高效太阳电池生长机理的计算机模拟与可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境问题是21世纪人类面临的两大主要问题。世界能源将以石油化工能源为主的能源逐步转变为太阳能为主的可再生能源。太阳能是永不枯竭、无污染的清洁能源。高效率多结叠层太阳电池(GaAs基系多结太阳电池)是目前世界上最具竞争力的新一代太阳电池,它是航天飞行器急需的高性能长寿命空间主电源。在研制GaAs叠层太阳电池的方法中,金属有机化学气相沉积(Metal Organic Chemical Vapor Phase Deposition, MOCVD)技术是最优的。当前国内外关于GaInP薄膜电池生长的研究都是从实验方面研究GaInP/GaAs/Ge叠层电池的工艺特性,从而优化工艺和结构参数,但是缺乏从计算机模拟方面研究GaInP薄膜生长的动力学机理。
     然而,计算机模拟往往在模型建立和计算分析方面具有较大优势,但缺乏直观和交互特性。虚拟现实(Virtual Reality, VR)可视化技术弥补了计算机模拟的不足,可以帮助设计师和工艺师发现设计中的问题,为改进设计提供理论依据。因此,将计算机模拟与虚拟现实可视化技术有机结合可以创造一个更人性化的集成仿真系统,为优化结构设计和工艺参数提供指导依据。
     本论文以MOCVD设备研制高效多结太阳电池为背景,用计算机模拟和可视化研究的方法,从宏观和微观两个角度分别研究GaInP外延材料的生长动力学机理。其主要研究内容和成果如下:
     1.运用计算流体力学(computational fluid dynamics, CFD)方法对生长高效三结GaInP/GaAs/Ge叠层太阳电池的MOCVD反应室内气体的热流场进行了数值模拟研究。通过对不同工艺参数下反应室内气体热流场的数值模拟,得出结论:其他条件一定时,在气体总流量5L/min和系统压力0.1atm时,衬底上的热流场分布比较均匀。同时,要求衬底的长度不能超过两端排气口,为优化MOCVD反应室衬底的尺寸设计提出了合理化建议。
     2.利用虚拟现实可视化技术对MOCVD反应室内气体的热流场进行了可视化仿真。可视化仿真结果准确直观地显示反应室内温度场和速度场的分布情况,研究人员可以透过反应室表面看清室内的温度场和速度场的分布情况,从而及时调整加热器的温度和进口气体的总流量等工艺参数,在Ge衬底表面获得均匀的热流场分布。
     3.运用正交实验法对MOCVD生长GaInP薄膜电池的工艺参数进行了数值模拟试验,对试验结果进行了极差分析和方差分析,得出了影响恒温区厚度H的工艺参数的主次顺序,并得出了最佳参数组合;用回归分析的方法建立了基于恒温区厚度的MOCVD工艺参数数学模型;经过试验验证了MOCVD工艺参数影响作用的普遍性,为MOCVD反应室热流场的恒温区厚度提供了经验公式,为合理确定MOCVD工艺参数提供了理论基础。
     4.以MOCVD技术生长高效GaAs叠层太阳电池为对象,提出了一种基于动力学蒙特卡罗方法的模拟多元化合物GaInP薄膜生长模型及模拟算法。对GaInP薄膜生长的过程进行了动力学蒙特卡罗模拟。
     5.将动力学蒙特卡罗模拟的结果与虚拟现实可视化技术结合,实现了MOCVD反应室内GaInP薄膜生长过程的可视化仿真。模拟仿真结果准确直观地展示了MOCVD反应室内GaInP薄膜生长的过程,揭示了模拟时间、衬底温度及沉积速率对GaInP薄膜形貌的影响规律;模拟仿真结果与实验结果具有一致性,为优化MOCVD生长GaInP薄膜的工艺参数提供理论依据。
     6.在Windows环境下,基于Visual Studio.net2003和Open Inventor开发了一个高效太阳电池生长机理仿真系统的原型系统,实现了总体设计中的各个功能模块。
     通过本文的研究,获得在一定条件下高质量GaInP薄膜材料的工艺参数,对提高太阳电池的效率和质量具有重要的意义。
Energy and enviromment are two principal problems people confront in the 21st century. The world energy which used to be mainly petrochemical energy will gradually convert into renewable resources - solar energy. Solar energy is inexhausted and pollution-free. At present, high-efficiency multijunction tandem solar cells (GaAs basic series multijunction solar cells) are the most competitive in the new generation solar cells in the world, and are high-performance and long-life space main electrical sources which aerospace craft urgently requires. Among the development methods of GaAs tandem solar cells, metal organic chemical vapor deposition (MOCVD) is optimum. Nowadays all the studies at home and abroad have been paid attention to technical characteristics of GaInP/GaAs/Ge tandem solar cells from the experimental aspect, consequently optimizing processing and structural parameters, but the dynamic mechanism of GaInP film growth has little attention from the point of view of computer simulation.
