koshiba. Single-Polarization Single-Mode photonic Crystal Fibers. IEEE Photonics Technology Letters, 2003, 15:1384-1386.
    [58] W. J.Wadsworth, R. M. Percival, G. Bouwmans, et al.,Very high numerical aperture fibers. IEEE Photon.Technol.Lett., 2004,16:843-845.
    [59] W. H. Reeves, J. C. Knight, P. St. J. Russell, et al., Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express, 2002,10(14):609-613
    [60] W. H. Reeves, D. V. Skryabin, F. Biancalana, et al., Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers,Nature, 2003, 424(6948):511-515
    [61] J. D. Harvey, R. Leonhardt, K. G L. Wong, et al., Scalar modulational instability in the normal dispersion regime using a PCF, Opt. Lett., 2003,28(22):2225-2227
    [62] J. E. Sharping, M. Fiorentino, P. Kumar, et al., Optical parametric oscillator based on four-wave mixing in microstructure fiber, 2002, 27(19): 1675-1677
    [63] J. Lasri, P. Devgan, R. Tang, et al., A microstructure fiber-based, 10-GHz synchronized, tunable optical parametric oscillator in the 1550-nm regime,IEEE Photon. Technol. Lett., 2003, 15(8): 1058-1060
    [64]Y.Deng,Q.Lin,F.Lu,et al.,Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,Opt.Lett.,2005,30(10):1234-1236
    [65]P.Dainese,G.S.Wiederhecker,A.A.Rieznik,et al.,Designing fiber dispersion for broadband parametric amplifiers,International Microwave and Optoelectronics Conference(IMOC'05),2005
    [66]J.Y.Wang,M.Y.Gao,C.Jiang,et al.,Design and parametric amplification analysis of dispersion-flatted photonic crystal fibers,Chin.Opt.Lett.,2005,3(7):380-382
    [67]A.Y.H.Chen,G.K.L.Wong,S.G.Murdoch,et al.,Widely tunable optical parametric generation in a photonic crystal fiber,Opt.Lett.,2005,30(7):762-764
    [68]W.J.Wadsworth,J.C.Knight,A.Ortigosa-Blanch et al.,Soliton effects in photonic crystal fibers at 850nm[J],IEEE Electronics Letters,2000,36(1):53-55
    [69]Kazi S.Abedin,Fumito Kubota.,Wavelength tunable high repetition rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber[J],IEEE Journal of Selected Topic in Quantum Electronics,2004,10(5):1203-121
    [70]T.A.Birks,J.C.Knight,and J.Russell,Endlessly single-mode photonic crystal fiber,Opt.Lett.,22(13),1997,pp.961-963.
    [71]S.E.Barkou,J.Broeng,and A.Bjarklev,Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,Opt.Lett.,24(1),1999,pp.46-48.
    [72]D.Mogilevtsev,T.A.Birks,and P.S.J.Russell,Group-velocity dispersion in photonic crystal fibers,Opt.Lett.,23(21),1998,pp.1662-1664.
    [73]B.J.Eggleton,P.S.Westbrook,C.A.White,et al,Cladding-mode resonances in air-silica microstructure optical fibers,J.Lightw.Technol.,18(8),2000,pp.1084-1100.
    [74]F.Fogli,L.5accomandi and P.Bassi,Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers,Opt.Express,10(1),2002,pp.54-59.
    [75]G.E.Town and J.T.Lizer,Tapered holey fibers for spot-size and numerical-aperture conversion,Opt.Lett.,26(14),2001,pp.1042-1044.
    [76]J.T.Lizier and G.E.Town,Splice losses in holey optical fibers,IEEE Photon.Technol.Lett.,13(8),2001,pp.794--796.
    [77]F.Brechet,J.Marcou,D.Pagnoux,et al.,Complete analysis of the characteristics of propagation into photonic crystal fibers,by the finite element method,Opt.Fiber Technol.,6(2),2000,pp.181-191.
    [78]Cucinotta A.,Selleri S.,Vincetti,L.,et al,Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method,IEEE Photon.Technol.Lett.,20(8),2002,pp.1433-1442.
    [79]T.P.White,R.C.McPhedran,L.C.Botten,et al,Calculations of air-guided modes in photonic crystal fibers using the multipole method,Opt.Express,9(13),2001,pp.721-732.
