变速截割采煤机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚筒式采煤机是高产、高效机械化采煤的主要设备,广泛应用于不同地质条件下的煤炭开采。目前在生产上存在的主要问题是块煤率低和工作时粉尘大。为此,论文开展了变速截割采煤机关键技术的研究。
     在对煤岩物理机械性质和截齿破煤机理分析的基础上,推算出了描述截齿各安装角度之间几何关系的表达式,建立了截齿安装角β优化的数学模型;对叶片部和端盘部截齿的配置方式和切削图形进行了分析,提出了高煤块率端盘部截齿的优化配置方式。
     为了提高块煤率,研究了滚筒有关截割参数对切削图面积Am和方正率ξ的影响,建立了以切削图面积Am最大为目标函数的滚筒参数优化数学模型,并应用直接比较—比例法的遗产算法进行了优化计算,得出了在不同截齿配置条件下相应的结构参数和截割参数优化值、以及高块煤率叶片部截齿的优化配置方式。
     高块煤率采煤机滚筒的结构优化是在一定的煤层性质条件下进行的,为了满足不同性质煤层高块煤率截割的需要,进行了采煤机变截割速度和牵引速度的优化研究;同时,提出了依据检测采煤机的截割载荷间接识别煤层的截割阻抗的方法,并以此进行截割参数的调整。
     针对煤矿井下采煤工作面的恶劣工况和环境条件,论文选用了微处理器S3C44B0X、高速A/D转换40kSPS、CF卡组成嵌入式采煤机截割载荷检测系统,进行了硬件和软件设计、防干扰和本质安全设计,所研制的系统在煤矿井下进行了采煤机截割载荷的实测,表明其可行性和实用性。
     由于开关磁阻电机(SRM)具有结构简单坚固、转子免维护、低速转矩大等优点,论文选择SRM作为采煤机变速截割的动力源;采用有限元法对SRM的磁路特性进行了分析,为SRM结构的优化设计提供理论依据;采用实验的方法,获得了采煤机牵引部SRM样机的磁链曲线,为研究SRM的特性及控制策略提供实验资料;给出了反映SRM非线性电磁特性的磁链模型的几种建模方法,并对各种模型优化的磁链曲线和样机实测磁链曲线进行对比分析,为建模方法的选择打下了基础。
     为了提高开关磁阻电机驱动(SRD)系统运行的可靠性,提出了无位置传感器SRM的控制策略,完成了SRD系统相关的硬件和软件设计;采用激励脉冲法对SRM的启动工作相进行选择,解决了生产实际中SRM无反转启动问题;搭建了18.5kW牵引部SRM的实验平台,开展了实验研究,实验结果验证了所提出的无位置传感器控制策略的正确性,证明了无位置传感器采煤机SRD系统的可行性与可靠性。
The shearer is the main equipment for mechanization coal mining with high production and efficiency, it is widely used for coal mining under different geological conditions. At present, existing principal problems are low rate of lump coal and more coal dust. Therefore, this dissertation conducts a study on the key technology of shearer with variable speed cutting.
     Based on the analysis of physical mechanical property of coal and cutting mechanism of drum pick, the expressions of relation between installation angles are calculated. The mathematical model of optimizing installing angleβis established. Analyzing the arrangement and cutting pattern of picks in vane and plate, the optimal arrangement of picks in plate is put forward for high lump coal rate.
     In order to increase lump coal rate, studying the influence of cutting parameters on cutting pattern area A and squareness rateξ, the optimization mathematical model is established taking the maximum of cutting pattern area as objective function. Using Genetic Algorithm of direct comparison-proportion method, the optimization calculation is carried out and the corresponding optimal values of structure and cutting parameters are obtained under the different pick arrangements,and the optimal arrangement of picks in vane is also obtained for high lump coal rate.
     The structure optimization of shearer drum is conducted under a certain coal property for high lump coal rate. In order to meet the needs for different coal seam properties, the optimization of variable cutting and traction speed is studied. At the same time, the method of recognizing cutting impedance roughly with measured cutting load of shearer is put forward, and adjusting cutting parameters according to this.
     Aim at the adverse working status and environment condition in mining face underground, the dissertation selects micro-controller S3C44B0X, high speed A/D transformer 40kSPS and Compact Flash (CF) card to constitute an embedded system for measuring cutting load of shearer, and completes the hardware design, software design, anti-detonation design and inherence safety design. The developed system is used in coal mine underground to measure the load spectrum for shearer, the results indicate the system is feasible and practical.
