玉蜀黍属(Zea)tb1基因与22kD醇溶蛋白基因家族的比较基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大刍草是与玉米亲缘关系最近的野生祖先,和玉米同属于玉蜀黍属,但是在外观上两者却有着巨大的差异,如何在短短一万年内将大刍草驯化成外观上截然不同的栽培玉米,至今仍是未解之谜。本论文选择了2个染色体位点,玉米驯化的重要基因tb1(teosinte branched1),以及典型的簇状分部的22kD醇溶蛋白基因家族,在玉米和大刍草间进行比较基因组学分析从而研究玉米的驯化与进化。
     tb1基因编码了一个TCP家族的转录因子,它控制了玉米的分蘖数和穗形态。在玉米中,tb1基因在腋分生组织和雄蕊原基中相对大刍草有较高的表达,从而抑制了对应组织的生长发育,造成玉米和大刍草的形态差异。以往研究发现tb1基因的驯化区域位于编码区上游58-69kb处,其中58-64kb控制了穗形态而64-69kb控制了分蘖,但驯化的具体位点并不清楚。
     本研究结合比较基因组学和关联分析,揭示了tb1基因的驯化位点。首先,我们对玉米、高粱、水稻和二穗短柄草在tb1上游的保守非编码序列(conserved noncoding sequences, CNSs)进行分析,发现大部分CNSs位于tb1上游58-72kb处,暗示该区域可能对tb1调控有重要作用。其次,我们从BAC文库中分离并测序了玉米Yu87-1、W22自交系,以及一年生大刍草和多年生大刍草的tb1区域。通过比较分析发现,一年生大刍草和玉米高度保守,而多年生大刍草和玉米则有较大差异,这些差异主要是由于不同的LTR反转座子插入造成。在上游调控区域(58-69kb),发现了两个主要差异可能与tb1驯化相关,一个为玉米tb1上游58.8kb处的LTR反转座子插入,另一个为玉米tb1上游64.5kb处的MITE类型的DNA转座子插入。随后我们在539个玉米品种和189个大刍草品种中对这两个转座因子进行了检测,发现它们的插入与玉米表型紧密关联。最后我们挑选了玉米和大刍草品种,对整个调控区域进行扩增并测序,经过序列比对排除了其它SNP或InDel作为驯化位点的可能性。由此证明,玉米tb1基因上游58.8kb处的LTR反转座子插入和64.5kb处的MITE插入,分别上调了tb1在雄蕊原基和腋分生组织中的表达,导致了tb1基因的驯化。
     22kD醇溶蛋白是玉米籽粒中主要的储藏蛋白,由一个基因家族编码,在玉米基因组中的分布为一个基因簇和一个单独的拷贝(fl2),是研究基因家族扩增和进化的优良模型。本实验室前期对玉米、高粱和薏苡的22kD醇溶蛋白基因簇进行了比较分析,并对基因家族的进化历史进行了预测。本研究从一年生大刍草和二倍体多年生大刍草BAC文库中筛选22kD醇溶蛋白基因,分别得到了22和40个阳性单克隆。使用基因簇两侧标记引物对所有克隆进行鉴定,同时结合指纹图谱和DNA杂交图谱,对BAC克隆在基因簇中的覆盖情况进行了预测。结果显示,在一年生大刍草和多年生大刍草中都筛选到了两个22kD醇溶蛋白基因簇,基因簇的长度在200-300kb间,并且基因簇两侧都有直系同源标记CR2和CRa。对二倍体多年生大刍草中的5个BAC克隆进行初步测序,并对fl2区域进行了比较分析。在fl2区域,玉米和多年生大刍草间的同源序列仅占28%,造成差异的主要原因是不同的LTR反转座子插入以及后续的染色体重组,与tb1区域类似。
     本研究揭示了玉米tb1基因的驯化是由于两个转座因子的插入,说明转座因子在玉米的进化过程中不仅仅扩张了基因组,同时也对基因的表达调控起了至关重要的作用;通过对22kD醇溶蛋白基因家族的筛选鉴定,预测了基因簇的基本情况,为研究22kD醇溶蛋白基因家族在玉蜀黍属中的进化奠定了基础;首次分离测序了大刍草大片段基因组序列,并与玉米进行比较分析,丰富了我们对玉蜀黍属基因组以及基因组进化的认识。
Teosinte is the most related wild ancestor of modern maize. But the architectures of maize and teosinte are strikingly different. However, how the ancient agriculturists domesticate maize into teosinte in such a short time was still a mystery. In this study, we choose the major domestication gene, teosinte branched1 and the important storage protein gene family, 22kD prolamin gene family, and carry on comparative analysis to study the evolution and domestication of modern maize.
