铁路隧道列车活塞风特性分析及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列车通过隧道产生的活塞风是隧道空气动力学现象之一,也是解决隧道通风,特别是单向长隧道运营通风问题的主要组成部分。论文从活塞风应用与研究的现状出发,对活塞风进行了全面系统的研究,为隧道通风工程合理、有效地考虑和利用活塞风提供了依据。
     研究以列车作用区间为活塞风“压源”,利用流体力学基本理论和基本方程,根据不同流段的流动结构和作用原理,分析、论证了列车活塞风的形成机理;提出了活塞风压力计算的方法。理论研究结果充分反映了隧道、列车各主要作用条件对活塞风的影响;通过主要变数的动态分析,得出了活塞风的综合特性和变化规律。环隙流动是列车与气流之间实现功能转换的主要组成部分,根据管道湍流半经验理论和相关变换,建立了环隙流动的速度分布关系式,分析了流场的主要特征。
     通过分析和论证,确定了活塞风研究的基本理论模型,即不可压缩流体的定常流动。提出了由头部推动力增压、尾部牵引力增压和环隙剪切力增压共同构成的活塞风压力的表达式。根据相对运动原理和基本方程,建立了头部和尾部增压的计算式,其增压与阻塞比α、流段的流动特性和头部绕流阻力系数CDN有关。根据动量平衡原理和管道湍流半经验理论,建立了由动(列车)壁切应力和静(隧道)壁切应力构成的环隙均匀段的剪切力增压关系式,该增压与环隙几何特征、壁面阻力特性和环隙流动的速度分布特性有关。对于由动壁与静壁组成的环隙来说,始终存在着相对于静壁的压力流和动壁拖动的曳力流。在此基础上,提出了环隙流动可视为Poiseuille型湍流和Couette型湍流组合而成。同时,应用镜像原理和流动变换,建立了Couette型湍流的基本关系;应用管道湍流半经验理论和坐标变换方法,建立了环隙组合流动的速度分布关系式和特征速度的位置关系式。
     参照国外隧道空气动力学进行实车试验研究的基本参数,利用本研究提供的方法进行活塞风计算,将计算结果与试验测量结果比较,吻合度较好,说明活塞风计算中相关理论研究和假定是合理的。根据流体力学原理和相似理论进行了以水为介质的模型试验,对活塞风速和活塞风压进行了测定。初步结果表明,这是一种简单而可靠的试验方法,将为活塞风的试验研究提供有益参考和借鉴。
The piston wind in train running through a tunnel is one of the phenomenons of tunnel aerodynamics and also the main component part to solve the tunnel ventilation problems, especially to one-way long and special long tunnel. Taking into account the current conditions of application and investigation, general and systematic research in this paper provides the basis for considering and using the piston wind reasonably and effectively in tunnel ventilation engineering.
     Making use of the fundamentals and equations of fluid mechanics, according to the structure of flow and the principle of action of different flow sections, the train action segment is regarded as "press source" of piston wind in this paper to demonstrate the mechanism of piston wind and advance the calculation method of piston wind pressure. The theoretical study results fully show the influence of every main action term of tunnels and trains on piston wind and derive the overall characteristics and variation law through dynamic analysis of the main variables. On the basis of the pipe turbulence half-experience theories and related transformation, the velocity distribution relationship of annulus flow which is the main component part of the functional transformation between train and airflow is established and the main properties of flow field are analyzed.
