地质样品中有效原子序数的确定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于地质样品而言,其基体主要由三大岩类(岩浆岩、变质岩和沉积岩)组成,它们的成分主要是硅、铝、氧、硫和钙等轻元素。在X荧光测量中,由于基体成分的变化引起待测样品的密度、有效原子序数的变化,进而引起散射和吸收情况的变化,直接影响待测元素特征X射线照射量率与其含量之间的线性关系。
     在国内外有很多学者做过相关由于基体成分变化所引起的有效原子序数变化的研究,通过测量相干散射与非相干散射计数率的比值来确定与试样有效原子序数的关系,进行物质成分分析,并在简单的无机物、有机物、玻璃和合金试样的实际分析工作所证实。在国内有学者做过用Si(Li)探测器,238Pu源对岩石标准样测定散射比与平均原子序关系的实验,但是用Si PIN探测器,238Pu源激发来确定地质样品有效原子序数的研究工作却不多。
     针对目前国内研究的不足,本文利用成都理工大学核技术与自动化工程学院研制的IED 2000P手提式多元素X射线荧光仪(Si PIN探测器,238Pu同位素源)对散射比与有效原子序数之间的关系进行研究。本课题来源于中国国土资源航空物探遥感中心项目“西天山航磁异常查证野外X荧光示范”和国家863计划资源环境技术领域重大项目“航空伽玛能谱勘查系统研发”。
     1、本文对电子壳层结合能的原子序数修正因子进行拟合,拟合范围为4到20号元素,得到K层修正系数与原子序数的一个曲线关系,其拟合相关系数达0.9999。同时又对部分元素较外层的L层、M层电子结合能的原子序数修正因子进行拟合。
     2、通过蒙特卡罗模拟方法,得到与地质样品有效原子序数十分接近的SiO_2和Al_2O_3分析纯样品密度与有效原子序数的关系。通过对固体压片样常用的硼酸试剂展开不同质量测试,得到样品压片前后的密度增量。结合蒙特卡罗模拟结果,分别算出SiO_2和Al_2O_3密度增量(压片样品和粉末样品的密度差)下的有效原子序数增量分别0.00115和0.00054,其结果对计算地质样品中有效原子序数的影响有限。
     3、对于同位素放射源便携式X荧光仪的测量来说,散射角是一个很重要的参数,不同的散射角会对结果造成很大的影响,而且用同位素源激发的X荧光仪散射角很难精确确定。本文通过与地质样品有效原子序数十分接近的SiO_2和Al_2O_3分析纯样品的大量实验,大致计算出IED 2000P手提式多元素X射线荧光仪的最佳散射角度为169°。
     4、深入的研究散射峰与有效原子序数之间的关系,得出一种计算样品有效原子序数的方法(谱线散射法),并将其应用于红山嘴、蒙马拉和托逊等三个工区,与波长色散X荧光仪测量的有效原子序数(波长色散法)比较,具有较小的相对误差,取得了较好的效果。
     ①对红山嘴工区,谱线散射法计算整个工区的有效原子序数为13.23,波长色散法计算整个工区的有效原子序数为13.45,其相对误差为1.67%。
     ②对蒙马拉工区,谱线散射法计算整个工区的有效原子序数为12.93,波长色散法计算整个工区的有效原子序数为13.20,其相对误差为2.06%。
     ③对托逊工区,谱线散射法计算整个工区的有效原子序数为13.14,波长色散法计算整个工区的有效原子序数为13.17,其相对误差为0.32%。
For geological samples are concerned, the matrix consists mainly three rock types (magmatite, metamorphic and sedimentary rocks), the composition mainly are silica, aluminum, oxygen, sulfur and calcium and the like. In X ray fluorescence measurement, the change of matrix’s composition brings the change of test sample’s density, effective atomic number, then causes the change of scattering and absorption conditions, and brings direct impact to test elements’X ray eminence and linear relationship between its content.
     There are many scholars at home and abroad who did some related experiments about the change of matrix’s composition which brings the change of test sample’s effective atomic number. By measuring scattering and incoherent coherent ratio of the scattering count and determine the relations with sample’s effective atomic number, Then to analysis the substance composition. This method was validated in actual analysis work of simple inorganics, organics, glass and alloy specimens. In China some scholars have used Si (Li) detectors, and use 238Pu source to test rock samples and determine relationship of scattering rate and average atomic number. But the research work of using Si PIN detector, 238Pu radioactive isotopes source excitation to determine the geological samples’effective atomic number is not much.
