高效金属氧化物电极制备及处理水中硝基苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电催化氧化法作为高级氧化技术(AOPs)的一种,用于处理水中难降解有机污染物,如酚类、芳胺类、芳烃类及农药等非常有效。开发高效稳定的电极以及提高电解体系的效率都是目前电化学技术最为关切的重点。硝基苯酚类化合物广泛存在于染料、石油、医药、农药和炸药等相关工业中,是一类难以生物降解的有害有机污染物。其降解和矿化一直以来都是研究的热点和难点。本文针对高效稳定的金属氧化物的开发、硝基苯酚类化合物的降解以及提高电解体系整体效率做了如下工作:
     制备了铋和钴等掺杂的改性二氧化铅电极。利用扫描电子显微镜(SEM)、原子力显微镜(AFM)和X射线衍射(XRD)等技术对改性二氧化铅电极的表面形貌和晶体结构进行了表征。通过极化曲线、循环伏安以及电化学阻抗等测试手段研究了改性二氧化铅电极的电化学性能。通过加速寿命试验得到了电极的使用寿命。研究了电解体系内氧化剂,比如羟基自由基、过氧化氢及次氯酸根等的生成情况。以邻硝基苯酚为目标有机物,考察了这些改性二氧化铅电极的电催化氧化性能。结果表明,铋掺杂二氧化铅电极(Ti/Bi-PbO_2电极)具有晶体尺寸较小、结构紧密的特点,并且表面比较粗糙。该电极的电催化活性以及电极稳定性要优于Ti/β-PbO_2电极以及另外改性的电极。此外,Ti/Bi-PbO_2电极的电流效率也是最高的。Ti/Bi-PbO_2电极不仅催化活性高而且能耗低,是一种理想的可以用来处理有机污染物的阳极材料。
     研究并分析了降解过程中有机物的矿化、动力学规律,定性、定量检测分析了Ti/Bi-PbO_2电极电催化氧化硝基苯酚类化合物(邻硝基苯酚o-NP、间硝基苯酚m-NP、对硝基苯酚p-NP、2, 4-二硝基苯酚2, 4-DNP、2, 5-二硝基苯酚2, 5-DNP、2, 6-二硝基苯酚2, 6-DNP和2, 4, 6-三硝基苯酚2, 4, 6-TNP)降解过程中的中间产物,并提出了硝基苯酚化合物可能的降解路径。通过循环伏安测试可以得知,硝基苯酚化合物在Ti/Bi-PbO_2电极上主要是通过间接氧化被降解的。Ti/Bi-PbO_2电极对硝基苯酚有很好的去除效果,有机物自身能够被完全去除,并且矿化度均超过了90%。七种硝基苯酚的降解快慢顺序如下:o-NP >m-NP >p-NP >2, 6-DNP >2, 5-DNP >2, 4-DNP >2, 4, 6-TNP。对硝基苯酚降解过程中的中间产物进行了检测、分析。发现到反应结束时,基本上所有的硝基都从苯环上脱落下来,并且最终主要以硝酸根的形式存在。通过液相色谱、质谱检测分析了中间产物的转化。检测结果表明在电催化氧化硝基苯酚的过程中,主要有三大类中间产物生成,分别为多羟基苯环类化合物、硝基苯酚的还原产物以及羧酸类物质。提出了硝基苯酚化合物可能的降解路径,主要包括三个步骤:第一,羟基取代硝基或取代氢原子而加成到苯环上;第二,芳香族化合物发生开环反应,生成羧酸类化合物;第三,羧酸类化合物进一步被氧化,最终转化成二氧化碳和水。
     通过对Ti/Ce-PbO_2电极制备工艺的优化,所制得的电极电荷传递电阻最小,催化活性最高。根据SEM、AFM和XRD的结果,发现与传统的二氧化铅电极(Ti/β-PbO_2)比较,Ti/Ce-PbO_2电极的晶体颗粒更加细小,表面更加粗糙,并且结构更加致密。Ti/Ce-PbO_2电极的使用寿命及耐腐性均优于Ti/β-PbO_2电极。Ti/Ce-PbO_2电极对邻硝基苯酚去除效果要优于Ti/β-PbO_2电极,降解速率是后者的2.29倍。并且能耗更小,与后者相比下降了18%。比较Ti/Ce-PbO_2电极使用前后性能测试结果,可知该电极具有很好的稳定性。铈的掺杂对提高二氧化铅电极的稳定性和催化活性有积极的作用。通过研究共存物质存在时,邻硝基苯酚的降解及矿化情况,可知当溶液中存在金属离子、醇类化合物、有机酸以及表面活性剂时,目标有机物的降解基本上没有受到影响,并且整个体系的矿化效果依然维持在较高的水平。本电催化氧化体系具有可靠的稳定性,能够抵御一定的外加负荷的冲击,这为本体系实际应用提供了依据。
     优化了三元复合的改性二氧化锡电极——Ce-Ru-SnO_2电极的制备工艺。与其他改性二氧化锡电极相比,该电极不仅电催化活性高,并且使用寿命长、能耗小。从SEM和XRD的结果来看,铈的掺杂能够减少电极表面的裂纹,提高电极的比表面积,还能减小二氧化锡的晶体颗粒尺寸,并使得晶体分布更加均匀。从加速寿命试验结果来看,Ce-Ru-SnO_2电极的加速寿命要明显长于传统的SnO_2-Sb2O5电极。从Ce-Ru-SnO_2电极使用前后性能研究来看,该电极在使用后没有发生明显的变化,表明该电极具有较好的稳定性。Ce-Ru-SnO_2电极对硝基苯酚类化合物有很好的去除效果。这些硝基苯酚的降解存在如下顺序:o-NP>p-NP>m-NP>2, 5-DNP>2, 4-DNP>2, 6-DNP>2, 4, 6-TNP。比较Ce-Ru-SnO_2电极与Ti/Bi-PbO_2电极可以发现,前者的电催化活性要优于后者,但是电极的使用寿命上则是后者好于前者。