     Teosinte branched1 encoded a TCP family transcriptional factor and controls maize basal branching and ear phenotype. In maize, tb1 has a relatively high expression level in axillary meristems and stamens of ear primordial thus suppress the development of corresponding organs. Previous studies revealed the domestication region located 58-69kb upstream of tb1. 58-64kb upstream region controls the ear phenotype while 64-69kb upstream region controls the basal branching. But the exact sequences that alter tb1 expression remain unknown.
     In this study, we use comparative genomics and association analysis to figure out the causative mutation for tb1. We analyzed the conserved noncoding sequences (CNSs) of tb1 upstream region among maize, sorghum, rice and brachypodium. We found most CNSs located 58-72kb upstream of tb1, suggesting this region might be important for tb1 regulation. Then we isolated and sequenced the tb1 region of Zea mays ssp. parviglumis, Zea diploperennis, maize haplotype W22 and Yu87-1. Comparative analysis revealed that PVG was highly conserved with maize, while Zea diploperennis show much less conservation mostly due to retroelements insertions. We find the major difference between maize and teosinte that might cause tb1 mutation were one LTR-retrotransposon and one MITE insertion in maize tb1 regulatory region (58-69kb upstream of tb1 coding region). We detected the presence of these two transposable elements in 589 maize haplotypes and 189 teosinte accessions. The results revealed the LTR-retrotransposon and MITE were strictly associated in maize. Finally, we sequenced tb1 regulatory region in some other maize haplotypes and teosinte accessions. Sequence alignments exclude all the SNPs or InDels that might be candidate locus for tb1 mutation except for the two TEs. We concluded that the LTR retrotransposon and MITE insertions upregulate tb1 expression in axillary meristems and stamens of ear primordial, thus lead to the domestication of tb1.
     22kD prolamin was the major storage protein in maize kernel. It was encoded by a gene family and was a good model to study the evolution of gene family. It is composed of one gene cluster and one single gene (fl2) in maize genome. Our lab previously compared the 22kD prolamin gene cluster among maize sorghum and coix. We also predicted the formation and evolution history of the gene cluster. In this study, we isolated 22 BAC clones in Zea mays ssp. parviglumis and 40 clones in diploperennis that containing 22kD prolamin gene. According to the fingerprints, DNA blotting and flanking marker screening, we predicted the possible organization of 22kD prolamin gene cluster in teosinte genome. We found two 22kD prolamin gene cluster with flanking orthologous markers in both Zea mays ssp. parviglumis and Zea diploperennis. The gene cluster extended from 200kb to 300kb. We sequenced 5 BAC clones of Zea diploperennis. We analyzed the fl2 region between maize and Zea diploperennis. They only shared 28% homologous sequences. Like in the tb1 region, LTR retrotransposon insertion and following recombination are the major cause of variation.
     This study revealed that the domestication of maize tb1 gene was the result of two transposable elements insertion events. Transposable elements not only expanded the maize genome, but also had great impact on gene regulation. Through isolation and identification of 22kD prolamin gene family, we predicted the organization of gene cluster, facilitated the further study of 22kD prolamin gene evolution in the genera Zea. We isolated and sequenced teosinte large genomic sequences and compared with maize for first time. This study enhanced our knowledge of genome composition and evolution of the genera Zea.