     In view of the present limitation of study in this field, this paper bases on usage of IED 2000P portable multi elements X ray fluorescence analyzer (Si PIN detector, 238Pu radioactive isotopes source), developed by the college of nuclear technology and automation engineering institute of Chengdu University of Technology, to study the relationship between scattering rate and effective atomic number. This subject comes from China Aero Geophysical Survey & Remote Sensing Center for Land and Resources’s project“Application of X fluorescence analyzer in the West Tianshan of aeromagnetic anomaly verification”and national 863 high tech research project“Research of airborne gamma ray spectrometry exploration system”.
     1. In this paper, electronic shells binding energy’s atomic number correction factor is fitted. The fitting scope is 4 to 20 elements. And get a curve relationship of K layer correction coefficient and atomic number. The correlation coefficient of fitting is 0.9999. And some elements relatively outer layers L layer, M layer electronic binding energy atomic number correction factors is also fitted.
     2. By Monte Carlo Simulation method, we get the relationship between density and effective atomic number of analysis pure samples SiO_2 and Al_2O_3 which have very close effective atomic number with geological samples. Through different quality test of boric acid reagents which are commonly used in solid presser sample, and get the density increment after the samples are pressed. And compare to Monte Carlo Simulation results, calculated the density increment of SiO_2 and Al_2O_3 (the increment of powder samples and powder presser samples), and got the results of effective atomic number’s increment of SiO_2 and Al_2O_3 is only 0.00115and 0.00054, this influence for the calculation results of effective atomic number is limited.
     3. For the measurements of portable isotope radioactive sources X fluorescence analyzer, scattering Angle is a very important parameter. Different scattering Angle will have a big impact on results. And X fluorescence analyzer’s scattering Angle inspired by isotopic source is difficult to accurately determine. This paper roughly shows the calculated best scattering Angle of IED 2000P portable multi elements X ray fluorescence analyzer, by a lot of experiments of analysis pure samples SiO_2 and Al_2O_3 whose effective atomic number is very close to geological samples.
     4. In in depth researchof the relationship of scattering peak and effective atomic number. And get a method of calculating samples’effective atomic number (spectral lines scattering method), and apply to xinjiang tianshan, Mengmala and Touxun these three work area. Comparing to effective atomic number measured by Wavelength dispersive X fluorescence spectrometer (wavelength dispersion Method), it has a smaller relative error, and good results were obtained.
     1) In the whole work area of Hongshanzui, effective atomic number calculated by spectral lines scattering method is 13.23, and for wavelength dispersion Method, it’s 13.45. The relative error is 1.67%.
     2) In the whole work area of Mengmala, effective atomic number calculated by spectral lines scattering method is 12.93, and for wavelength dispersion Method, it’s 13.20. The relative error is 2.06%.
     3) In the whole work area of Tuoxun, effective atomic number calculated by spectral lines scattering method is 13.14, and for wavelength dispersion Method, it’s 13.17. The relative error is 0.32%.
引文
[1]方方,侯新生,马英杰等.低能γ射线谱测量岩性技术的初步研究[J].核技术, 2004, 27(5).
    [2] Hubbel J B et al. J. Phy. Chem. Ref. Data, 1945, 4, 471.
    [3] Giovanni E Gigante et al. Int. J. Appl. Radiet. Isotopes, 1984, 35(6):481.
    [4] Confalonieri L et al. J. Appl. Radiat. Isotopes, 1987, 38(2):139.
    [5] Carlo Bui et al. Nucl. Instr. Meth, 1987, B28(1):88.
    [6]程业勋,王南萍,侯胜利.核辐射场与放射性勘查[M].北京:地质出版社, 2005
    [7]曹国利,丁益民,黄志琦.能量色散X射线荧光方法[M].成都:成都科技大学出版社. 1998.
    [8] Nielson K K. Anal. Chem, 1977, 49(4):641.
    [9] Bertin, E. P., "Principles and Practice of X Ray Spectrometric Analysis" ed. 2, Plenum, N. Y. (1975).
    [10] Bertin E P. X射线光谱分析的原理和应用[M].李瑞城,鲍永夫,吴效林译.北京:国防工业出版社, 1983. 32 33.
    [11]张勤龙等.用238Pu源散射法分析矿物铁含量[J].核电子学与探测技术. 1985, 1(8).
    [12]程业勋,刘磊.用于便携式X射线荧光仪的基体效应散射校正模型[J].核技术. 1986. 11.
    [13]周蓉生,刘磊,程业勋.康普顿散射强度与质量吸收系数的研究[J].成都地质学院报,1983.