    [80]T.P.White,R.C.McPhedran,C.M.de Sterke,et al,Confinement losses in microstructured optical fibers,Opt.Lett.,26(21),2001,pp.1660--1662.
    [81]P.J.Bennett,T.M.Monro,and D.J.Richardson,Toward practical holey fiber technology:fabrication,splicing,modeling,and characterization,Opt.Lett.,1999,24(17):1203-1205]
    [82]J.T.Lizier,and G.E.Town,Splice loss in holey optical fibers,OECC/IOOC'01,Paper TUG,2001
    [83]Bruno Bourliaguet,Claude Par(?),Fr(?)d(?)ric(?)mond et al.,Microstructured fiber splicingrn,Opt.Express,2003,11(25):3412-3417
    [1]F.S.Yang,M.E.Marhic,and L.G.Kazovsky,"CW fiber optical parametric amplifier with net gain and wavelength conversion efficiency>1," Electron. Lett.,vol.32,pp.2336-2338,1996.
    [2]J.Hansryd and P.A.Andrekson,"Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency," IEEE Photon.Technol.Lett.,vol.13,pp.194-196,Mar.2001.
    [3]M.E.Marhic,N.Kagi,T.-K.et al.,"Broadband fiber optical parametric amplifiers," Opt.Lett.,vol.21,pp.573-575,1996.
    [4]M.E.Marhic,Y.Park,F.S.et al.,"Broadband fiber-optical parametric amplifiers and wavelength converters with lowripple Chebyshev gain spectra," Opt.Lett.,vol.21,pp.1354-1356,1996.
    [5]M.Karlsson,"Four-wave mixing in fibers with randomly varying zerodispersion wavelength," J.Opt.Soc.Amer.B,vol.15,pp.2269-2275,1998.
    [6]M.-C.Ho,K.Uesaka,M.E.Marhic,et al.,"200-nm-bandwidth fiber optical amplifier combining parametric and raman gain," J.Lightwave Technol.,vol.19,pp.977-981,July 2001.
    [7]M.Westlund,J.Hansryd,P.A.Andrekson,et al.,"Transparent wavelength conversion in fiber with 24 nm pump tuning range," Electron.Lett.,vol.38,pp.85-86,2002.
    [8]H.Itoh,G.M.Davis,and S.Sudo,"Continuous-wave-pumped modulational instability in an optical fiber," Opt.Lett.,vol.14,pp.1368-1370,1989.
    [9]R.H.Stolen and J.E.Bjorkholm,"Parametric amplification and frequency conversion in optical fibers," IEEE J.Quantum Electron.,vol.QE-18,pp.1062-1072,1982.
    [10]G.Cappellini and S.Trillo,"Third order three-wave mixing in single-mode fibers:Exact solutions and spatial instability effects," J.Opt.Soc.Amer.B,vol.8,pp.824-838,1991.
    [11]N.Shibata,R.P.Braun,and R.G.Waarts,"Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber," IEEE J.Quantum Electron.,vol.23,pp.1205-1210,June 1987.
    [12]G.P.Agrawal,Nonlinear Fiber Optics,2nd ed.San Diego,CA,USA:Academic,1995,ch.10.
    [13]W.Imajuku and A.Takada,"Gain characteristics of coherent optical amplifiers using a Mach-Zehnder interferometer with Kerr media," IEEE J.Quantum Electron.,vol.35,pp.1657-1665,Nov.1999.
    [14]J.A.Levenson,I.Abram,Th.Rivera,et al.,"Reduction of quantum noise in optical parametric amplification," J.Opt.Soc.Amer.B,vol.10,pp.2233-2238,1993.
    [15]R.-D.Li,P.Kumar,and W.L.Kath,"Dispersion compensation with phase-sensitive optical amplifiers," J.Lightwave Technol.,vol.12,pp.541-549,Mar.1994.
    [16]W.Imajuku and A.Takada,"Pulse form reshaping of chirped pulse using optical phase-sensitive amplifier," in Proc.Optical Fiber Communication Conf.,San Diego,CA,1999,pp.131-133.
    [17]J.N.Kutz,W.L.Kath,R.-D.Li,et al.,"Long-distance pulse propagation in nonlinear optical fibers by using periodically spaced parametric amplifiers," Opt.Lett.,vol.18,pp.802-804,1993.
    [18]I.H.Deutsch and I.Abram,"Reduction of quantum noise in soliton propagation by phase-sensitive amplification," J.Opt.Soc.Amer.B,vol.11,p.2303,1994.