引文
1. Bonierbale, M.W., R.L. Plaisted, and S.D. Tanksley, RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics, 1988. 120(4): p. 1095-103.
    2. Tanksley, S.D., et al., Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci U S A, 1988. 85(17): p. 6419-23.
    3. Hulbert, S.H., et al., Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A, 1990. 87(11): p. 4251-5.
    4. Moore, G., et al., Was there a single ancestral cereal chromosome? Trends Genet, 1995. 11(3): p. 81-2.
    5. Moore, G., et al., Cereal genome evolution. Grasses, line up and form a circle. Curr Biol, 1995. 5(7): p. 737-9.
    6. Devos, K.M. and M.D. Gale, Comparative genetics in the grasses. Plant Mol Biol, 1997. 35(1-2): p. 3-15.
    7. Gale, M.D. and K.M. Devos, Plant comparative genetics after 10 years. Science, 1998. 282(5389): p. 656-9.
    8. Gale, M.D. and K.M. Devos, Comparative genetics in the grasses. Proc Natl Acad Sci U S A, 1998. 95(5): p. 1971-4.
    9. Chen, M., et al., Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3431-5.
    10. Ilic, K., P.J. SanMiguel, and J.L. Bennetzen, A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci U S A, 2003.
    100(21): p. 12265-70.
    11. Song, R., V. Llaca, and J. Messing, Mosaic organization of orthologous sequences in grass genomes. Genome Res, 2002. 12(10): p. 1549-55.
    12. Bolot, S., et al., The 'inner circle' of the cereal genomes. Curr Opin Plant Biol, 2009. 12(2): p. 119-25.
    13. Chen, M., P. SanMiguel, and J.L. Bennetzen, Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics, 1998. 148(1): p. 435-43.
    14. Feuillet, C. and B. Keller, High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci U S A, 1999. 96(14): p. 8265-70.
    15. Tikhonov, A.P., et al., Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7409-14.
    16. Dubcovsky, J., et al., Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol, 2001. 125(3): p. 1342-53.
    17. Ramakrishna, W., et al., Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics, 2002. 162(3): p. 1389-400.
    18. Zhou, L., et al., The amplification and evolution of orthologous 22-kDa alpha-prolamin tandemly arrayed genes in coix, sorghum and maize genomes. Plant Mol Biol. 74(6): p. 631-43.
    19. Ramakrishna, W., et al., Comparative sequence analysis of the sorghum Rph region and themaize Rp1 resistance gene complex. Plant Physiol, 2002. 130(4): p. 1728-38.
    20. Fu, H. and H.K. Dooner, Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A, 2002. 99(14): p. 9573-8.
    21. Wang, Q. and H.K. Dooner, Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A, 2006. 103(47): p. 17644-9.
    22. Song, R. and J. Messing, Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A, 2003. 100(15): p. 9055-60.
    23. Brunner, S., B. Keller, and C. Feuillet, A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics, 2003. 164(2): p. 673-83.
    24. Langham, R.J., et al., Genomic duplication, fractionation and the origin of regulatory novelty. Genetics, 2004. 166(2): p. 935-45.
    25. Brunner, S., et al., Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell, 2005. 17(2): p. 343-60.
    26. Ma, J., et al., DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics, 2005. 170(3): p. 1209-20.
    27. Swigonova, Z., J.L. Bennetzen, and J. Messing, Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics, 2005. 169(2): p. 891-906.
    28. Bossolini, E., et al., Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J, 2007. 49(4): p. 704-17.
    29. Diamond, J., Evolution, consequences and future of plant and animal domestication. Nature, 2002. 418(6898): p. 700-7.
    30. Purugganan, M.D. and D.Q. Fuller, The nature of selection during plant domestication. Nature, 2009. 457(7231): p. 843-8.