Electrocatalytic oxidation as one of the Advanced Oxidation Processes (AOPs) was effectively to treat some intractable organic pollutants, such as phenols, the aromatic amines, the aromatic hydrocarbons and the pesticides. Both the development of electrodes with high stability and enhancement of efficiency of electrochemical system are hot topics in the field of electrochemistry. Nitrophenols (NPs) represent a class of widely synthesized chemicals particularly involving in the manufactures of pesticides, dyes and pharmaceuticals, which are anthropogenic, toxic, inhibitory and bio-refractory organic compounds and are considered as hazardous substances and priority toxic pollutants. It is of significant importance to develop new treatment technologies for the destruction and mineralization of NPs in wastewater. In the present work, the following investigation have been carried out for the purpose of development of metal oxides electrodes with high stability, degradation of nitrophenols and enhancement of efficiency of entire electrochemical system.
     A set of modified PbO_2 anodes doped with the oxides of Bismuth and Cobalt were prepared by the means of electrodeposition in nitrate solutions. Scanning electronic microscopy (SEM), Atomic force microscopy (AFM) and X-ray diffraction (XRD) were used to characterize the morphology and crystal structure of modified PbO_2 anodes. The electrochemical properties of these modified PbO_2 anodes were studied by means of linear sweep, cyclic voltammetry and electrochemical impedance spectroscopy (EIS), respectively. The service lives of modified anodes were obtained in terms with accelerated life tests. Oxidants such as hydroxyl radical, hydrogen peroxide and hypochlorite ion were determined. Electrocatalytic oxidation of o-nitrophenol (o-NP) was conducted by using these electrodes as anode and stainless steel sheet as cathode. The results indicated that Bismuth doped PbO_2 electrode (Ti/Bi-PbO_2) was characterized of smaller crystal size, compact structure and rough surface. This anode displayed a better electrocatalytic activity and higher stability than those of Ti/β-PbO_2 anode, as well as other modified anodes. In addition, the current efficiency of Ti/Bi-PbO_2 was the highest of all PbO_2 anodes. Ti/Bi-PbO_2 anode had the highest electrocatalytic activities and the lowest energy consumption. The Ti/Bi-PbO_2 anode was a promising anode for the treatment of organic pollutants.