     However, computer simulation has usually more advantageous at aspects of model building and computing analysis, being short of intuitive and interactive characteristics. Virtual reality (VR) visualization technology has made up the disadvantages of computer simulation, and can help designer and technician find the problems of design, consequently providing theoretical basis for improving design. Therefore, the organic combination of computer simulation and VR visualization technology can create a more humanized integrated simulation system, providing guidance basis for the optimization of structural design and processing parameters.
     With the background of high-efficiency mulitjunction solar cell made by MOCVD equipment, this thesis uses the study method of combining computer simulation with visualization, studying growth dynamic mechanism of GaInP epitaxial material from the macroscopic level and microscopic level respectively. The thesis’s main study contents and results are as follows:
     1. Method of Computational Fluid Dynamics (CFD) was applied to numerical simulation of gas’s thermal and flow fields of MOCVD reactor which grows high-efficiency three-junction GaInP/GaAs/Ge tandem solar cells. Through CFD numerical simulation of gas’s thermal and flow fields in reactor for different processing parameters, the results are acquired that, on a certain conditions, the distributions of thermal and flow fields over the substrate are relatively uniform at the total gas flux of 5L /min and system pressure of 0.1atm. Meanwhile, the substrate length must be not more than the distance between two ends of exhaust gas, thus providing rational suggestion for optimization design in size of the substrate in the reactor.
     2. VR visualization technology was applied to the visualization of gas’s thermal and flow fields of MOCVD reactor. The visualization results truly and intuitively display distributing situation of gas’s temperature field and velocity field in MOCVD reactor. Researches can visually see the distributions of temperature and velocity fields inside reactor through wall, thus adjusting the processing parameters such as the heater’s temperature and the whole flow of gas’s inlet in time so as to acquire uniform thermal and flow fields over Ge substrate.
     3. Orthogonal experimental method was applied to numerical simulation experiment for processing parameters of GaInP thin film cell grown by MOCVD. With range analysis and variance analysis on experiments, the importance order of processing parameters affecting thickness of the flat-temperature zone is found, and the best level combinations of parameters are confirmed. Meanwhile, non-linear regression analysis is used to build mathematical models of processing parameters based on thickness of the flat-temperature zone. By means of the experimental verification, the universality of processing parameters’effect on thickness of the flat-temperature zone is verified, and experiential formula is offered for thickness of the flat-temperature zone of thermal and flow fields of MOCVD. All those provide theoretical basis for reasonably confirming processing parameters of MOCVD.
     4. With the object of growing high-efficiency multijunction tandem solar cells by MOCVD technology, this paper proposed a model and algorithm of multielement compound GaInP thin film growth based on method of Kinetic Monte Carlo (KMC). KMC simulation was carried out for GaInP thin film growth process.
     5. The result of KMC simulation was combined with VR visualization technology. The visualization emulation of the process of GaInP thin film growth in MOCVD reactor was realized. The results of simulation and visualization truly and intuitively display process of GaInP thin film growth in MOCVD reactor, and they reveal the rule of influence of simulation time, substrate temperature and deposition rate on GaInP thin film morphology. The simulation results well coincide with experimental results, providing the optimizations of processing parameters of GaInP thin film grown by MOCVD with theoretical basis.