    31. Matsuoka, Y., et al., A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A, 2002. 99(9): p. 6080-4.
    32. Frary, A., et al., fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000. 289(5476): p. 85-8.
    33. Cong, B., J. Liu, and S.D. Tanksley, Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13606-11.
    34. Nesbitt, T.C. and S.D. Tanksley, Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics, 2002. 162(1): p. 365-79.
    35. Beadle, G.W., Studies of Euchlaena and its hybrids with Zea. Vol. 62. 1932: Zeitschr. Abst. Vererb.
    36. Longley, A.E., Chromosome morphology in maize and its relatives. THE BOTANICAL REVIEW, 1941. 7: p. 263-289.
    37. Doebley, J., Molecular Evidence and the Evolution of Maize. ECONOMIC BOTANY, 1990. 44(Supplement 3): p. 6-27.
    38. Piperno, D.R. and K.V. Flannery, The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci U S A, 2001. 98(4): p. 2101-3.
    39. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol, 2005. 3: p. 20.
    40. Bennett, M.D. and I.J. Leitch, Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot, 2005. 95(1): p. 45-90.
    41. Molina, M.d.C. and C.A. Naranjo, Cytogenetic studies in the genus Zea. Theor Appl Genet, 1987. 73: p. 542- 550.
    42. Helentjaris, T., D. Weber, and S. Wright, Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics, 1988. 118(2): p. 353-63.
    43. Whitkus, R., J. Doebley, and M. Lee, Comparative genome mapping of Sorghum and maize. Genetics, 1992. 132(4): p. 1119-30.
    44. Ahn, S. and S.D. Tanksley, Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A, 1993. 90(17): p. 7980-4.
    45. Wilson, W.A., et al., Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics, 1999. 153(1): p. 453-73.
    46. Gaut, B.S. and J.F. Doebley, DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A, 1997. 94(13): p. 6809-14.
    47. Swigonova, Z., et al., Close split of sorghum and maize genome progenitors. Genome Res, 2004. 14(10A): p. 1916-23.
    48. Wicker, T., et al., A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 2007. 8(12): p. 973-82.
    49. Tenaillon, M.I., J.D. Hollister, and B.S. Gaut, A triptych of the evolution of plant transposable elements. Trends Plant Sci, 2010. 15(8): p. 471-8.
    50. Casacuberta, J.M. and N. Santiago, Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene, 2003. 311: p. 1-11.
    51. Calvi, B.R., et al., Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell, 1991. 66(3): p. 465-71.
    52. McClintock, B., Maize genetics. Carnegie Institution of Washington Year Book. Vol. 45. 1946. 176-186.
    53. McClintock, B., Cytogenetic studies of maize and Neurospora. Carnegie Institution of Washington Year Book. Vol. 46. 1947. 146-152.
    54. McClintock, B., Mutable loci in maize. Carnegie Institution of Washington Year Book. Vol. 47. 1948 155-169.
    55. McClintock, B., Mutable Loci in Maize. Carnegie Institution of Washington Year Book. Vol. 48. 1949. 142-154.
    56. Fedoroff, N., S. Wessler, and M. Shure, Isolation of the transposable maize controlling elements Ac and Ds. Cell, 1983. 35(1): p. 235-42.
    57. Fedoroff, N.V., D.B. Furtek, and O.E. Nelson, Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci U S A, 1984. 81(12): p. 3825-9.
    58. Yan, X., et al., Origination of Ds elements from Ac elements in maize: evidence for rare repair synthesis at the site of Ac excision. Genetics, 1999. 152(4): p. 1733-40.
    59. Conrad, L.J., et al., State II dissociation element formation following activator excision in maize. Genetics, 2007. 177(2): p. 737-47.
    60. Peterson, P.A., A mutable pale green locus in maize. Genetics, 1953. 38: p. 682-683.
    61. McClintock, B., Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Institution of Washington Year Book. Vol. 53. 1954. 254-260.
    62. Rhodes, P.R. and L.O. Vodkin, Organization of the Tgm family of transposable elements in soybean. Genetics, 1988. 120(2): p. 597-604.