    [19]W.L.Kath,A.Mecozzi,P.Kumar,et al.,"Long-term storage of a soliton bit stream using phase-sensitive amplification:Effects of soliton-soliton interactions and quantum noise," Opt.Commun.,vol.157,pp.310-326,1998.
    [20]W.Imajuku and A.Takada,"Theoretical analysis of system limitation for AM-DD/NRZ optical transmission systems using in-line phase-sensitive amplifiers,"J.Lightwave Technol.,vol.16,pp.1158-1170,July 1998.
    [21]W.Imajuku,A.Takada,and Y.Yamabayashi,"Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron.Lett.,vol.36,pp.63-64,2000.
    [22]M.E.Marhic,C.H.Hsia,and J.-M.Jeong,"Optical amplification in a nonlinear fiber interferometer," Electron.Lett.,vol.27,pp.210-211,1991
    [23]Govind P.Agrawal,NonlinearF iber Optics,Third Edition & Applications of Nonlinear Fiber Optics(Beijing:Publishing House of Electronics Industry,2002),Chap.10.
    [24]M.E.Marhic,Y Park,and F.S.Yang and L.G Kazovsky,Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple chebyshev gain spectra,Opt.Lett.Vol.2 1,pp.1354-1356,1996.
    [25]Ho M.C.,Uesaka K.,Marhic M.E.,et.al,200-nm-Bandwidth Fiber Optical Amplifier Combining Parametric and Raman Gain,IEEE J Lightwave Techno.,2001,19(7):977-980.
    [26]G.P,Agrawal非线性光纤光学原理及应用.贾东方,余震虹,谈斌等译.北京电子工业出版社,2002
    [27]htp://mathwodd.wol&am.com/First-OrderOrdinaryDiferentialEquation.html.
    [28]R.H.Stolen and J.E.Bjorkholm,"Parametric amplification and frequency conversion in optical fibers," IEEE J.Quantum Electron.,vol.QE-18,pp.1062-1072,1982.
    [29]P.O.Hedekvist,"Optical Phase Conjugation and All-Optical Demultiplexing Using Four-Wave Mixing in Dispersion Shifted Fibers,"Ph.D.Thesis,School of Electrical and Computer Engineering,Chalmers University of Technology,G(o丨¨)teborg,Sweden,1998.
    [30]P.O.Hedekvist,M.Karlsson,and P.A.Andrekson,"Fiber four-wave mixing demultiplexing with inherent parametric amplification," J. LightwaveTechnol.,1997,Nov,vol.15,pp.2051-2058.
    [31]A.Vatarescu,"Light conversion in nonlinear single-mode optical fibers," J.Lightwave Technol.,vol.5,pp.1652-1659,1987.
    [32]K.Inoue and T.Mukai,"Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt.Lett.,vol.26,pp.10-12,2001.
    [33]H.A.Hams,The Noise Figure of Optical Amplifiers,IEEE Photon.Technol.Let.,Vol.10,pp.1602-1604,Nov.1998.
    [34]宋立军,黄超等,NOLM全光波长变换输出脉冲波形特性研究,光电子.激光,2002,vol.11,No.11,pp.403-406。
    [35]郑学彦,管克俭,叶培大,马赫一曾德尔型全光波长变换器的动态特性分析,光学学报,1999,vol.19,No.1,93-99.
    [36]Treji Durhuus,B.Mikkelsen,K.E.Stubkjaer et al.,All-optical wavelength conversion by semiconductor optical amplifiers.J.Lightwave technal.,1996,14(6):942-954.
    [37]迟楠,齐江等,利用半导体光环行激光器实现四波混频可调谐波长变化,中国激光,2001,vol.A28,No.3,261-264.
    [38]N Shibata,Ralf P.,Braun and Robert G.Waarts,"Phase-Mismatch Dependence of Efficiency of wave Generation Through Four-Wave Mixing in a Single-Mode Optical Fiber",IEEE JQE.Vol.23,pp:1205-1210,July 1987.