     Through analysis and demonstration in this paper, the fundamental theoretical model for studying piston wind is determined, namely the steady flow of incompressible fluid, and the expressions of piston wind's pressurization which is composed of propulsive force of train nose, traction force of train tail and shearing force of annulus are put forward. According to the relative movement principles and basis equations, the train nose and tail's formulas of pressurization which is related to blockage ratio a, behavior of flow section and coefficient of resistance in the flow around nose are set up. According to the principles of momentum balance and pipe turbulence half-experience theories, the annulus homogeneous section's relationship of pressurization which is caused by shearing stress of moving (train) and static (tunnel) walls and related to the geometrical characteristics, wall resistance properties and features of velocity distribution of annulus are built. To annulus, these flows always include pressure flow which is relative to the static wall and drag force flow which is caused by the moving wall. On this basis, the annulus flow is viewed as the combination of two kinds of flows, namely the Poiseuille turbulence and the Couette turbulence. At same time, taking advantage of the mirror principle and flow transformation, the essential relationship of the Couette turbulence is established; by the pipe turbulence half-experience theories and method of coordinate transformation, the velocity relationship and characteristic velocity location relationship of annulus combination flow are put forward. comprehensive evaluation method not only can avoid the disadvantages brought by the single evaluation method, but also integrate different advantages. And then detailed discussed the basic principle of DEA and TOPSIS, and improved existing theory and method. Based on this, this paper presents the evaluation model combined the DEA with the TOPSIS which contraposes and compares the service quality of the PDL in different sections. Finally, this paper takes the PDL in four sections as the research objects and verifies the scientificity and the practicality of this model. Also, it puts forwards the countermeasures and Suggestions which is used to improve service quality in PDL through the analysis of the results in the evaluation.
引文
[1]王效良,赵勇.从数字看中国铁路隧道的建设.现代隧道技术.2006,43(5):7-22.
    [2]何华武.中国铁路隧道建设技术的发展.铁道经济研究.2006,2(6):8-16.
    [3]王梦恕,张梅.铁路隧道建设理念和设计原则.中国工程科学,2009,11(12):4-8.
    [4]铁道部第二勘测设计院编.铁路隧道运营通风.北京:中国铁道出版社,1983.
    [5]金学易,陈文英.隧道通风及隧道空气动力学.北京:中国铁道出版社,1983.
    [6]刘丹,杨立中,于苏俊.运营隧道空气污染研究的现状与发展.铁道工程学报,2000,62(4):62-65.
    [7]赵亚林,蒋维武,林萌等.电气化双线运营隧道空气污染状况调车.铁道劳动安全卫生与环保,1998,25(3):171-173.
    [8]冯炼.新龙门隧道射流通风与污染物浓度的数值分析.西南交通大学学报,1997,32(2):203-207.
    [9]兰州铁道学院.双线铁路隧道运营射流通风技术研究.兰州:兰州铁道学院,1996.
    [10]铁道第一勘察设计院等.秦岭特长隧道修建技术电化特长单线隧道运营通风必要性及综合配套技术.兰州:铁道第一勘察设计院,2002.
    [11]梁文灏,李国良.乌鞘岭特长隧道方案设计.现代隧道技术,2004,41(2):1-7.
    [12]Fox J A, Vardy A E. The generation and alleviation of air pressure transients caused by the high speed passages of vehicles through tunnels. In:Proc.1th ISAVVT, Canterbury, UK, BHRA Fluid Engineering, Paper G3,1973:49-64.
    [13]Woods W A. Wave action associated with a train entering a tunnel. In:Proc.1th ISAVVT, Canterbury, UK, BHRA Fluid Engineering, Paper G4,1973:65-88.
    [14]Woods W A, Pope C W. Secondary aerodynamic effects in rail tunnels during vehicle entry. In:Proc. 2th ISAVVT, Cambridge, UK, BHRA Fluid Engineering, Paper C5,1976:71-86.
    [15]R G Gawthorpe, C W Pope. The measurement and interpretation of transient pressures generated by trains in tunnels. In:Proc.2th ISAVVT, Cambridge, UK, BHRA Fluid Engineering, Paper C3, 1976:35-54.
    [16]W A Woods, C W Pope, On the range of validity of simplified one-dimensional theories for calculating unsteady flows in railway tunnels, In:Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper D2,1979:115-150.
    [17]Triebstein H. Transient pressure measurements at the top of the engine 103 during the passage through the Heitersberg tunnel. In:Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper G3, 1979:303-324.
    [18]Fox J A, Higton N N. Pressure transient predictions in railway tunnel complexes. In:Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper D1,1979:97-114.
    [19]B Dayman, A'E Vardy. Alleviation of tunnel entry pressure transients:1.experimental program. In: Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper H2,1979:343-362.
    [20]A E Vardy, B Dayman. Alleviation of the tunnel entry pressure transients:2. Theoretical modeling and experimental correlation. In:Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper H3, 1979:363-376.