    63. Nacken, W.K., et al., The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol Gen Genet, 1991. 228(1-2): p. 201-8.
    64. Ozeki, Y., E. Davies, and J. Takeda, Somatic variation during long-term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene. Mol Gen Genet, 1997. 254(4): p. 407-16.
    65. Snowden, K.C. and C.A. Napoli, Psl: a novel Spm-like transposable element from Petunia hybrida. Plant J, 1998. 14(1): p. 43-54.
    66. Chopra, S., et al., Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci U S A, 1999. 96(26): p. 15330-5.
    67. Miura, A., et al., Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature, 2001. 411(6834): p. 212-4.
    68. Chandler, V., C. Rivin, and V. Walbot, Stable non-mutator stocks of maize have sequences homologous to the Mu1 transposable element. Genetics, 1986. 114(3): p. 1007-21.
    69. Lisch, D., Mutator transposons. Trends Plant Sci, 2002. 7(11): p. 498-504.
    70. Chomet, P., et al., Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics, 1991. 129(1): p. 261-70.
    71. Hershberger, R.J., C.A. Warren, and V. Walbot, Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A, 1991. 88(22): p. 10198-202.
    72. Qin, M.M., D.S. Robertson, and A.H. Ellingboe, Cloning of the Mutator transposable element MuA2, a putative regulator of somatic mutability of the a1-Mum2 allele in maize. Genetics, 1991. 129(3): p. 845-54.
    73. James, M.G., et al., DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol Biol, 1993. 21(6): p. 1181-5.
    74. Hershberger, R.J., et al., Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics, 1995. 140(3): p. 1087-98.
    75. Lisch, D., et al., Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics, 1999. 151(1): p. 331-41.
    76. Raizada, M.N. and V. Walbot, The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S -driven MURA cDNA in transgenic maize. Plant Cell, 2000. 12(1): p. 5-21.
    77. Woodhouse, M.R., M. Freeling, and D. Lisch, The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics, 2006. 172(1): p. 579-92.
    78. Eisen, J.A., M.I. Benito, and V. Walbot, Sequence similarity of putative transposases links themaize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res, 1994. 22(13): p. 2634-6.
    79. Makarova, K.S., L. Aravind, and E.V. Koonin, SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends Biochem Sci, 2002. 27(8): p. 384-6.
    80. Chalvet, F., et al., Hop, an active Mutator-like element in the genome of the fungus Fusarium oxysporum. Mol Biol Evol, 2003. 20(8): p. 1362-75.
    81. Lisch, D.R., et al., Mutator transposase is widespread in the grasses. Plant Physiol, 2001. 125(3): p. 1293-303.
    82. Comelli, P., J. Konig, and W. Werr, Alternative splicing of two leading exons partitions promoter activity between the coding regions of the maize homeobox gene Zmhox1a and Trap (transposon-associated protein). Plant Mol Biol, 1999. 41(5): p. 615-25.
    83. Xu, Z., et al., Jittery, a Mutator distant relative with a paradoxical mobile behavior: excision without reinsertion. Plant Cell, 2004. 16(5): p. 1105-14.
    84. Hoen, D.R., et al., Transposon-mediated expansion and diversification of a family of ULP-like genes. Mol Biol Evol, 2006. 23(6): p. 1254-68.
    85. Alleman, M. and M. Freeling, The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics, 1986. 112(1): p. 107-19.
    86. Walbot, V. and C. Warren, Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet, 1988. 211(1): p. 27-34.
    87. Raizada, M.N., G.L. Nan, and V. Walbot, Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell, 2001. 13(7): p. 1587-608.