     The Switched Reluctance Motor (SRM), with the advantages of simple and strong structure, rotor maintenance-free and large torque in low speed, is selected as the power source for variable speed cutting of shearer. The magnetic circuit characteristic of SRM is analyzed by use of the finite element method, providing the theoretical basis for optimization design of SRM structure. The dissertation gives modeling methods of the flux linkage model which can correctly reflect the nonlinear electrical-magnetic characteristics of SRM, and conducts the comparison analysis between optimal and measured flux linkage curves, laying a foundation for selection of SRM modeling methods.
     In order to increase running reliability of Switched Reluctance Motor Drive (SRD) system, the position sensorless control strategy is proposed and the correlative hardware and software of SRD system are completed. By use of the exciting voltage pulse method to select the start-up phase of SRM, the motor start with non-reversal is solved in practical production field. The experimental platform of 18.5kW SRM is set up. The experimental results verify the correctness of position sensorless control strategy proposed, and the feasibility and reliability of the position sensorless SRD system for shearer are also proved
引文
[1]安文华.执行《煤炭筛分试验方法》时应注意的几个问题[J].煤炭加工与综合利用.2000(5):5-6.
    [2] Peng Chen. Study on integrated classification system for Chinese coal[J].Fuel Processing Technology, 2000(2):77-87.
    [3]李柄文,王启广.矿山机械[M].中国矿业大学出版社.2007.
    [4]别隆,А.И.等著,王兴祚译.煤炭切削原理[M].北京:中国工业出版社,1965.
    [5] Y.Nishimatsu. The mechanics of rock cutting [J]. International Journal of Rock Mechanics and Mining Science, 1972, 9:261-270.
    [6] Evans,I. (NCB, Mining Research & Development Establishment, Burton on Trent, Eng1) Source: Colliery Guardian , 1984:189-190.
    [7] Evans, I. Lateral spacing of point-attack picks[J].Source: International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1985(2):64.
    [8] Evans, I. Theory of the cutting force for point-attack picks[J].Source: International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1984(4):156.
    [9] Hurt, K.G., MacAndrew, K. M. Cutting Efficiency and Life of Rock-Cutting Pick[J]. Source: Mining Science & Technology, 1985(2):139-151
    [10]陈翀.采煤机滚筒模型的试验研究[D].中国矿业大学,硕士学位论文,1987.
    [11]李晓豁,尹伯峰,李海滨.镐型截齿的截割试验研究[J].辽宁工程技术报,1999,18(6):649-652.
    [12]姚宝恒,李贵轩,丁飞.镐型截齿破煤截割力的计算及影响因素分析[J].煤炭科学技术,2002,30(3):35-37.
    [13]李晓豁.滚筒设计参数与粉尘爆炸率关系的数学模型[J].中国安全科学学报.2006(11):14-17.
    [14]李晓豁,张日昇,姜健.采煤机工作方式对产尘的影响分析[J].黑龙江科技学院学报,2001,11(3).
    [15]李天亮,邹仕军,孙冬,何秀然.飞机疲劳载荷谱分析的一种新方法[J].机械科学与技术, 2006(6).
    [16]张瑞亭,崔洪举.提速客车车轴疲劳载荷谱的试验研究[J].铁道车辆,2006(6).
    [17]王国军,高峰.城市用轿车整车结构疲劳载荷谱的采集与处理[J].高技术通讯,2006(8).
    [18]刘克格,阎楚良,张书明.飞机主起落架载荷谱实测的台架标定[J].吉林大学学报(工学版),2006,36(6).
    [19]刘荣梅.基于疲劳传感器的大型桥梁载荷谱检测研究[J].实验力学,2008,23(1).
    [20]白立国,李强,王斌杰.120km/h重载货车摇枕载荷谱最大载荷的统计推断研究[J].铁道机车车辆,2008,28(4).
    [21]王旭东.开关磁阻电动机调速系统的研究[D].哈尔滨工业大学博士学位论文,2000,3.
    [22]常青,路忠保等.开关磁阻电机调速系统在煤矿的应用[J].煤,2004(13):24-27.
    [23]杨树莲.SRM在煤矿机械中的应用[J].煤矿机械,2003(10):106-107.
    [24]武兴华,王自强.用于煤矿井下的变速风机[J].山西煤炭,2000(30):16-18.
    [25]周建国,武兴华.开关磁阻电动机在型煤定量给料器中的应用[J],山西煤炭管理干部学院学报,2001(3):58-59.
    [26]陈昊.开关磁阻调速电动机传动系统在煤矿井下的应用[J].电气技术与自动化,2005 (5 ):79 ~81.
    [27]杨树勇.开关磁阻电机调速系统在煤矿的应用[J]能源技术与管理,2008(4):126-128.