     The electrocatalytic oxidation of o-nitrophenol (o-NP), m-nitrophenol (m-NP) and p-nitrophenol (p-NP), 2, 4-dinitrophenol (2, 4-DNP), 2, 5-dinitrophenol (2, 5-DNP), 2, 6-dinitrophenol (2, 6-DNP) and 2, 4, 6-trinitrophenol (2, 4, 6-TNP) has been studied on Bi-doped lead dioxide anodes in acid medium by cyclic voltammetry and bulk electrolysis. The mineralization and kinetics of organic compounds were studied in the course of electrolysis. The intermediates accumulated during the electrolysis were analyzed qualitatively and quantitatively. Furthermore, possible degradation pathways of nitrophenols were proposed. The results of voltammetric studies indicated that these nitrophenols were indirectly oxidized by·OH radical in the solutions. Within the present experimental conditions used, almost complete elimination of nitrophenols and more than 90% mineralization were achieved. The electrocatalytic oxidation of NPs lay in the order: o-NP >m-NP >p-NP >2, 6-DNP >2, 5-DNP >2, 4-DNP >2, 4, 6-TNP. The intermediates generated during the electrolysis of nitrophenols were determined and analyzed. Nitrate ion is identified as the major nitrogen final reaction product during the NPs oxidation, while a minor amount of ammonia is left at the end of electrolysis, which indicated that almost all the nitro groups detached from aromatic rings. The results of LC / MS and HPLC suggest that three kinds of intermediates are generated, i.e. polyhydroxylated intermediates, reduction products of NPs and carboxylic acids. In the long run, polyhydroxylated intermediates and reduction products of NPs were eventually oxidized to micromolecular carboxylic acids, such as maleic acid, oxalic acid, acetic acid and formic acid, etc. The possible degradation pathways of NPs were proposed, including three major steps: 1) the denitration and substitution by hydroxyl radicals on aromatic rings seem to be the first stage; 2) aromatic ring-opening reactions took place to generate carboxylic acids; 3) carboxylic acids were further oxidized into CO_2 and H2O.
     Cerium doped lead dioxide anode, i.e. Ti/Ce-PbO_2, was prepared by electrodeposition. After the optimization of preparation technique, a Ti/Ce-PbO_2 anode with lower charge transfer resistance and higher electrocatalytic activity was obtained. SEM, AFM, XRD and X-ray photoelectron spectrometry (XPS) were used to characterize the morphology, crystal structure and elements states of modified anode. The results of SEM, AFM and XRD showed that the crystal size of Ti/Ce-PbO_2 anode was smaller than undoped PbO_2 (Ti/β-PbO_2) and no diffraction peaks corresponding to CeO_2 formed. The result of accelerated life test implied that Ti/Ce-PbO_2 anode had favorable electrochemical stability. The electrochemical oxidation of o-NP on Ti/Ce-PbO_2 anode displayed a faster degradation rate and higher mineralization efficiency than Ti/β-PbO_2 anode (the degradation rate of former was 2.29 times higher than that of latter). In addition, Ti/Ce-PbO_2 anode had higher current efficiency and lower energy consumption (the energy consumption of former decreased by 18% compared with latter). Comparing the properties of Ti/Ce-PbO_2 anode before and after use, this modified lead dioxide electrode displayed benign stability. The results indicated that the incorporation of Cerium fascinated to improve the stability and electrocatalytic activity of lead dioxide anode. The investigations on the effect of co-exsting substances on electrochemical oxidation of o-NP came into the following conclusions. The degradation of o-NP was nearly not impacted in the presence of metal ions, alcohols, organic acids and surfactant. The present electrochemical system displayed a reliable stability and resistance to impact of additional load.