    [21]Steinruck P, Sockel H. Further calculations on transient pressure alleviation and simiplitied for initial tunnel design. In:Proc.5th ISAVVT, Lille, France, BHRA Fluid Engineering, Paper E4, 1985:317-341.
    [22]M Schultz, H Sockel. The influence of unsteady friction on the propagation of pressure waves in tunnels. In:Proc.6th ISAVVT, Durham, UK, BHRA Fluid Engineering, Paper B3,1988:123-135.
    [23]M Schultz, H Sockel. Pressure transients in short tunnels. In:Proc.7th ISAVVT, Elsevier Science Publishers Ltd. England,1991:221-237.
    [24]Gawthorpe R G. Pressure comfort criteria for rail tunnels operations. In:Proc.7th ISAVVT, British Railways Board,1991:173-188.
    [25]M Kazuyase, et al. Attenuation of compression waves in a high-speed railway tunnel simulator. In: Proc.7th ISAVVT, Elsevier Science Publishers Ltd. England,1991:239-252.
    [26]Dayman B, Vardy A E. TUNNEL:a gun-fired 0.5% scale facility for pressure transients tests of very high speed trains in tunnels. In:Proc.7th ISAVVT, Elsevier Science Publishers Ltd. England, 1991:757-787.
    [27]Periffer A, Ottitsch F, Sockel H. Experimental and theoretical investigation of two-and three-dimensional pressure waves propagating inside a tunnel due to train passage. In:Proc.8th ISAVVT, Livepool, UK,1994:151-174.
    [28]K Matsuo, T Aokl, et al. Entry compression wave generated by a high-speed train entering a tunnel. Vehicle Tunnels,1997:925-934.
    [29]Gregoire R., Rety J M, Moriniere V, et al. Experimental study at scale 1/70th and numerical simulation of the generation of pressure waves and micro-pressure waves due to thigh speed train tunnel entry. In:Proc.9th ISAVVT, Aosta, Italy, Vehicle Tunnels,1997:877-903.
    [30]W B de Wolf, Eafa Demmenie. A new test facility for the study of interacting pressure waves and their reduction in tunnels for high-speed trains. In:Proc.9th ISAVVT, Aosta, Italy, Vehicle Tunnels, 1997:301-317.
    [31]M S Howe. Mach number dependence of the compression wave generated by a high-speed train entering a tunnel. Journal of Sound and Vibration,1998,212(1):23-36.
    [32]M S Howe. Review of the theory of the compression wave generated when a high-speed train enters a tunnel. Proc Inst Mech Engrs, Part F,1999,213:89-104.
    [33]M S Howe, M Lida. Influence of separation on the compression wane generated by a train entering a tunnel. International Journal of Aeroacoustics,2003,2 (1):13-33.
    [34]Mame William-Louis, Claude Tournier. A wave signature based method for the prediction of pressure transients in railway tunnels. Journal of Wind Engineering and Industrial Aerodynamics,2005, (93):521~531.
    [35]梅元贵.高速铁路隧道压力波数值模拟研究:(博士学位论文).成都:西南交通大学,1997.
    [36]骆建军.高速列车进入隧道产生压缩波的数值模拟及试验研究:(博士学位论文).成都:西南交通大学,2003.
    [37]余南阳.高速铁路隧道压力波数值模拟和模型试验研究:(博士学位论文).成都:西南交通大学,2004.
    [38]B Dayman, D W Kurtz. Experimental studies relating to the aerodynamics of trains traveling in tunnels at low speeds. In:Proc.1th ISAVVT, Canterbury, UK, BHRA Fluid Engineering, Paper G2, 1973:21-48.
    [39]Nayak U S L, Gralewski Z A, Stevens S J. The aerodynamic drag of tube vehicles traveling at low subsonic speeds. In:Proc.2th ISAVVT, Cambridge, UK, BHRA Fluid Engineering, Paper El, 1976:1-22.
    [40]Gaillard M A. Aerodynamic measurements with high-speed trains (250 km/h) in the Heitersburg tunnel. In:Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper G2,1979:281-302.
    [41]Gawthorpe R G, Pope C W, Green R H. Analysis of train drag in various configurations of a long tunnel. In:Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper G1,1979:257-280.