     6. Based on Visual Studio.net2003 and Open Inventor, a prototype system of simulation of growth mechanism of high-efficiency solar cell was implemented in the environments of Microsoft Windows. All modules in the system design are realized in the prototype system.
     By the study of this paper, the processing parameters of high-quality GaInP thin film material are acquired under a certain conditions. The study is of important meaning for improving the efficiency and quality of solar cell.
引文
[1] E. Becquerel, Comptes Rendus 9, 561 (1839).
    [2] D.M.Chapin, C.S.Ruller, and G.L.Pearson, J.Appl.Phys. 25,676 (1954).
    [3]何炜瑜. GaAs系列太阳电池技术与发展[J].中国民航学院学报, 2004, 22(2): 59-64.
    [4] Ting S M , Fitzgerald E A , Sieg R M , et al . Range of Defect Morphologies on GaAs Grown on Offcut (001) Ge Substrates. Journal of Electronic Materials, 1998 , 27(5) : 451-461.
    [5] Modak P, Dhont M, Mijlemans D, et al . (Al ) GaInP Multiquantum Well L EDS on GaAs and Ge. Journal of Electronic Materials , 2000 ,29 (4) :80-84.
    [6] J. M. Olson, D. J. Friedman and Sarah Kurtz. Handbook of Photovoltaic Science and Engineering[M]. John Wiley & Sons, 2003.
    [7] H. Nelson, RCA.Rew.,1963, 24(4):603-615.
    [8] James J. Coleman. Metal Organic Chemical Vapor deposition for optoelectronic devices [C] . Proceedings of the IEEE , 1997 ,85(11).
    [9]任爱光,任晓敏,王琦,熊德平,黄辉,黄永清.低压金属有机化学气相外延生长室热流场的模拟与分析[J ].材料科学与工程学报, 2006, 24(5): 662-665.
    [10] H.M. Manasevit, Appl.Phys.Lett,1968,12:156-158.
    [11]杨树人,丁墨元.外延生长技术[M].北京:国防工业出版社,1992,278-298.
    [12] J. Singh. Electronic and Optoelectronic Properties of Semiconductor Structure [J].Cambridge University Press, 2003.
    [13] R. D. Dupuis. III-V semiconductor heterojunction devices grown by metal-organic chemical vapor deposition [J]. IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, pp. 1040-1050, 2000.
    [14] Ivan Garcia, Ignacio Rey-Stolle, Beatriz Galiana and Carlos Algora. Choices for the epitaxial growth of GaInP/GaAs dual junction concentrator solar cells [J]. 2005 Spanish Conference on Electron Devices, Proceedings, v 2005, 2005, 251-254
    [15]文尚胜,廖常俊,范广涵,邓颂豪,邓云龙,张国东.现代MOCVD技术的发展与展望[J].华南师范大学学报,1999(3):99-107.
    [16]杨春,李言荣.薄膜生长模型与计算机模拟[J].功能材料, 2003, 34(3):247-249.
    [17]陈光华,邓金祥等.新型电子薄膜材料[M].北京:化学工业出版社,2002.9, 454-469.
    [18]宋鹏,陆建生,瑚琦,赵明娟.杨滨.薄膜沉积机理的计算机模拟应用和发展[J ].材料学报,2003,17:154-157.
    [19] Meixner M, Kunert R, Scholl F. Control of Strain-mediated Growth Kinetics ofSelf- assembled Semiconductor Quantum Dots [J]. Phys. Rev. B, 2003, 67 (19) : 195301.
    [20] CROSS T A , et al . GaAs solar panels for small satellites : Performance data and technology trends[C] . Washington DC: Proceedings of 25th IEEE PVSC , 1996 , 277-282..
    [21] Mitsuru Imaizumi, et al. RADIATON EFFECTS ON HIGH-EFFICIENCY InGaP/InGaAs TRIPLE-JUNCTION SOLAR CELLS DEVELOPED FOR TERRESTRIAL USE[C].2002 IEEE,990-993.