    [14]吉昂,陶光仪,卓尚军等. X射线荧光光谱分析[M].北京:科学出版社. 2003.
    [15]吴慧山等.核技术勘查[M].北京:原子能出版社, 1994.
    [16]郭江,赵晓凤,彭直兴等.原子及原子核物理[M].国防工业出版社, 2010.
    [17]葛良全,周四春,赖万昌.原位X辐射取样技术[M].成都:四川科学技术出版社. 1997.
    [18]复旦大学,清华大学,北京大学.原子核物理实验方法[M].北京:原子能出版社, 1985.
    [19]梁钰等. X射线荧光光谱分析基础[M].北京:科学出版社. 2007.
    [20] Tao G Y, Pella P A, Rousseau R M. NBSGSC A Fortran Program for Quantitative X Ray Fluorescence Analysis NBSTN 1213. Washington DC:National Bureau of standards, 1985.
    [21] Heinrich K J F. Mass Absorption Coefficients for Electron Probe Microanalysis. MD:National Bureau of Standards, Gaithersburg, 1987.
    [22] Thinh T P, Lerocex J. X Ray Spectrum. 1979, 8:85~95.
    [23] De Boer D.K.G. Fundamental Parameters for X ray fluorescence analysis [J]. Spectrochemical Acta. 1989, 44B(11): 1171 1190.
    [24]眭松山,魏军,史青.质量衰减系数的计算与应用[J].光谱学与光谱分析, 1996, 16(2):85 88.
    [25] Pirenne N H. The Diffraction of X Rays and Electrons by Free Molecules. Cambridge University Press, 1946.
    [26] Compton A H, Allison S K. X Ray in Theory and Experiment. New York:D. Van Nostrand, 1935.
    [27] Klein O, Nishina Y. Dard Reference Data Series, Report No.29. Washington:National Bureau of Standards.
    [28]谢忠信,赵宗玲等. X射线光谱分析[M].科学出版社. 1980, 8.
    [29]张家骅等.放射性同位素X射线荧光分析[M].北京:原子能出版. 1981.
    [30]卓尚君,陶光仪,韩小元等. X射线荧光光谱的基本参数法[M].上海科学技术出版社. 2010, 11.
    [31]石玉春,吴燕玉,李秀季等.放射性物探[M].北京:原子能出版社. 1986.
    [32] IED2000P型手提式多元素X射线荧光仪使用手册,成都理工大学核技术与自动化工程学院, 2007.
    [33]杨成选.帕纳科Axios内部培训讲义.
    [34] Sturhahn H H, Otto H J. Chemie Anlagen Verfahren, 12/74, 37~42.
    [35]地球物理勘探电子教材.第4章伽玛伽玛方法.
    [36]周蓉生,П.А.瓦冈诺夫,核方法原理及应用[M],北京:地质出版社,1994.
    [37]罗健明.能量色散X射线荧光分析的小波解谱算法研究[D].成都理工大学.硕士论文. 2007.
    [38]张庆贤.手持式X荧光解谱技术研究及实现[D].成都理工大学.硕士论文. 2006.
    [39]李惕碚,吴枚.高能天文中成像与解谱的直接方法[J].天体物理学报, 1993, 17 (3): 260 270.
    [40]李惕碚.能不能用低分辨率仪器实现高分辨率观测[J].大自然探索, 1999, 18 (67).
    [41]张澍,李惕碚,吴枚. Comptonγ射线望远镜的直接解调成像[J ].天体物理学报, 1997, 17 (3): 263 270.
    [42]陈勇,宋黎刚,李惕碚等. RXTE A SM的双SSC联合直接解调成像[J ].天文学报, 2000, 41 (2): 214 218.
    [43]艾宪芸,魏义祥,肖无云.直接解调法在碲锌镉探测器γ谱分析中的应用[J].清华大学学报, 2006, 46(6): 821 824.
    [44]刘尊年,任爱阁,贾瑞皋.自然伽马能谱测井谱解析方法研究[J].西南石油大学学报, 2010, 32(5).
    [45]刘同先. MCNP在中子输运问题计算中的影响因素分析[D].哈尔滨工程大学.硕士论文. 2007.
    [46]邓力,张文勇,徐涵等.蒙特卡罗程序MCNP II与MCNP 5并行效率比较[J].计算机工程与科学, 2009, 31.
    [47]吴宜灿,李莹等.蒙特卡罗粒子输运计算自动建模程序系统的研究与发展[J].核科学与工程, 2006, 26(1).
    [48] Kundra K D. X Ray Spectrom. 1992, 21: 115 117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700