    [28] J. Corda, linear analysis of torque of switched reluctance motor[J]. Proceedings of ICEM, 1984:281-284.
    [29] Miller T. J. E, Converter volt-ampere requirements of switched reluctance motor drives[J].IEEE Trans on Industry Applications, Vol.21, pp.1136-1144, 1985.
    [30] Spong M.L, Miller T.J.E, et al, Instantaneous torque control of electric motor drives[J]. IEEE Trans on Power Electronics, Vol.2, pp.55-61, 1987.
    [31]吴建华著.开关磁阻电机设计与应用[M].机械工业出版社,2000.
    [32]郑洪涛,蔡际令,蒋静坪.基于变结构模糊神经网络的开关磁阻电动机非线性模型[J].电工技术学报,2001(6):1-6.
    [33] REAY D S, MIRKAZERMI-MOUD M, GREEN T C, et al, Switched reluctance motor control via fuzzy adaptive systems[J]. IEEE Control Systems, 1995, 15: 8-15.
    [34]SHANG C, REAY D, WILLIAMS B, Adapting CMAC neural networks with constrained LMS algorithm for efficient torque ripple reduction in switched reluctance motors[J]. IEEE Trans on Control Systems Technology, 1999(7): 104-413.
    [35] SAHOO N C, XU J X, PANDA S K, Determination of current waveforms for torque ripple minimization in switched reluctance motors using iterative learning: an investigation[J]. IEE Proc-Electr, Power Appl, 1999, 146(4): 369-377.
    [36] MIR S, ELBULUK M E, HUSAN L,Torque-ripple minimization in switched reluctance motors using adaptive fuzzy control[J]. IEEE Trans on Ind. Application, 1999, 35(2): 461-468.
    [37]刘春生.滚筒式采煤机理论设计基础[M].徐州:中国矿业大学出版社,2003.
    [38]张建军等.关于采煤机截齿冲击任性值的探讨[J].西安科技.2000(3):7-10.
    [39] K.G. Hurt and K.M. MacAndrew, Cutting efficiency and life of rock-cutting picks[J]. Mining Science and Technology, 1985(4), 139-151.
    [40]刘春生.采煤机镐型截齿安装角的研究[J].辽宁工程技术大学学报自然科学motors using板.2002(5):661-663.
    [41]任月龙等.采煤机螺旋滚筒端盘截齿排列研究.煤矿机械[J].1994(5):18-21.
    [42]郭迎福.螺旋滚筒端盘截齿排列方法[J].煤.1997(1):22-24.
    [43]刘萍.采煤机滚筒截装过程的运动学分析[J].贵州工业大学学报自然科学板.2004(6):98-102.
    [44]郭迎福.采煤机螺旋滚筒截齿排列模式及其分析[J].湘潭矿业学院学报.1995(3):30-37.
    [45] I. Evans, Line spacing of picks for effective cutting[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1972(5):355-361.
    [46]岳欣等.采煤机螺旋滚筒总体参数优化设计[J].煤炭学报.1996(5):542-546.
    [47]栗润萍.采煤机螺旋滚筒的力学分析与设计[J].机械工程与自动化.2005(4):94-97.
    [48]王庆康等译.采煤机破煤理论[M].煤炭工业出版社.1992(9):147-148.
    [49]刘春生.采煤机牵引与截割功率的匹配[J].煤矿机械.2000(12):3-4.
    [50]杨奇顺.采煤机螺旋滚筒装煤性能研究及其参数优化[J].煤矿机械.2001(2):1-3.
    [51]王传礼.螺旋滚筒最低和最高装煤转速的确定[J].煤矿机械.1996(4):1-3.
    [52]王庆康等译.采煤机破煤理论[M].煤炭工业出版社.1992(9):147-148.
    [53]栗润萍.采煤机螺旋滚筒的力学分析与设计[J].机械工程与自动化.2005(4):94-97.
    [54]王传礼.螺旋滚筒最低和最高装煤转速的确定[J].煤矿机械.1996(4):1-3.
    [55]李敏强等.遗传算法的基本理论与应用[M].科学出版社.2003(3):387-399.
    [56]王小平等.遗传算法—理论、应用与软件实现[M].西安交通大学出版社.2002(1):104-122.
    [57] Z.米凯利维茨.演化程序-遗传算法和数据编码的结合[M].科学出版社.2000(1):11-17.
    [58]闻新等.Matlab神经网络仿真与应用[M].科学出版社.2003(7):264-281.
    [59]何立民,嵌入式系统的定义与发展历史,http://210.51.184.98 /buaa1/ dpj/ html/magazine/2004_1/1-1.htm,2003,11.