    [22]张忠卫,陆剑峰,池卫英,王亮兴,陈鸣波.砷化镓太阳电池技术的进展与前景[J].上海航天,2003(3):33-38.
    [23] A1Gurayr,et al.Themral and flow issues in the design of MOCVD reactors[J].J Cyrstal Growth,1994 (145):642.
    [24] T Motoda,et al Multi-wafer growth of highly uniform and high-quality AlGaInP/GalnP structure using high-speed rotating disk MOCVD[J].J Cyrstal Growth,1994(145):650.
    [25] G S Tompa, et al. Design and operating characteristics of a Metal organic vapor phase eptiaxy production scale,Vertieal,high speed, rotating disk reactor [J]. J Cryal Growth,1994(145): 655.
    [26] Lammasniemi J et al., Proc. Second World Conference and Exhibition on Photovoltaic Energy Conversion, 1177 (1998).
    [27] Xenidou,T.C., Boudouvis,A.G., Markatos,N.C., et al. An experimental and computational analysis of a MOCVD process for the growth of Al films using DMEAA [J]. Surface and Coatings Technology, 2007, 201(22-23): 8868-8872.
    [28] L.Kadinski, V.Merai, A.Parekh, et.al. Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors [J]. Journal of Crystal Growth, 2004, 261:175-181.
    [29] A.Lobanova, K.Mazaev, E.Yakovlev, et al. Parametric studies of III-nitride MOVPE in commercial vertical high-speed rotating disk reactors [J]. Journal of Crystal Growth, 2004, 266:354-362.
    [30] Ik-Tae Im, Masakazu Sugiyama, Yukihiro Shimogaki, et al. A numerical study on heat transfer and film growth rate of InP and GaAs MOCVD process [J]. Journal of Crystal Growth, 2005, 276:431-438.
    [31] Liu, S.M.,Gu, S.L.,Zhu,S.M. et al. Modeling analysis of the MOCVD growth of ZnO film [J].Journal of Crystal Growth, 2007, 299(2):303-308.
    [32]胡晓宇,何华云.生产型GaN MOCVD设备控制系统软件设计综述[J].电子工业专用设备,2006,35(142):28-34.
    [33]何华云,胡晓宇.生产型GaN MOCVD(6片机)设备中的压力控制技术[J].电子工业专用设备,2006,35(143):61-64.
    [34]胡晓宇,杨友才,何华云,邹春艳,王慧勇,李学文.基于以太网通讯模块的MOCVD设备控制系统设计[J].电子工业专用设备,2007,36(152):20-24.
    [35]胡晓宇,何华云,王慧勇.MOCVD工艺中源材料用量计算方法[J].电子工业专用设备,2007,36(153):56-60.
    [36]魏鸿源,董向芸,从光伟等.第九届全国MOCVD学术会议论文集[C].安徽黄山:中国有色金属学会,2005.36,39-40.
    [37]刘奕,陈海昕,符松.GaN-MOCVD设备反应室流场的CFD数值仿真[J].半导体学报,2004,25(12):1639-1646.
    [38]杨云柯,高立华,陈海昕,等.喷淋式GaN-MOCVD反应室的CFD数值仿真及优化[J].工程力学, 2007, 24(9):173-178.
    [39]徐谦,左然.反向流动垂直喷淋式MOCVD反应器生长GaN的化学反应数值模拟[J].人工晶体学报, 2007, 36(2):338-343.
    [40]许红祥.用于GaN材料制备的MOCVD系统反应室模拟[D].西安电子科技大学,2005.
    [41]李述体等.生长模式控制对MOCVD生长GaN性能的影响[J].华南师范大学学报(自然科学版),2005,(4):58-62.
    [42]杨春山,傅文斌,周璧华. MPCVD中基片加热材料的温度场摄动模型研究[J].电波科学学报, 2002, 17(5):495-498.
    [43]陈燕,陈丹晔. MOCVD反应器内部气体流动模拟分析[J].液压气动与密封, 2006,3: 44-45
    [44] S.R.Kurtz, J.M.Olson, and A.Kibller. Effect of growth rate on the band gap of Ga0.5In0.5P[J]. Appl.Phys.Lett., 1900,57(18):1922-1924.