    [42]Vardy A E. Anandaranjah A. Initial design considerations for rail tunnel aerodynamics and thermodynamics. In:Proc.4th ISAVVT, York, UK, BHRA Fluid Engineering, Paper H2, 1982:353-366.
    [43]Maeda T, Kinoshita M, Kajiyama H, Tanemoto K. Estimation of aerodynamic drag of Shinkansen trains from pressure rise in tunnel. In:Proc.6th ISAVVT, Durham, England, BHRA Fluid Engineering, Paper A4,1988:61-78.
    [44]Pope C W, Johnson T, Broomhead S F. Aerodynamic and thermal design for the Great Belt Tunnel. In: Proc.6th ISAVVT, Durham, England, BHRA Fluid Engineering, Paper D3,1988:245-272.
    [45]Jean-Maffei Peters, Krauss-Maffei Verkehrstechnik. Measurement of the influence of tunnel length on the tunnel drag of The ICE/V Train. In:Proc.7th ISAVVT, Elsevier Science Publishers Ltd. England, 1991:739-756.
    [46]Vardy A E. Aerodynamic drag on trains in tunnels.1:synthesis and definitions. In:Proc World Congr Inst Mech Eng,1996,210:29-38.
    [47]Vardy A E. Aerodynamic drag on trains in tunnels.2. Prediction and validation. In:Proc World Congr Inst Mech Eng,1996,210:39~49.
    [48]Vardy A E, Reinke P. Estimation of train resistance coeffcients in tunnels from measurements during routine operation. Proc World Congr Inst Mech Eng,1999,213F:71~87.
    [49]廖艾贤.列车通过单线隧道的空气阻力.西南交通大学学报,1985,(1):89-98.
    [50]荣深涛,杨健,徐岩等.北京地下铁道列车空气阻力实验报告.北方交通大学学报,1991,15(1):119-132.
    [51]许唯临,廖华胜,王韦等.隧道中列车空气阻力数值模拟研究.铁道学报,1998,20(2):93-98.
    [52]王韦,王建宇,陈正林.隧道中高速列车活塞风及空气阻力的计算.中国铁道科学,1999,20(1):9-16.
    [53]王韦,王建宇,陈正林.隧道中列车头部空气阻力的简化计算.四川联合大学学报,1999,3(2):1-6.
    [54]徐一民,王韦,许唯临.隧道中高速列车空气阻力的水流模型实验.四川大学学报,2005,37(6):10-14.
    [55]魏鸿,吴剑.沉管隧道高速列车空气阻力水力学模型试验研究.铁道建筑,2007,(5):41-45.
    [56]J Valense, D Favier, D Magallon. Theoretical and experimental investigation of the piston effect in a twin tunnel. In:Proc.2th ISAVVT, Cambridge, UK, BHRA Fluid Engineering, Paper E3,1976:57-79.
    [57]Tomoshige Hara. Aerodynamic drag of train in tunnels. Quarterly Report, RTRI,1967,8(4).
    [58]Pope C W. Transient pressures in tunnels-a formula for predicting the strength of the entry wave produced by trains with streamlined and unstreamlined noses. British Railways Research and Development Division, Techn. Memo. Aero,1976.
    [59]张畲.高速列车在隧道中运行时产生的问题(报告13).隧道译丛,1994,(9):1-12.
    [60]D K Petersen, R C Arnold, W N Weins. Modelling of airflow and heat transfer in a train/tunnel annulus. BHR Group Vehicle Tunnels,2000:829-845.
    [61]Reichardt H. Characteristic properties of the straight-lined turbulent Couette-flow. BRD,1959:1-45.
    [62]Schlichting H. Theory of biundary layers.1982.
    [63]Eder R, Sockel H. Calculation of turbulent flow in the annular gap between the walls of train and tunnel. In:Proc.5th ISAVVT, Lille, France, BHRA Fluid Engineering, Paper El,1985:259-284.
    [64]Hanjalic K, Launder R E. A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics,1972,52(4):609-638.
    [65]Hanjalic K, Launder R E. Fully developed asymmetric channel flow in a plane channel. Journal of Fluid Mechanics,1972,51(2):301-335.
    [66]Hanjalic K. Two-dimensinal asymmetric turbulent flow in ducts. Ph. D. Thesis, University of London, 1970.