    [60]宏晶科技有限责任公司,STC89C51RC/RD+系列单片机中文指南,www.MCU-Memory.com,2005.
    [61]胡大可.MSP430系列超低功耗16位单片机原理与应用[M].北京航空航天大学出版社,2000.6.
    [62]RISC公司, ARM7数据手册,1994.
    [63]三星电子有限公司, s3c44box RISC Microprocessor User Manual.
    [64]中华人民共和国专业标准ZB Y117-82《电阻应变计》,国家仪器仪表工业总局标准化研究室,1982.
    [65] http://www.zemic.com.cn/news/8/20021111171122.htm.
    [66] http://www.zemic.com.cn/news/7/20021111170951.htm.
    [67] http://www.zemic.com.cn/news/9/20021111171320.htm.
    [68]马良埕.应变电测与传感器技术[M].中国计量出版社,1993.
    [69]柳昌庆,王启广.测试技术与实验方法[M].中国矿业大学出版社, 2001:243-252.
    [70] FlashFlex51 Microcontroller Control of CompactFlash Card in true ide mode, http://www. sst.com/, Application Note, June 2003.
    [71]uC-FS-UserManual V2.30, Micriμm Technologies Corporation, www.micrium. Com:118-148, (5/2003).
    [72] Protel Pcb软件在高频电路布线中的技巧,www.eTuni.com.
    [73]中华人民共和国国家标准GB3836.4-2000,《爆炸性气体环境用电气设备第4部分:本质安全型“i”》,国家质量技术监督局2000-10-17批准,2001-6-1实施.
    [74]兴自中,杨宝祥.本安电路设计的基本原则与方法,电气防爆,1996(4):8-15.
    [75]詹荣开,嵌入式BootLoader技术内幕,http://linux.chinaunix.net/doc/ embedded/2005-01-13/762.shtml,中国UNIX网.
    [76] CF+ and CompactFlash Specification Revision 3.0, CompactFlash Association, www. compactflash.org, (12/23/04).
    [77] CF+ and CompactFlash Specification Revision 2.0, CompactFlash Association, www. compactflash.org
    [78]邹鲲等.MATLAB6.x信号处理[M].清华大学出版社, 2002.5
    [79]王宏华.开关磁阻电动机调速控制技术[M].北京:机械工业出版社,1995.6.
    [80]吴建华.开关磁阻电机设计与应用[M].机械工业出版社,2001.
    [81] Lin, Z, Reay,D.S.,Williams, B.W, He, X..High performance current control for switched reluctance motors with on-line modeling[C],Power Electronics Specialists Conference,2004. PESC 04. 2004 IEEE 35th Annual, 2004(2): 1246 - 1251 .
    [82] I. Kioskeridis, C. Mademlis.Maximum Efficiency in Single-Pulse Controlled Switched Reluctance Motor Drives[J],IEEE Trans. Energy Conversion,2005(20):809-817.
    [83] Syed Hossain, et al. Four-Quadrant Control of a Switched Reluctance Motor for a Highly Dynamic Actuator Load[J].Applied Power Electronics Conference and Exposition,IEEE, 2002(1):41~47
    [84] Miller.T.J. Converter Volt-ampere requirements of switched reluctance motor drives[D],IEEE Trans on industry Applications. 1985(21):1136-1144.
    [85] S.Williamson,A.A.Shaikh.Three dimensional effects in diagrams for switched reluctance motors[D],Proc.,ICEM 92:842-848.
    [86] Cheewoo Lee, R. Krishnan and N. S. Lobo. Novel Two-Switch-Based Switched Reluctance Machine Using Common-Pole E-Core Structure[J].Concept,Analysis,and Experimental Verification. Industry Applications,IEEE Transactions on Vol. 2009(45):703-711.
    [87] Ichiro Miki, Akitomo Komatsuzaki, and Kazumasa Yoshida, A New Sensorless Control for Switched Reluctance Motor[J].European Conference on Power Electronics and Applications (EPE2005).
    [88] H. Gao, F.R. Salmasi, and M. Ehsani, Inductance model-based sensorless control of the switched reluctance motor drive at low speed[J].IEEE Trans. Power Electron,2004(6):1568~1573.
    [89] J.W. Ahn, S. J. Park, T. H. Kim, Inductance Reasoning Method for Sensorless Control of an SRM[J]. Journal of KIPE, 2003(5): 427~434
    [90]邱亦慧,詹琼华,马志源等.基于简化磁链法的开关磁阻电机间接位置检测[J].中国电机工程学报. 2001(10):59~62
    [91] H.Gao, et al. Sensorless Control of the Switched Reluctance Motor Drive Based on the Stiff System Control Concept and Signature Detection[J].Industry Applications Conference, 2001(1):490~495.