    [45] Tohru Suzuki. Spontaneous Ordering in Semiconductor Alloys [M]. USA :Springer, 2002.
    [46]王晋国,李晓婷,魏俊波.GaInP2/GaAs/Ge级联电池隧道结的结构设计及金属有机化学汽相淀积生长研究[J].陕西师范大学学报(自然科学版),2005,33(2):37-43.
    [47]俞波,李建军,盖红星,等. (Al)GaInP材料的MOCVD生长研究[J].激光与红外, 2005, 35(3): 181-183.
    [48]李晓婷,汪韬,赛小锋,等. Ge衬底上GaInP2材料的生长研究[J].光子学报, 2005, 34(6):909-911.
    [49] Gilme G H, Huang H, Roland C.Thin film deposition fundamentals and modeling [J].Computational Materials Science,1998,84(12):354-380.
    [50] Takano, Koguer Y, et al.Molecular dynamics, Monte Carlo ang their hybrid methods: applications to thin film growth dynamics[J].Thin Solid Film,1998, (334):209-213.
    [51]吴锋民,朱启鹏.超薄膜外延生长的计算机模拟[J].物理学报,1998.09,47(9), 1427-1435.
    [52]吴锋民,施建青,吴自勤.高温下金属薄膜生长初期的模拟研究[J].2001.08, 50(8), 1555-1559.
    [53]张庆瑜,马腾才.载能原子沉积Au/Au(100)外延薄膜生长的计算机模拟[J].物理学报, 2000.02, 49(6),1124-1131.
    [54]张庆瑜,马腾才.Au/Au(100)外延薄膜生长的计算机模拟及其微观机制研究[J].物理学报,2000.02,49(2),297-305.
    [55]王晓平,谢峰,石勤伟,赵特秀.晶格失配对异质外延超薄膜生长中成核特性的影响[J].物理学报,2004.08,53(8),2699-2704.
    [56]顾观菊,叶阳,吴锋民.各向异性基底上超薄膜生长的计算机模拟[J].浙江工业大学学报, 2000, 28(1),31-36.
    [57] Sung Il Park, Sang Soo Han, Hyoung Gyu Kim, et al. Three-Dimensional Monte-Carlo Simulation of Grain Growth in Pt-Co Thin Film[J]. Journal of Electronic Materials (S0361-5235), 2002, 31(10): 965-971.
    [58] Talat S.Rahman, Chandana Ghosh, Oleg Trushin, et al. Atomistic studies of thin film growth [J]. Proceedings of SPIE- The International Society for Optical Engineering(S0277-786X), 2004,5509:1-14.
    [59] J.Cho, S.G. Terry, R.LeSar, et al. A kinetic Monte Carlo simulation of film growth by physical vapor deposition on rotating substrates[J]. Materials Science and Engineering A(S0921-5093), 2005, 391(1-2): 390-401.
    [60] K. Fu, Y. Fu, P. Han, et al. Kinetic Monte Carlo study of metal organic chemical vapor deposition growth dynamics of GaN thin fillm at microscopic level [J]. Journal of Applied Physics(S0021-8979), 2008,103(10): 103524.1-103524.7.
    [61] Zhang Peifeng, Zheng Xiaoping and He Deyan. Kinetic Monte Carlo simulation of thin film growth[J]. Science in China(Series G: Physics Astronomy) (S1672-1799),2003, 46(6): 610-618.
    [62] Guanglong Yu, Jianguo Zhu, Wei Lu, et al. Monte Carlo Simulation of Growth of PbTiO3 Oxide Thin Films[J]. 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 2005, 177-180.
    [63]俞重远,封强,刘玉敏,等.半导体薄膜材料外延生长的蒙特卡罗模拟[J].人工晶体学报,2006,35(6): 1272-1276.
    [64]王海东,张海.晶粒生长的蒙特卡罗模拟研究进展[J].材料导报,2007,21(2): 72-74.
    [65]朱文华,熊峰,胡贵华,等.虚拟现实技术与应用[M].北京:知识产权出版社,2007.