     The preparation parameters for the Cerium doped ternary SnO_2 based oxides anode were optimized. When the molar percentages of Cerium and Ruthenium were 1% and 5%, the prepared anode had high electrocatalytic activity and stability. The results of SEM and XRD revealed that the incorporation of Cerium could decrease the cracks of anode surface, enhance the specific surface area and diminish the crystal size of modified SnO_2 anode, as well as cause a better dispersion of oxides. The results of accelerated life test indicated that the service life of Ce-Ru-SnO_2 anode was longer than that of traditional SnO_2-Sb2O5 anode. Comparing the properties of Ce-Ru-SnO_2 anode before and after use, almost no evident difference was observed, which demonstrated that this anode had benign stability. Nitrophenols could be effectively eliminated on Ce-Ru-SnO_2 anode. The degradation of NPs lies in the order: o-NP>p-NP>m-NP>2, 5-DNP>2, 4-DNP>2, 6-DNP>2, 4, 6-TNP. The comparison of Ce-Ru-SnO_2 anode with Ti/Bi-PbO_2 anode indicated that the electrocatalytic activity of former was superior to that of latter. Nevertheless, the service life of latter was longer.
引文
1 K. T. Chung, S. E. Stevens. Decolorization of azo dyes by environmental microorganisms and helminthes. Environ. Toxical. Chem. 1993, 12(11): 2121~2131
    2 L. E. Sendelbach. A review of the toxicity and carcinogenicity of anthraquinone derivatives. Toxical. 1989, 44: 561~566
    3袁宝珊,梁超轲主编.环境污染物质突变性致癌性致畸性.兰州:兰州大学出版社. 1995
    4 C. C. Sigman, P. A. Papa, M. K. Doeltz. Study of anthraquinone dyes of selection of candidates for carcinogen bioassay. Environ. Sci. Health. Part. A. 1985, 20: 427~494
    5 M. Shimazu, A. Mulchandani, W. Chen. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp with surface-expressed organophosphorus hydrolase. Biotechnol. Bioeng. 2001, 76: 318~324
    6 A. Gutes, F. Cespedes, S. Alegret, M. Del Valle. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosens. Bioelectron. 2005, 20: 1668~1673
    7 K.W. Hofmann, H.J. Knackmuss, G. Heiss. Nitrite elimination and hydrolytic ring cleavage in 2, 4, 6-trinitrophenol (Picric acid) degradation. Appl. Environ. Microb. 2004, 70: 2854~2860
    8 USEPA, Health and environmental effects profile for nitrophenols. Environmental Protection Agency, Environmental Criteria and Assessment Office. Cicinnati, OH: US. 1985
    9 ATSDR (Agency for Toxic Substance and Disease Registry). Toxicological Profile for NPs. Department of Health and Human Service, Public Health Service, Atlanta, GA, US. 1992
    10 USEPA. Nitrophenols: ambient water quality criteria. Washington, D C. 1980
    11 J. L. Weidhaas, E. D. Schroeder, D. P. Y. Chang. An Aerobic Sequencing Batch Reactor for 2, 4, 6-Trinitrophenol (Picric Acid) Biodegradation. Biotechnol. Bioeng. 2007, 97(6): 1408~1414
    12 J. Ye, A. Singh, O. P. Ward. Biodegradation of nitroaromatics and othernitrogen-containing xenobiotics. World. J. Microb. Biot. 2004, 20: 117~135
    13 V. L. Gemini, A. Gallego, V. Tripodi et al. Microbial degradation and detoxification of 2, 4-dinitrophenol in aerobic and anoxic processes. Int. Biodeter. Biodegr. 2007, 60: 226~230
    14 F. X. Gao, R. M. Hua. An efficient polyoxovanadate-catalyzed oxidative mineralization of phenols with 30% aqueous H2O2. Catal. Commun. 2006, 7: 391~393
    15 I. Sanchez, F. Stüber, J. Font et al. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure. Chemosphere. 2007, 68: 338~344