    [39]Thomas Torounidis and Peter Andrekson,Broadband Single-Pumped Fiber-Optic Parametric Amplifiers,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.I9,NO.9,MAY 1,2007
    [40]Jonas Hansryd and Peter A.Andrekson,Broad-Band Continuous Wave-Pumped Fiber Optical Parametric Amplifier with 49-dB Gain and Wavelength-Conversion Efficiency,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.13,NO.3,MARCH 2001
    [1]P.Petropoulos,H.Ebendorff-Heidepriem,V.Finazzi,et al.,Highly nonlinear and anomalously dispersive lead silicate glass holey fibers.Opt.express,2003.11:3568-3573
    [2]Monro T M,Richardson D J,Broderick N G R,et al.Modeling large air freaction holey optical fiber.J.Lightwave Technol.,2003,21(2):138-142.
    [3]Saitoh K,Koshiba M.Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion.Opt.Express 2003,11:843-8S2.
    [4]Poli F,Cucinotta A,Selleri S,et al.,Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers.IEEE Photon Technol.Lett.2004,16:1065-1067.
    [5]Ortigosa-Blanch A,Knight J C,Wadsworth W J,Arriaga J,Mangan B J,Birks T A,and Russell P S J,Highly birefringent photonic crystal fibers.Optics Letters,2000,25:1325-1327.
    [6]Ortigosa-Blanch A,Diez A,Gado-Pina M,et al.,Ultrahigh birefringent nonlinear microstructured fiber.IEEE Photonics Technology Letters,2004,16:1667-1669.
    [7]Zhu Z M and Brown T G.Experimental studies of polarization properties of super continua generated in a birefringent photonic crystal fiber.Optics Express 2004,12:791-796.
    [8]Jian Ju,Wei Jin,and M.Suleyman Demokan,Design of Single Polarization Single-Mode Photonic Crystal Fiber at 1.30 and 1.55um.Journal of Lightwave Technology,2006,24(2):825-830
    [9]Ranka J K,Windeler R S,Stentz A J,Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,Opt Lett,2000,25(1):25-27
    [10]K.P Hansen,J.J.Larsen,J.R.Jensen et al,Super continuum generation at 800mn in highly nonlinear photonic crystal fibers with normal dispersion,CLEO'2001,ThG2
    [11]A.O.Blanch,and P.S.J.Russell,et al,Pulse breaking and super continuum generation with 200fs pump pulses in photonic crystal fibers,J.Opt.Soc.Am.B,2002,19(11):2567-2572
    [12]M.Seefeldt,A.Heuer,RMenzel,Compact white-light source with a naverage output power of 2.4W and 900nm spectral bandwidth,Opt.Commun,2003,216(1-3):199-202
    [13]K.K.Chow,Y.Takushima,Chinlon Lin et al.Flat super continuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,OFC 2006,paper OFH5,2006
    [14]K.S.Yee,IEEE Trans.Antennas Pmpag.14,302(1996)
    [15]C.F.Lee,R.T.Shin,and J.A.Kong,in Progress in Electromagnetic Research,(Elsevier,New Youk,1991),Chap.11
    [16]P.V.Mamyshev,S.V.Chernikov.Ultra-short pulse propagation in optical fibers.J.OPt.Soc.Am.B,1990,15(19):1076-107
    [17]G.P,Agrawal非线性光纤光学原理及应用.贾东方,余震虹,谈斌等译.北京电子工业出版社,2002
    [18]E.Bourkoff.W.Zhao,R.I.Joseph,et al,Opt.Lett.12.172,1987.
    [19]K.Ohkuma,Y.H.lchikawa,and Y.Abe,Opt.Lett.12.516,1987.
    [20]S.Chi and S.Wang,Opt.Quantum Electron.28.1351,1996.
    [21]K.Tai,A.Hasegawa,and N.Bekki,Opt.Lett.13.392,1988.
    [22]F.M.Mitschke and L.E Moilenauer,Opt.Lett.11.659,1986.
    [23]J.A.Fleck,J.R.Morris,and M.D.Feit,Appl.Phys.10.129,1976.
    [24]A.Hasegawa and E tappert,Appl.Phys.Lett.23.142,1973.
