天然气转换中危险源分析及安全控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市现代化进程的向前推进,我国燃气事业进入了快速发展的阶段,城市燃气系统形成了以管道供气系统为主,瓶装气为辅的格局。燃气管道供气系统气源种类较多,其中以水煤气、液化石油气、天然气为主。随着“西气东输”、“俄气南供”等燃气工程的实施,天然气逐渐成为城市主导气源。由于天然气的使用性优于其它燃气,各地纷纷开始进行天然气替换其它燃气的工程。各类燃气都具有易燃易爆的性质,有些燃气更具毒性,因此管道供气系统中,本身就存在很多危险源和安全隐患。而当一种气源改供另一种气源时,由于不同气源的组分和运行压力不同,这就对管道供气系统的安全性提出了更严格的要求。
     深圳市随着“广东LNG的引进”项目的天时地利之机,有幸能用上清洁的天然气。深圳市目前使用的气源为纯液化石油气,其燃气组分和运行压力与天然气都相差较大,因此,必须进行天然气转换工作。燃气本来就属于易燃易爆的危险品,天然气在转换过程中更增加了这种危险性,需要对其转换过程中危险源进行辨识,并根据分析得出有效的结论,避免危险事故的发生。
     本文运用安全系统工程中的事故树原理和方法,较为系统和全面的评价分析了转换过程中燃气管道供气系统可能存在的危险源。通过事故树分析,辨识了原管道供气系统可能存在的危险源和转换过程中可能出现的危险源,并建立事故树图和数学模型,进行定性定量分析,根据分析结论,提出相关的安全控制措施及运行建议,保证天然气转换顺利进行。
Alongside the advance of process of urban modernization, the gas industry of china has entered upon a rapidly developmental stage. The setup of gas system has come into being, which is dominated by the pipeline gas supplying system and assisted by bottled gas system. There exist many kinds of gas source of the pipeline gas supplying system, mainly as water gas, liquefied petroleum gas, and natural gas. With the implementation of the gas project, such as“The Gas Transportation from the West to the East of China”,“The Russia’s Supply of Gas for its Southern Neighboring Countries”, etc. natural gas gradually becomes the main gas source in the city. In the view of the advantageous characteristics of natural gas beyond that of other gases, the project of conversion from other gases to natural gas has been sequentially implemented all over the country. Owing to the explosibility, combustibility, and even toxicity of the gases, within the pipeline gas supplying system there inevitably exist the sources of lurking danger. On the grounds that the composition and running pressure varies from different gas sources as one kind of gas source is converted into another, the safety of pipeline gas supplying system should come into more vigorous request.
     In consequence of the introduction of LNG (Liquefied Natural Gas) from GuangDong province, the clean natural gas has been widely used in ShenZhen. Since the gas source used in ShenZhen is pare liquefied petroleum gas, of which the composition and running pressure is vastly different from that of natural gas, it is necessary to carry out the work of gas conversion. The gas in natural belongs to dangerous material of explosibility and combustibility, which increases the dangerous in the course of conversion. In order to provide against the occurrence of accidents, it is compelling to discriminate the source of danger in the course of gas conversion and arrive at an effective conclusion upon the analysis.
     By the methods and principles of the fault tree analysis in the safety system engineering, this article systematically, as well as comprehensively comments on and analyses the possible of arising from the pipeline gas supplying system in the course of gas conversion. Upon the analysis of the fault tree, the would-be sources of danger generated from the gas conversion and the one existing in the above-said pipeline gas supplying system can be consequently discriminated, upon the foundation of which the diagram of fault tree and mathematical model are established and quantitatively, as well
引文
[1] 彭世尼.燃气安全技术.重庆:重庆大学出版社.2005
    [2] Helena montiel, Juan A Vilchez et al. Mathematical modeling of accidental gas release. Journal of Hazardous materials, 1998(59):211-233
    [3] Helena Montiel, Juan A et al, Historical analysis of accidents in the transporation of natural gas, Joural of Hazardous Material, 1996(51):77-92
    [4] 段常贵主编,燃气输配(第三版),北京:中国建筑工业出版社
    [5] 王广亮.系统工程与安全评价.冶金工业部环境保护研究所.1991:44-46
    [6] AICHE R.Dow Chemical Explosion Index Guide.New York:American Institute of Chemical Engineers.1994:11-20
    [7] MOPG E.Dow,s Fire & Explosion Index hazard classification guide.New York:American Institute of Chemical Engineers.1987:11-20