    16 W. H. Song, Z. Zheng, S. R. Abual et al. Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation. Radiat. Phys. Chem. 2002, 65: 559~563
    17 A. Goi, M. Trapido, T. Tuhkanen. A study of toxicity, biodegradability, and some by-products of ozonised nitrophenols. Adv. Environ. Res. 2004, 8: 303~311
    18 Z. R. Sun, F. Takahashi, Y. Odaka et al. Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water. Chemosphere. 2007, 66 (1): 151~157
    19 X. Z. Li, H. L. Liu, P. T. Yue et al. Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ. Sci. Technol. 2000, 34 (20): 4401~4406
    20 R. Toor, M. Mohseni. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere. 2007, 66(11): 2087~2095
    21 A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238: 37~38
    22 W. H. Glaze, J. W. Kang. Advanced oxidation processes. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res. 1989, 28: 1573~1580
    23 D. Gandini, E. Mahé, P. A. Michaud et al. Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater. J. Appl. Electrochem. 2000, 30(12): 1345~1350
    24 J. Iniesta, P. A. Michaud, G. Cherisola. Electrochemical oxidation of phenol at boron-doped diamong electrode. Electrochim. Acta. 2001, 46(23): 3573~3578
    25 S. S. Vaghela, A. D. Jethva, B. B. Mehta et al. Laboratory studies of electrochemical treatment of industrial Azo Dye effluent. Environ. Sci. Technol. 2005, 39: 2848~2855
    26 I. Sires, F. Centellas, J. A. Garrido et al. Mineralization of clofibric aicd by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysis. Appl. Catal. B: Environ. 2007, 72: 373~381
    27冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M].北京:化学工业出版社. 2002
    28 Zimmer. Electrochemical Processes for Decomposition of Organic Matter in Wastewater. Z. Tech. Univ. Dresden. 1997, 46(4): 80~85
    29王仲权.电催化作用.分子催化. 1988, 2(2): 124~136
    30 S. Stucki, R. Kotz. Electrochemical Wastewater Treatment Using High Overvoltage Anodes. Part II: Anode Performance and Applications. J. Appl. Electrochem. 1991, 21: 99~104
    31 L. C. Chiang, J. E. Chang, T. C. Wen. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water. Res. 1995, 29(2): 671~678
    32 C. Comninellis. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta. 1994, 39(11/12): 1857~1862
    33 D. Dabo. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol. 2000, 34(7): 1265~1268
    34 T. C. Franklin. Destruction of halogenated hydro carbons accompanied by generation of electricity. J. Electrochem. Soc. 1992, 20: 2192~2195
    35 T. C. Franklin. Use of the oxidation barium peroxide in apueous surfactant cystems the electrolytic destruction of organic compounds. J. Electrochem. Soc. 1991, 138: 2285~2288
    36 N. L. Weinberg. Proceedings of Sixth International Forum on Electrolysis, Environmental Applications of Electrochemical Technology. Electrosynthesis Co. East Amherst. New York. 1992
    37 J. Bringmann, K. Ebert, U. Galla et al. Electrochemical mediators for total oxidation of chlorinated hydrocarbons: formation kinetics of Ag (II), Co (III) and Ce (IV). J. Appl. Electrochem. 1995, 25: 846~855
    38 J. W. Lee, S. J. Chung, S. Balaji et al. Destruction of EDTA using Ce (IV)mediated electrochemical oxidation: A simple modeling study and experimental verification. Chemosphere. 2007, 68: 1067~1073
    39 F. Beck, H. Schulz. Cr-Tl-Sb oxide composite anodes: electroorganic oxidation. J. Appl. Electrochem. 1987, 17: 914~924
    40 O. Simond. Anodic oxidation organics on Ti/IrO2 anodes using nafion as electrolyte. Electrochim. Acta. 1997, 42(13-14): 2009~2018