    [25]H.Sotobabyshi,K.Kitayama,325 nm bandwidth supercontinuum generation at 10Gb/s using dispersion-flatted and non-decreasing normal dispersion fibre with pulse compression technique,Electron.Lett.1998,34(13):1336-1337
    [26]J.Hansryd,P.A.Andrekson,M.Westlund,J.Li,and P.O.Hedekvist,Fiber-based optical parametric amplifiers and their applications,J.Sel.Top.Quantum Electron.2002,8(3):506-520
    [27]P.O.Hedekvist,M.Karlsson and P.A.Andrekson,Fiber four-wave mixing demultiplexing with inherent parametric amplification,J.Lightwave Technol.,1997,15(11):2051-2058
    [28]J.E.Sharping,M.Fiorentino,A.Coker and P.Kumar,Four-wave mixing in microstructure fier,Opt.Lett.,2001,26(14):1048-1050
    [29]F.Biancalana,D.V.Skryabin,and P.St.J.Russell,Four-wave mixing instabilities in photonic-crystal and tapered fibers,Phys.Rev.E.,2003,68:046603
    [30]S.O.Konorov,A.B.Fedotov,and A.M.Zheltikov,Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,Opt.Lett.,2003,28(16):1448-1450
    [31]M.Euoehi,F.Poli,S.Selleri,A.Cueinotta and L.Vincetti,Study of Raman amplification properties in triangular photonic crystal fibers,J.Lightwave Technol.,2003,21(10):2247-2254
    [32]F.Benabid,J.C.Knight,G.Antonopoulos and P.S.J.Russell,Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,Science,2002,298:399
    [33]J.P.Gordon,Theory of the soliton self-frequency shift,Opt.Lett.,1986,11(10):662-664
    [34]M.N.Islam,G.Sucha,I.Barjoseph et al.,Broad bandwidths from frequency-shift solitons in fibers,Opt.Lett.,1989,14(7):370-372
    [35]J.Herrmann and A.Nazarkin,Coherent Raman response and spectral characteristics of ultrashort solitons in fibers,1996,53(6):6492-6495
    [36]D.H.Kim,J.U.Kang,J.B.Khurgin,Cascaded Rarnan self-frequency shifted soliton generation in an Er/Yb-doped fiber amplifier,Appl.Phys.Lett.,2002,81(15):2695-2697
    [37]H.Hatami-Hanza,J.Hong,A.Atieh,P.Mylinski,and J.Chrotowski,Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,IEEE Photon.Technol.Lett.,1997,9(6):833-835
    [38]N.Nishizawa and T.Goto,Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,IEEE J.Sel.Top.Quantum Electron.2001,7(4),518-524
    [39]M.Kato,K.Kurokawa,K.Fujiura,T.Kurihara,and K.Okamoto,High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,Electron.Lett.2002,38(4),164-166
    [40]C.Xu and X.Liu,Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,Opt.Lett.,2003,28(12):986-988
    [41]M.Kato,K.Fujiura and T.Kurihara,Error-free programmable multi-wavelength pulse oscillator based on self-frequency shift of Raman soliton,2004,40(6):382-384
    [42]X.Liu,C.Xu,W.H.Knox,et al.,Soliton self-frequency shift in a short tapered air-silica microstructure fiber,Opt.Lett.,2001,26(6):358-360
    [43]B.R.Washburn,S.E.Ralph,P.A.Lacourt,J.M.Dudley,W.T.Rhodes,R.S.Windeler,and S.Coen,Tunable near-infrared femtosecond soliton generation in photonic crystal fibres,Electron.Lett.,2001,37(25),1510-1512
    [44]I.G.Cormack,D.T.Reid,W.J.Wadsworth,et al,Observation of soliton self-frequency shift in photonic crystal fibre,Electron.Lett.,2002,38(4):167-169
    [45]P.Petropoulos,T.M.MonrO,H.Ebendorff-Heidepriem,K.Frampton,R.C.Moore,H.N.Rutt,D.J.Richardson,Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,OFC'03,PD3,2003
    [46]J.K.Ranka,R.S.Windeler,S.J.Stentz,Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,Opt.Lett.,2003,25(1):25-27
    [47]A.B.Fedotov,A.N.Naumov,A.M.Zheltikov,Frequency-tunable supercontinuum generation in photonic crystal fibers by femtosecond pulses of an optical parametric amplifier,Opt.Soc.Am.B,2002,19(9):2156-2164
    [48]A.Apolonski,B.Povazay,A.Unterhuber,et al.,Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,J.Opt.Soc.Am.B,2002,19(9):2165-2170
    [49]A.N.Naumov,A.B.Fedotov,A.M.Zhelticov,et.al.,Enhanced χ~((3))interactions of unamplified femtosecond Cr:frsterite laser pulses in photonic-crystal fibers,J.Opt.Soc.Am.B,2002,19(9):2183-2190
    [50]阎培光,阮双琛,杜晨林等,飞秒脉冲作用下光子晶体光纤超连续谱的 产生,光子学报,2003,32(11):1299-1301
    [51]李曙光,冀玉领,周桂耀等,多孔微结构光纤中飞秒激光脉冲超连续谱的产生,物理学报,2004,53(2):478-483
    [52]阮双琛,于永芹,程超等,OPA泵谱保偏光子晶体光纤产生超连续谱和非纤性特性的研究,光子学报,2004,33(7):789-791
    [53]胡明列,王清月,栗岩锋等,非均匀微结构光纤中超连续光的产生和传输,中国激光,2004,31(5):567-569
    [54]宋学鹏 陈波 林健飞 等,多芯微结构光纤产生超连续谱,中国激光,2005,33(8):1066-1068。
    [55]徐永钊 任晓敏 王子南等,利用正常色散微结构光纤产生平坦的超连续谱,光电子.激光,2007,18(8):889-892。
    [56]Xia Zhang,Xiaomin Ren,Yongzhao Xu,et al,Ultraflat supercontinuum generation in a dispersion-flattened microstructure fiber,Microwave and Optical Technology Letters,Vol 49(5),pp:1062-1064.