    [67]王丽慧.地铁活塞风与地铁环控节能:(博士学位论文).上海:同济大学,2007.
    [68]李涛.活塞风对地铁车站内环境的影响:(硕士学位论文).天津:天津大学,2005.
    [69]光俊杰.深圳地铁香蜜湖岛式车站的隧道活塞风研究:(硕士学位论文).天津:天津大学,2006.
    [70]史力生.双线铁路隧道的活塞风和沿程阻力系数.铁道学报,1995,17(2):118-125.
    [71]陈正林,王建宇,魏鸿.高速铁路双竖井隧道列车空气阻力计算.世界隧道,1998,(6):1-5.
    [72]王韦,陈正林,魏鸿.高速铁路隧道内列车活塞风和空气阻力的解析计算.世界隧道,1999,(1):63-66.
    [73]顾红生,赵毅山.磁悬浮列车在隧道内影响活塞风的因素.同济大学学报,2003,31(3):324-328.
    [74]史力生.双线铁路隧道的活塞风和沿程阻力系数.铁道学报,1995,17(2):118-125.
    [75]铁道部隧道通风试验工作组.东北四座隧道自然通风观测调查及试验报告.1964.
    [76]R L道格提,赵容夫.隧道中列车的活塞作用.隧道译丛,1966,(2).
    [77]荣深涛.恒定不可压缩Couette流的通用理论—Ⅰ流场中存在零切应力平面这种情况.中国科学,1986,(A2):162-170.
    [78]荣深涛,苏红,阎冠民.同心情况下列车通过隧道的空气阻力计算.北方交通大学学报,1991,15(1):68-84.
    [79]荣深涛,苏红,阎冠民.偏心情况下列车通过隧道的空气阻力计算.北方交通大125学学报,1991,15(1):85-90.
    [80]C W Pope, R G Gawthorpe, S P Richards. An experimental investigation into the effect of train shape on the unsteady flows generated in tunnels. In:Proc.4th ISAVVT, York, UK, BHRA Fluid Engineering, Paper C2,1983:107-127.
    [81]张畲.高速列车在隧道中运行时产生的问题(报告7).隧道译丛,1994,(9):13-23.
    [82]W R White, C W Pope. The use of a hydraulic analogy for modeling the unsteady flows in railway tunnels. In:Proc.3th ISAVVT, Sheffield, UK, BHRA Fluid Engineering, Paper H1,1979:115-150.
    [83]周光坰.流体力学.北京:高等教育出版社,1992.
    [84]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998.
    [85]F M怀特.粘性流体动力学.北京:机械工业出版社,1982.
    [86]吴望一.流体力学.北京:北京大学出版社,1983.
    [87]赵学瑞,廖其奠,粘性流体力学.北京:机械工业出版社,1983.
    [88]刘光宗.流体力学原理与分析方法.北京:高等教育出版社,1992.
    [89]普朗特.流体力学概论.北京:科学出版社,1966.
    [90]E John Finnemore流体力学及其工程应用.北京:机械工业出版社,2006.
    [91]毕海权,雷波,张卫华.TR磁浮列车湍流外流场数值计算.西南交通大学学报,2005,40(1):5-8.
    [92]张经强,梁习锋.动力车气动性能数值计算.数值计算与计算机应用,2003,(2):154-160.
    [93]武青海,周虹伟,朱勇更.高速列车湍流流场数值仿真计算探讨.铁道学报,2002,24(3):99-103.
    [94]革非,毕海权,雷波.具有横风效应的磁浮列车湍流外流场特性数值计算.铁道学报,2005,27(6):117-121.
    [95]荣深涛,杨健,徐岩.科特(Couette)数Pr=1的环隙科特紊流.北方交通大学学报,1991,15(1):14-20.
    [96]荣深涛,徐岩,杨健.科特(Couette)数Pr≥1的环隙科特紊流.北方交通大学学报,1991,15(1):21-27.
    [97]荣深涛,徐岩,杨健.科特(Couette)数0≤Pr≤1的环隙科特紊流.北方交通大学学报,1991,15(1):28-35.
    [98]荣深涛,阎冠民.环形槽道科特(Couette)紊流的第1类科特流.北方交通大学学报,1991,15(1):49-58.