    41 A. M. Polcaro. On the performance of Ti/SnO2 and anodes in electrochemical degradation of 2-Chorophenol for wastewater treatment. J. Appl. Electrochem. 1999, 28: 147~151
    42 R. Tomat. Electrochemical oxidation of toluene promoted by OH radicals. J. Appl. Electrochem. 1984, 14: 1~8
    43 M. Panizz, C. Bocca, G. Cerisola. Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water. Res. 2000, 34(9): 2601~2605
    44 C. H. Yang. Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater. J. Appl. Electrochem. 2000, 30: 1043~1051
    45 P. Ribordy. Electrochemical versus photo chemical pretreatment of industrial wastewaters. Wat. Sci. Technol. 1997, 35: 293~300
    46 J. Thanos. The influences of the electrolyte and the physical conditions on ozone production by the electrolysis of water. J. Appl. Electrochem. 1984, 14: 389~399
    47 E. Yeager. Electrocatalysis for O2 reduction. Electrochim. Acta. 1984, 29(11): 1527~1537
    48 A. T. Kuhn. Electrolytic decomposition of cyanides, phenols and thiocyanates in effluents streams-a literature review. J. Appl. Chem. Biotechol. 1971, 21: 29~34
    49 C. Comninellis, C. Pulgarin. Anodic oxidation of phenol for wastewater treatment. J. Appl. Electrochem. 1991, 21: 703~712
    50 N. B. Tahar, A. Savall. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations. J. Appl. Electrochem. 1999, 29: 277~283
    51 Z. C. Wu, M. H. Zhou. Partial degradation of phenol by advanced electrochemical oxidation process, Environ. Sci. Technol. 2001, 35: 2698~2703
    52 Y. J. Feng, X. Y. Li. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water. Res. 2003, 37: 2399~2407
    53 J. Feng, L. L. Houk, D. C. Johnson. Electrocatalysis of anodic oxygen- transfer reaction: the electrochemical incineration of benzoquinone. J. Electrochem. Soc. 1995, 142: 3626~3631
    54 P. Canizares, C. Saez, J. Lobato et al. Electrochemical treatment of 4-nitrophenol containing aqueous wastes using boron-doped diamond anodes. Ind. Eng. Chem. Res. 2004, 43: 1944~1951
    55 M. A. Quiroz, S. Reyna, C. A. Martínez-Huitle et al. Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Appl. Catal. B: Environ. 2005, 59: 259~266
    56 P. Canizares, C. Saez, J. Lobato et al. Electrochemical treatment of 2, 4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochim. Acta. 2004, 49: 4641~4650
    57 M. Tian, L. Bakovic, A. C. Chen. Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics. Electrochim. Acta. 2007, 52: 6517~6524
    58 B. Nasr, G. Abdellatif. Electrochemical oxidation of 2, 4, 6-trinitrophenol on boron-doped diamond anodes. J. Electrochem. Soc. 2005, 152(6): D113~D116
    59 C. L. P. S. Zanta, P. A. Michaud, C. Comninellis et al. Boodts. Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment. J. Appl. Electrochem. 2003, 33(12): 1211~1215
    60 Y. H. Wang, K. Y. Chan, X. Y. Li et al. Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode. Chemosphere. 2006, 65: 1087~1093
    61 Y. J. Li, F. Wang, G. D. Zhou et al. Aniline degradation by electrocatalytic oxidation. Chemosphere. 2003, 53: 1229~1234
    62 M. Panizza, G. Cerisola. Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environ. Sci. Technol. 2004, 38: 5470~5475
    63 G. R. P. Malpass, D. W. Miwa, D. A. Mortari et al. Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water. Res. 2007, 41: 2969~2977
    64 A. Cabeza, A. M. Urtiaga, I. Ortiz. Electrochemical treatment of landfill leachates using a boron-doped diamond anode. Ind. Eng. Chem. Res. 2007, 46: 1439~1446