    88. Kapitonov, V.V. and J. Jurka, Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8714-9.
    89. Khan, S.A., Plasmid rolling-circle replication: recent developments. Mol Microbiol, 2000. 37(3): p. 477-84.
    90. Tavakoli, N., et al., IS1294, a DNA element that transposes by RC transposition. Plasmid, 2000. 44(1): p. 66-84.
    91. Kapitonov, V.V. and J. Jurka, Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet, 2007. 23(10): p. 521-9.
    92. Bureau, T.E. and S.R. Wessler, Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 1992. 4(10): p. 1283-94.
    93. Bureau, T.E. and S.R. Wessler, Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell, 1994. 6(6): p. 907-16.
    94. Feschotte, C. and C. Mouches, Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol, 2000. 17(5): p. 730-7.
    95. Zhang, X., et al., P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci U S A, 2001. 98(22): p. 12572-7.
    96. Feschotte, C., Zhang, X., Wessler, S.R.,, Miniature Inverted-repeat Transposable Elements (MITEs) and their relationship with established DNA transposons. Mobile DNA II. 2002:American Society of Microbiology Press. 1147-1158.
    97. Feschotte, C., N. Jiang, and S.R. Wessler, Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 2002. 3(5): p. 329-41.
    98. Xiong, Y. and T.H. Eickbush, Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J, 1990. 9(10): p. 3353-62.
    99. Kajikawa, M. and N. Okada, LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell, 2002. 111(3): p. 433-44.
    100. SanMiguel PJ and Vitte C, The LTR-Retrotransposons of Maize. Handbook of Maize: Genetics and Genomics., ed. Bennetzen JL and Hake S. 2009. 307-328.
    101. Schnable, P.S., et al., The B73 maize genome: complexity, diversity, and dynamics. Science, 2009. 326(5956): p. 1112-5.
    102. Baucom, R.S., et al., Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet, 2009. 5(11): p. e1000732.
    103. Soderlund, C., et al., Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet, 2009. 5(11): p. e1000740.
    104. Springer, N.M., et al., Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet, 2009. 5(11): p. e1000734.
    105. The map-based sequence of the rice genome. Nature, 2005. 436(7052): p. 793-800.
    106. Paterson, A.H., et al., The Sorghum bicolor genome and the diversification of grasses. Nature, 2009. 457(7229): p. 551-6.
    107. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010. 463(7282): p. 763-8.
    108. Doebley, J., A. Stec, and C. Gustus, teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995. 141(1): p. 333-46.
    109. Doebley, J., A. Stec, and L. Hubbard, The evolution of apical dominance in maize. Nature, 1997. 386(6624): p. 485-8.
    110. Luo, D., et al., Origin of floral asymmetry in Antirrhinum. Nature, 1996. 383(6603): p. 794-9.
    111. Cubas, P., et al., The TCP domain: a motif found in proteins regulating plant growth and development. Plant J, 1999. 18(2): p. 215-22.
    112. Kosugi, S. and Y. Ohashi, PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell, 1997. 9(9): p. 1607-19.
    113. Hubbard, L., et al., Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics, 2002. 162(4): p. 1927-35.
    114. Cubas, P., E. Coen, and J.M. Zapater, Ancient asymmetries in the evolution of flowers. Curr Biol, 2001. 11(13): p. 1050-2.
    115. Kebrom, T.H., B.L. Burson, and S.A. Finlayson, Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol, 2006. 140(3): p. 1109-17.
    116. Hu, W.J., et al., The analysis of the structure and expression of Ostb1 gene in rice. J. Plant Physiol. Mol. Biol., 2003. 29: p. 507-514.
    117. Takeda, T., et al., The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003. 33(3): p. 513-20.
    118. Lewis, J.M., et al., Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep, 2008. 27(7): p. 1217-25.
    119. Peng, H.Z., et al., Molecular cloning, expression analyses and primary evolution studies of REV- and TB1-like genes in bamboo. Tree Physiol, 2007. 27(9): p. 1273-81.
    120. Aguilar-Martinez, J.A., C. Poza-Carrion, and P. Cubas, Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 2007. 19(2): p. 458-72.
    121. Finlayson, S.A., Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1. Plant Cell Physiol, 2007. 48(5): p. 667-77.
    122. Poza-Carrion, C., J.A. Aguilar-Martinez, and P. Cubas, Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis. Plant Signal Behav, 2007. 2(6): p. 551-2.