    [99]荣深涛,阎冠民.环形槽道科特(Couette)紊流的第2类科特流.北方交通大学学报,1991,15(1):59-67.
    [100]董曾南,章梓雄.非粘性流体力学.北京:清华大学出版社,2003.
    [101]张鸣远.高等工程流体力学.西安:西安交通大学出版社,2008.
    [102]薛琳,苏红,毛军.具有零切应力平面的平面科特流实验研究.北方交通大学学报,2003,27(4):14-16.
    [103]Suo M, Jacobs P. Hydraulic analogy study of waves in tunnels. MIT, Report RSR-76111,1966.
    [104]Dewhurst H W. Further hydraulic analogy studies of waves in tunnels. SB Thesis, MIT,1966.
    [105]Mills J M, Wilson D G. Study by hydraulic analogy of passage of high speed trains through tunnels. MIT, Report,1967.
    [106]木川田一弥,森井宣治.对超高速列车在隧道内运行时压力变化的实验研究.隧道译丛.1994,(50):1-9.
    [107]高品贤,余南阳,雷波.隧道空气压力波浅水槽拖动模型试验的实时检测.铁道学报,2002,22(3):43-46.
    [108]Marte J E. The design and operation of a large tube vehicle aerodynamic testing facility. In:Proc.1th ISAVVT, Canterbury, UK, BHRA Fluid Engineering, Paper A1,1973:72-100.
    [109]Fox J A, Henson D A. The prediction of the magnitudes of pressure transients generated by a train entering a single tunnel. Proc of Inst Civil Eng,1971:53-59.
    [110]毛军,薛琳,谭忠盛.新型高速列车隧道空气动力学模型实验研究.北方交通大学学报,2003,27(4):6-10.
    [111]Pope C W. The simulation of flows in railway tunnel using 1/25th scale moving model facility. In: Proc.7th ISAVVT, British Railways Board,1991:709-737.
    [113]Auvity B, Kageyama T. Etude experimentale et numerique de l'onde de compression generee par l'entree d'un train dans un tunnel. C. R. Acad. Sci., Paris, t.323, serie Ⅱ b,87-94,1996(in French).
    [114]Takayama K, Saito T Sasoh A, Onodera O, et al. A numerical and experimental study on sonic booms generated from high speed train tunnels. Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicle, STECH'93, Yokohama, Japan, Paper PS3-6,1993:305-309.
    [115]Magnus D E, Panunzio S. Experimental investigation of the near flow field for tube vehicle. Report PB, General Applied Science Laboratories, Westbury, New-York, USA,1970:198-205.
    [116]赵文成.高速铁路隧道缓冲结构的理论和试验研究:(博士学位论文).成都:西南交通大学,2004.
    [117]Gaillard M A. Aerodynamics of trains in tunnels. In:Proc.1th ISAVVT, Canterbury, UK, BHRA Fluid Engineering, Paper J4,1973:33-47.
    [118]挥起麟.实验空气动力学.北京:国防工业出版社,1991.
    [119]陈克诚.流体力学实验技术.北京:机械工业出版社,1983.
    [120]左启东等.模型试验的理论和方法.北京:水利电力出版社,1984.
    [121]Yves Dappas英法海峡隧道的空气动力学和热力学问题.世界隧道,1996,(2):57-61.
    [122]D A Henson, W M S Bradbury. The aerodynamics of Channel tunnel trains. In:Proc.7th ISAVVT, Elsevier Science Publishers Ltd. England,1991:927-956.
    [123]铁道部第二勘察设计院.铁路工程设计技术手册(隧道).北京:人民铁道出版社,1978.
    [124]Joseph A Schetz高速列车空气动力学.力学进展,2003,33(3):404-423.
    [125]铁道部工程设计鉴定中心.高速铁路隧道.北京:中国铁道出版社,2006.
    [126]赵勇.铁路隧道建设的几个问题.铁道标准设计,2004,(7):110-113.
    [127]唐振明.高速列车车头外流场的三维数值模拟:(硕士学位论文).大连:大连理工大学,2003.
    [128]任玉龙.隧道中列车环隙进口阻力的实验研究:(硕士学位论文).兰州:兰州交通大学,2008.
    [129]丁祖荣.流体力学.北京:高等教育出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700