    [8] ALKBH T.Dow,s Fire & Explosion Index hazard classification guide.New York:American Institute of Chemical Engineers.1994:18-24
    [9] 罗兰 HE,莫里阿蒂 B.系统安全工程与管理,译.武汉:冶金工业部安全技术研究所.1985:30-45
    [10] 国际劳工局,王智新等译.重大事故控制实用手册.北京:中国劳动出版社.1993:50-67
    [11] SIU N.Risk assessment for dynamic system:an overview.Reliability Engineering and System Safety,1994,(43):43-73
    [12] HOLLNAGL E.Reliability of Man-Machine Interaction.Reliability Engineering and System Safety.1992,(38):81-89
    [13] FINKEL A M.Risk Assessment Research:only the Beginning.Risk Analysis.1994,14(6):907-911
    [14] 吴宗之.国外危险评价软件研究进展.劳动保护技术.1994,(3):24-29
    [15] 施世亮,王鹏飞,李润求. 工业安全评价方法与矿井安全评价技术综述.湘潭矿业学院学报.2002,17(4) :5-6
    [16] European Commission.The Use of Quantitative Area Risk Assessment Techniques In Land Use Planning. http://mahbsrv.jrc.it/Proceedings/Greece-Nov-1999/J5-COZZANI-z.pdf
    [17] 庄自强等.定量区域风险评价与城市规划.广东燃气.2004,5(2):43-45
    [18] Faisal I.Khan,S.A.Abbasi.HAZDIG:A New Software Package for Assessing the Risksof Accidental Release of Toxic Chemicals.Journal of Loss Prevention in the Process Industries.1999,12(2):167-181
    [19] 化工部化工劳动保护研究所.“光气及光气化产品生产企业安全评价”研究报告.1989:15-23
    [20] 光气及光气化产品生产装置安全评价通 GB13548-92
    [21] 化工部化工劳动保护研究所.“化工厂危险程度分级”研究报告.1992:9-14
    [22] 辽宁省劳动局,辽宁省石油化学工业局.化工企业安全评价.沈阳:辽宁科学技术出版社.1991:42-57
    [23] 化学工业部技术监督司.橡胶加工企业安全评价.北京:化学工业出版社.1994:28-39
    [24] 北京燕山石油化工公司.化工部化工劳动保护研究所.石化装置安全评价细则.1965:8-15
    [25] 中国石油天然气总公司炼油化工局.炼油(化工)厂安全性综合评价办法.1996
    [26] 国家医药管理局.医药工业企业安全性评价通则.1992
    [27] 湘江氮肥厂.安全预评价
    [28] 丁延声.化工单元装置安全评价模式的设想.化工劳动保护.1992:25-36
    [29] 张文源.火灾爆炸综合危险指数评价法.化工劳动保护.1993:12-18
    [30] 刘啸武.氯碱生产的安全性评价方法探讨.化工劳动保护.1996:15-20
    [31] 国家科技攻关项目. http://www.gongguan.most.gov.cn/zdxm/zdxmlist.Asp?ND=1
    [32] 任海滨.我国劳动安全卫生科技事业正在兴旺法在.中国安全科学学报.1996,6,(6):24-26
    [33] 吴宗之.易燃、易爆有毒重大危险源评价方法与控制措施.中国安全科学学报.1998,8(2):58
    [34] 吴小梅,具有 WINDOWS 界面风格的危险源评价软件,劳动保护科学技术,1995,15(2):26-27
    [35] 于立见,易燃、易爆重大危险源评价的计算机系统设计,中国安全科学学报,1998,8(4):30-33
    [36] 安全生产科技成果简介, http://www.Chinasafety.gov.cn/aqkj/hjjj/2002-2-21,doc
    [37] 国家安全生产监督管理局安全科学技术研究中心,研究项目. http:/www.chinasafety.ac.cn/key.htm
    [38] 钟茂华,陈宝智,基于神经网络的重大危险源动态分级研究,中国安全科学学报,1997,7(2):6-9
    [39] 林韵梅,李兆权等,数值分类法及其在岩石力学中的应用,东北工学院出版社,1989:15-16
    [40] 许绛垣,罗云等,系统安全分析评价技术方法对比研究,劳动保护科学技术,1998,18(4):25-27
    [41] 汪元辉主编,安全系统工程,天津:天津大学出版社,1999
    [42] 汪应洛,安全系统工程理论、方法及运用(第二版),北京:高等教育出版社,1998
    [43] 沈斐敏,安全系统工程基础与实践,第一版,北京:煤炭工业出版社,2001
    [44] 事故树分析, http://course.cug.edu.cn/security_system/chapter3/left1.htm
    [45] 安全系统分析——事故树分析,http//210.41.4.20/course/37/37/traffic%20safety%20engineering/classroom /3system-analise/5s higu/01gaishu.htm
    [46] 徐晓斌,王杏芳,杭州市燃气气源转换过程中有关问题的探讨,城市燃气,2005(4)
    [47] 曹亚弟,滁州市天然书换技术问题探讨,安徽建筑,2004(6)
    [48] 顾保钟,张永刚,浦西天然气转换工程中需要研究解决的问题及建议,城市公用事业,2004(4)
    [49] 魏敦崧,任炽明,浦东地区天然气转换技术方案的研究,同济大学学报,1995(1)
    [50] 陈国云,福州市管道燃气置换为天然气的方案探讨,福建建设科技,2001(1)
    [51] 孙安娜等,地下燃气管道第三方影响事故树模型,煤气与热力,2005(1)
    [52] 段常贵主编,燃气输配(第三版),北京:中国建筑工业出版社,2001
    [53] A Carpignano.A Poucet. Computer assisted fault tree constrction: A review of methods and concerns. Reliablity engineering and system safety,1994:44(3):265-278
    [54] 张甫仁,燃气火灾爆炸事故危险源辨识及危险性模拟分析,天然气工业,2005:25(1)
    [55] 沈斐敏 伍良,管道燃气火灾爆炸事故树分析,工业安全与环保,2003:29(1)
    [56] 沈斐敏 伍良,管道燃气火灾爆炸事故树分析(续),工业安全与环保,2003:29(1)
    [57] 范克危 张一先,事故树方法在高层住宅管道液化石油气泄漏事故分析中的应用,天然气与石油,2003:21(2)
    [58] Muhlbauer M Kent. Pipeline risk management manual. 2nd ed, Gulf Publishing Company
    [59] Juan A, Vilchez Sergi Sevilla, Helena Montiel et al. Historical analysis of accidents in chemical plants and in the transportation of hazardous materials. Joural of Loss Prev Process Industries, 1995: 87-96
    [60] 广东省深圳市燃气 2002~2006 管道事故记录
    [61] Yanjun Wang, William J et al. Algorithmic fault tree synthesis for control loops. Journal of Loss Prevention in the Process Industries,2003:(16):427-441
    [62] Lee W S, Crrosh D L, Tilman F A, Lie C H.IEEE Trans: on reliability,1985,34(3):194-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700