    123. Wang, R.L., et al., The limits of selection during maize domestication. Nature, 1999. 398(6724): p. 236-9.
    124. Lukens, L. and J. Doebley, Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol, 2001. 18(4): p. 627-38.
    125. Clark, R.M., et al., Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci U S A, 2004. 101(3): p. 700-7.
    126. Clark, R.M., et al., A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet, 2006. 38(5): p. 594-7.
    127. Xu, J.H. and J. Messing, Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet, 2009. 119(8): p. 1397-412.
    128. Xu, J.H. and J. Messing, Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci U S A, 2008. 105(38): p. 14330-5.
    129. Song, R., et al., Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res, 2001. 11(11): p. 1817-25.
    130. Messing, J., et al., Sequence composition and genome organization of maize. Proc Natl Acad Sci U S A, 2004. 101(40): p. 14349-54.
    131.黄彬彬,禾本科三个染色体位点的比较基因组学研究. 2007,上海大学:上海.
    132.周梁良,禾本科22-kD醇溶蛋白基因家族的比较研究. 2008,上海大学:上海.
    133.陈琪,水稻、黄瓜、大刍草细菌人工染色体文库的构建与分析. 2007,上海大学:上海.
    134.袁轶伟,细菌人工染色体文库的构建以及大刍草22-kDaα-醇溶蛋白基因和TB1基因的筛选与鉴定. 2009,上海大学:上海.
    135.张俊亚,细菌人工染色体(BAC)基因组文库的构建与应用. 2011,上海大学:上海.
    136. Ewing, B., et al., Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res, 1998. 8(3): p. 175-85.
    137. Gordon, D., C. Abajian, and P. Green, Consed: a graphical tool for sequence finishing. Genome Res, 1998. 8(3): p. 195-202.
    138. Thomas, B.C., et al., Arabidopsis intragenomic conserved noncoding sequence. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3348-53.
    139. Kellogg, E.A., Evolutionary history of the grasses. Plant Physiol, 2001. 125(3): p. 1198-205.
    140. Xu, Z. and H. Wang, LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res, 2007. 35(Web Server issue): p. W265-8.
    141. Crooks, G.E., et al., WebLogo: a sequence logo generator. Genome Res, 2004. 14(6): p. 1188-90.
    142. Tamura, K., et al., MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol, 2011.
    143. Ma, J., K.M. Devos, and J.L. Bennetzen, Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res, 2004. 14(5): p. 860-9.
    144. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
    145. Girard, L. and M. Freeling, Regulatory changes as a consequence of transposon insertion. Dev Genet, 1999. 25(4): p. 291-6.
    146. Slotkin, R.K. and R. Martienssen, Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet, 2007. 8(4): p. 272-85.
    147. Feschotte, C., Transposable elements and the evolution of regulatory networks. Nat Rev Genet, 2008. 9(5): p. 397-405.
    148. Bourque, G., Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev, 2009. 19(6): p. 607-12.
    149. Michaud, E.J., et al., Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev, 1994. 8(12): p. 1463-72.
    150. Perry, W.L., N.G. Copeland, and N.A. Jenkins, The molecular basis for dominant yellow agouti coat color mutations. Bioessays, 1994. 16(10): p. 705-7.
    151. Whitelaw, E. and D.I. Martin, Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet, 2001. 27(4): p. 361-5.
    152. Medstrand, P., J.R. Landry, and D.L. Mager, Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem, 2001. 276(3): p. 1896-903.
    153. Speek, M., Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol, 2001. 21(6): p. 1973-85.
    154. Nigumann, P., et al., Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics, 2002. 79(5): p. 628-34.
    155. Kashkush, K., M. Feldman, and A.A. Levy, Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003. 33(1): p. 102-6.
    156. Hayashi, K. and H. Yoshida, Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009. 57(3): p. 413-25.
    157. Naito, K., et al., Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature, 2009. 461(7267): p. 1130-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700