    [66]鲍劲松,金烨,马登哲等.融合真实感模型的沉浸可视化[J].系统仿真学报, 2003, 15(5): 653-655.
    [67]沈震宇,范茵,陶俐君等.可视化技术在气象数据场分析中的运用[J].系统仿真学报, 2006,18(Suppl.1): 328-332.
    [68]秦湘阁,刘国权.多晶体晶粒尺度三维组织建模及可视化[J].北京科技大学学报,2001,23(6): 519-522.
    [69] CHEN Jia-xin, WANG Ren-fang. Study on 3D Simulation and Visualization of Polycrystalline Grain's Shape Based on VRML[J]. Journal of System Simulation, 2004, 46(11): 2467-2470.
    [70]王汝传,陈丹伟,顾翔.虚拟现实技术及其实现研究[J ] .计算机工程, 2000 (12) :1-3.
    [71]石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社,1996,9.
    [72]唐泽圣等.三维数据场可视化[M].北京:清华大学出版社,1999.
    [73]汪成为,祁颂平.灵境漫话-虚拟技术演义[M] .北京:清华大学出版社,1996. 1.
    [74]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用[M] .北京:清华大学出版社,1996. 10.
    [75]张树生,杨茂奎,朱名铨,等虚拟制造技术[M].西安:西北工业大学出版社, 2006,2:13-19.
    [76]顾文望.虚拟机床仿真系统的研究[D].上海:海大学, 2004.
    [77]赵沁平,郝爱民. DVENET中的虚拟现实技术[J].系统仿真学报,2000,12(4): 296-299, 304.
    [78]潘志庚,丁宏,万健.虚拟现实及其在工业中的应用[J].杭州电子工业学院学报,2002,22(3):1-5.
    [79]李志文,韩晓玲.虚拟现实研究现状及未来发展[J].信息技术与信息化, 2005,(3):94-96.
    [80]陈俊杰,黄惟一.虚拟现实力觉临场感遥控作业系统的研究进展[J].传感技术学报,2001,14(3):230-236.
    [81]慕灿虚拟制造及其在制造业的应用现状[D].合肥:合肥工业大学,2008
    [82]刘海芳,邢成波,魏同国.虚拟现实中视觉接口的设计与实现[J].煤矿机械, 2005,(3):52-53.
    [83]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用[M].北京:清华大学出版社,1996. 10.
    [84] Fotiadis, Dimitrios I.; Kieda, Shigekazu; Jensen, Klavs F. Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy. I. Effects of heat transfer characteristics, reactor geometry, and operating conditions [J]. Journal of Crystal Growth, 1990, 102(3): 441-470.
    [85] Theodoropoulos, T.J. Mountaziaris, H.K. Moffat, and J. Han. Design of gas Inlets for the Growth of Gallium Nitride by metalorganic Vapor Epitaxy [J]. Journal of Crystal Growth, 2000, 217: 65-81.
    [86] J.OUAZZANI, et al,On the 2D modeling of horizontal cvd reactors and itslimitations[J]. Joumal of Crystal Growth 91(1988)497-508.
    [87] W.L.Holstein, J.L.Fitzjohn, E.J.Fally, et al. Mathematical modeling of cold-wall channel CVD reactors [J]. Journal of crystal Growth 94(1989)131-144.
    [88] GAMBIT, GAMBIT 2.1 User Guide, FLUENT Inc.
    [89]王浩,范广涵,廖常俊,等. MOCVD生长的动力学模式探讨[J].华南师范大学学报(自然科学版),2003,2:54-57.
    [90]李辉.GaInP2/GaAs/Ge级联太阳电池的MOCVD生长研究[D].[硕士学位论文]西安:中国科学院西安光学精密机械研究所, 2001,7.
    [91]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    [92] Kenwright D N, Mallinson G D. A 3D streamline tracking algorithm using dual stream functions [A]. In: Proceedings Visualization IEEE Computer Society Press[C], Los Alamitos, CA, 1992: 62-69.