    [92]郑洪涛,蒋静坪,徐德鸿等.开关磁阻电动机无位置传感器能量优化控制[J].中国电机工程学报. 2004(1):153~157.
    [93] Robert B. Inderka,Rik W. A. A. De Doncker,Direct Instantaneous Torque Control of Switched Reluctance Drives[D],IEEE Trans.on ,200339(4).
    [94]陈昊,张东,谢桂林.开关磁阻电动机传动系统的机械特性研究[J].中国矿业大学学报, 2001(3):458~462
    [95] D.Hanselman,B.Littlefield.精通MATLAB 6[M].北京:清华大学出版社, 2002
    [96]邱晓林,李天柁,弟宇鸣等.基于MATLAB的动态模型与系统仿真工具Simulink3.0/4.X[M].西安:西安交通大学出版社, 2003
    [97]李大梵,王守臣.开关磁阻电机模糊神经网络模型[J].中国电机工程学报,2006,32(5):529-533.
    [98]齐剑玲.基于神经网络的开关磁阻电动机建模[J].北京工业大学学报,2006,32(5):410-415.
    [99]詹琼华.SR电机[M].第1版.武汉:华中理工大学出版社,1992.
    [100] Syed Hossain, et al. Four Quadrant and Zero Speed Sensorless Control of a Switched Reluctance Motor[J]. Industry Applications Conference, IEEE, 2002(3):1641~1646
    [101] Babak Fahimi, et al. Four-Quadrant Position Sensorless Control in SRM Drives Over the Entire Speed Range[J]. IEEE Transactions on Power Electronics, 2005(1):154~163
    [102]樊小明,经亚枝,张焕春等.开关磁阻电机的一种无位置检测器方案研究[J].电工技术学报,1997(6):27~31.
    [103] Akitomo Komatsuzaki, Kazumasa Yoshida, Ichiro Miki, and Kouki Matsuse. Sensorless Control of Switched Reluctance Motor Based on Variation of Phase Inductance[J]. Proceedings ofInternational Power Electronics Conference (IPEC-Niigata), 2005: 1655~1659
    [104]邱亦慧,詹琼华,马志源.无位置传感器的全数字化开关磁阻电机驱动系统[J].电力电子技术,2000(5):40~42
    [105]王旭东,张奕黄,王喜莲等.无位置传感器开关磁阻电动机位置的检测与预报[J].中国电机工程学报. 2000(7):6~8
    [106] Xin Kai, Zhan Qionghua, Luo Jianwu, A New Simple Sensorless Control Method for Switched Reluctance Motor Drives[J]. IEEE Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005(9) :594-598.
    [107] Won-Sik Baik, et al. Improved Rotor Position Estimation for the Sensorless Control System of SRM[J]. IEEE ISIE 2005, 2005(6):877~880
    [108] J.W. Ahn, "Switched Reluctance Motor", Osung Media,2004: 364 418
    [109] H.Gao, et al. Sensorless Control of SRM at Standstil[J]. Applied Power Electronics Conference and Exposition, IEEE, 2001(2):850~856
    [110] Mahesh Krishnamurthy, et al. Prediction of Rotor Position at Standstill and Rotating Shaft Conditions in Switched Reluctance Machines[J]. IEEE Transactions on Power Electronics, 2006(1):225~233
    [111] Akitomo Komatsuzaki, Tatsunori Bamba, and Ichiro Miki, A Control Method of SRM without a Position Sensor Based on Variation of Phase Inductance[J]. Proceedings of International Conference on Electrical Machines and Systems (ICEMS2006), 2006.
    [112] XIA Changliang, et al. Commutation Signal Identification for Switched Reluctance Motors Based on Fuzzy Neural Networks[J]. Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China September 2008:700~704
    [113] F.R.Salmasi, et al. Sensorless Control of Switched Reluctance Motor Drive Based on BEMF Calculation[J]. Applied Power Electronics Conference and Exposition, IEEE, 2002(1):293~298
    [114] A. Komatsuzaki, et al. A Position Sensorless Drive using Estimation Turn-off Angle under Regenerative Braking in Switched Reluctance Motor[J]. Proceeding of International Conference on Electrical Machines and Systems 2007. IEEE, 2007(8):450~455
    [115] B.Fahimi, et al. Development of 4-Quadrant Sensorless Control of SRM Drives Over The Entire Speed Range[J]. Industry Applications Conference, IEEE, 2002(3):1625~1632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700