    [1]K.Mori,T.Morioka and M.Saruwatari,Ultra wide spectral range group-velocity dispersion measurement utilizing super continuum in an optical fiber pumped by a 1.5μm compact laser source,IEEE Tran.Instru.Measure,1995,44(3):712-715
    [2]Hard,X.D.Li,C.Chudoba et al,Ultra-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,Opt.Lett.,2001,26(5):608-610
    [3]D.J.Jones,S.A.Diddams,J.K.Ranka et al.,Carrier-envelop phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,Science,2000,288(4):635-659
    [4]A.M.Zhetlikov,Holey fibers,Phys.Usp,2000,170:1203-1224
    [5]T.Morioka,H.Takara,S.Kawaishi et al.,Error-free 500Gbit/s all-optical de-multiplexing using low-noise,low jiter super continuum short pulses,IEEE Electron.Lett,996,32(9):833-834
    [6]M.Nisoli,S.Desilvestri,0.Svelto,Generation of high energy 10fs pulses by a new Pulse compression technique.Appl.Phys.Lett.,1996,68(20):1-3
    [7]D.J.Jones,S.A.Diddams,J.K.Ranka,etal.Carrier envelope Phase control of femto-second mode-locked lasers and direct optical frequency synthesis.Science,1999,288(28):635-639
    [8]S.A.Diddams,D.J.Jones,J.Ye,etal.Direct link between Microwave and optical frequencies with a 300THz femto-second laser comb.Phy.Rev.Lett.,2000,84(22):5102-5105
    [9]P.A.Nndrekson.Picosecond optical sampling using four-wave-mixing in fiber.Electron.Lett.,1991,27:1440-1441
    [10]Hard,X.D.Li,C.Chudoba et al,Ultra-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,Opt.Lett.,2001,26(5):608-610
    [11]B.Costa,D.Mazzioni,M.Puleo,etal.Phase shift technique for the measurement of chromatic dispersion in oPtical fibers using LED's,IEEE J.Quantum Electron.1982,18(10):1509-1515
    [12]M.Fujise,M.Kuwazuru,M.Numokawa,etal.Chromatic dispersion measurement over a 100km dispersion-shifted single-mode fiber by a new Phase-shift technique,Electron.Lett,,1991,22:570-572
    [13]K.Morioka,M.Saruatari,et al.Ultrawide spectral range group-velocity dispersion measurement utilizing super continuum in an optical fiber pumped by a 1.5um compact laser source,IEEE,Journal of Lightwave Technology,1995,44(3):712-715
    [14]T.Morioka,K.Uchiyama,S.Kawanishi etal.Picosecond pulse Stability based source with low fitter and high Multi-wavelength optical frequency on 200nm super continuum filtering.Electron.Lett.,1995,31:1064-1066
    [15]T.Morioka.K.Mori,M.Saruwatari,More than 100-wavelength-channel Picosecond optical Pulse generation from single lasers source using super continuum in optical fibers.Electron.Lett.,1993,29:862-864
    [16]T.Morioka,K.Mori,S.Kawanishi,et al.Multi-WDM-channel Gbit/s Pulse generation from a single LD-pumped super continuum in optical fibers,Technol.Lett.1994,6:365-368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700