    [93] Mercury Computer Systems. Open Inventor from Mercury User Guide[M]. New York: TemplateGraphics Software, 2004.
    [94]宋伟,吴振华,唐维平.用正交试验法确定磨料流工艺因素的最优组合[J].现代车用动力,2003,29(1):26-32.
    [95]杨玉峰,胡寿根,王宗龙.基于正交试验法的淹没磨料射流冲蚀性能试验研究[J].力学季刊,2006,2006, 27(2)::311-316.
    [96]俞忠原.实验设计与数据分析[M].哈尔滨:哈尔滨船舶工程学院出版社,1991.
    [97] A.Sakai and T.Tatsumi.Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices.Appl.Phys.Lett.,1994,64(1):52-55.
    [98] N.Ikarashi,A.Oshiyama and A.Sakai et al.Role of Ge surface segregation in Si/Ge interfacial ordering:Interface formation on a monohydride surface.Phys.Rev.B, 1995,51(20): 14786- 14789.
    [99]张雪峰.薄膜三维生长的Kinetic Monte Carlo模拟[D].[硕士学位论文]武汉:华中科技大学,2004.7.
    [100]吕跃风.薄膜生长初期过程的计算机模拟[D].[硕士学位论文]西安:西安电子科技大学,2006.1.
    [101]宋禹忻.动力学蒙特卡罗仿真量子点生长过程的统计分析与参数优化[D].[硕士学位论文]北京:北京邮电大学,2007.
    [102]赵宇军,姜明,曹培林.从头计算分子动力学[J].物理学进展, 1998 , 18 (1) :47-75.
    [103]金家骏.分子化学反应动态学[M].上海:上海交通大学出版社, 1988. 12.
    [104] Arsenault R J ,Beeler J r J R. Computer Simulation in Materials Science[M] . New York : ASM, 1986.
    [105]王本忠,赵方海,彭宇恒,刘式墉.半导体学报,1998,19(3):226-228
    [106]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985. 6.
    [107] Huang H ,Gilmer G H. [J ]. Journal of Computer-Aided Materials Design. 2001, (7) :203-215.
    [108]王恩哥.薄膜生长中的表面动力学(I)[J].物理学进展,2003,23(1):17-18.
    [109]刘祖黎,魏合林,王汉文,等.薄膜生长的随机模型[J].物理学报,1999,48(7):1302-1308.
    [110]王现甫.铝厂通风模拟的虚拟现实研究[J].铝加工,2007, 7:39-41.
    [111]尹志喜,侯华,毛红奎.数据可视化在温度场模拟中的应用[J].计算机工程, 2003, 29(18): 157-158.
    [112]严隽琪,范秀敏,马登哲.虚拟制造系统的体系结构研究[J].机械工业自动化, 1999,21(2):1~5.
    [113]韦有双,杨湘龙,王飞.虚拟现实与系统仿真[M].北京:国防工业出版社,2004
    [114]王宏武,蒋宇全,董士海.基于PC的虚拟现实系统开发平台—PCVRS[J].北京大学学报(自然科学版),1997,33(5):641-649
    [115]宿红毅,战守义,等.面向仿真的虚拟现实开发平台的设计[J].北京理工大学学报,2001,21(1):83-86
    [116] Open Inventor Mentor Addison-Wesley Publishing Company, First Printing, Dec.1993: 1-144.
    [117] Josie Wernecke. The Inventor Mentor: Programming Object- Oriented 3D Graphics with Open Inventor (TM), Release 2.
    [118]左旭,卫原平,阮雪榆.面向对象的三维图形软件包——Open Inventor[J].计算机应用研究, 1997(5):4-5.
    [119]谢春,马兰,彭颖红.有限元计算结果的可视化处理[J].计算机辅助设计与图形学学报, 2000, 12(2):81-84.
    [120]李海生,牛文杰,杨钦,等.矢量场可视化的研究现状与发展趋势[J].计算机应用研究,2001,8:11-14.
    [121]吴杰,黄春生,范绪箕.基于OpenGL的CFD设计平台中的流场可视化技术及其实现[J].工程图学学报,2004, 2: 65-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700