    65 B. Wang, W. P. Kong, H. Z. Ma. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode. J. Hazard. Mater. 2007, 146: 295~301
    66 X. Y. Li, Y. H. Cui, Y. J. Feng et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water. Res. 2005,39: 1972~1981
    67 P. Canizares, J. Lobato, R. Paz et al. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water. Res. 2005, 39: 2687~2703
    68 A. G. Vlyssides, M. Loizidou, P. K. Karlis et al. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode. J. Hazard. Mater. B. 1999, 70(1-2): 41~49
    69周明华,吴祖成,汪大翚.难生化降解芳香化合物废水的电催化处理.环境科学. 2003, 24(2): 121~124
    70陈卫国,徐涛,彭玉凡等.电催化系统-电生物炭接触氧化床处理垃圾渗滤液.中国环境科学. 2002, 22(2): 146~149
    71赵丽,范洪富,方永奎等.电化学法处理茜素红S模拟染色废水的研究.印染. 2004, 20: 1~4
    72王雅琼,顾彬,许文林等.钛基PbO2电极上苯酚的电化学氧化.稀有金属材料与工程. 2007, 36 (5): 874~878
    73 L. Marincic, F. B. Leitz. Electro-oxidation of ammonia in waste water, J. Appl. Electrochem. 1978, 8: 333~337
    74 Y. M. Awad, N. Abuzaid. Electrochemical oxidation of phenol using graphite anodes. Sep. Sci. Technol. 1999, 34: 699-708
    75 H. B. Beer. Electrodes and Coating thereof US. Patent. 1972, 3 632 498
    76张招贤.钛电极工学.北京:冶金工业出版社.第二版, 2003
    77 C. Comninellis, G. P. Vercesi. Problem in DSA coating deposition by thermal decomposition. J. Appl. Electochem. 1991, 21: 136~142
    78 J. M. Hu, J. Q. Zhang, H. M. Meng et al. Electrochemical activity, stability and degradation characteristics of IrO2-based electrodes in aqueous solutions containing Cl compounds. Electrochim. Acta. 2005, 50: 5370~5378
    79 Y. Yavuz, A. S. Koparal. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode. J. Hazard. Mater. B. 2006, 136: 296~302
    80 N. N. Rao, K. M. Somasekhar, S. N. Kaul et al. Electrochemical oxidation of tannery wastewater. J. Chem. Technol. Biotechnol. 2001, 76(11): 1124~1131
    81 P. Perret, T. Brousse, D. Bélanger et al. Electrochemical Template Synthesis of Ordered Lead Dioxide Nanowires. J. Electrochem. Soc. 2009, 156(8): A645~A651
    82 N. B. Tahara, A. Savall. Electrochemical removal of phenol in alkaline solution. Contribution of the anodic polymerization on different electrode materials. Electrochim. Acta. 2009, 54: 4809~4816
    83 C. Borras, T. Laredo, B. R. Scharifker. Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO2. Electrochim. Acta. 2003, 48(19): 2775~2780
    84 B. P. Chaplin, J. R. Shapley, C. J. Werth. Oxidative regeneration of sulfide-fouled catalysts for water treatment. Catal. Lett. 2009, 132(1-2): 174~181
    85 Y. H. Cui, Y. J. Feng, Z. Q. Liu. Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes. Electrochim. Acta. 2009, 54: 4903~4909
    86 Y. H. Cui, X. Y. Li, G. H. Chen. Electrochemical degradation of bisphenol A on different anodes. Water. Res. 2009, 43: 1968~1976
    87 G. H. Zhao, X. Cui, M. C. Liu et al. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ. Sci. Technol. 2009, 43(5): 1480~1486
    88 O. Simond, V. Schaller, C. Comninellis. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta. 1997, 42(13-14): 2009~2012
    89 P. Ca?izares, F. Martínez, M. Díaz et al. Electrochemical oxidation of aqueous phenol wastes using active and nonactive electrodes. J. Electrochem. Soc. 2002, 149(8): D118~D124
    90 H. Bode, Lead-Acid Batteries, Wiley, New York, 1977
    91 S. Abacia, U. Tamer, K. Pekmez et al. Electrosynthesis of benzoquinone from phenol onαandβsurfaces of PbO2. Electrochim. Acta. 2005, 50:3655~3659
    92 R. Amadelli, L. Armelao, A. B. Velichenko et al. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochim. Acta. 1999, 45: 713~720
    93 D. C. Johnson, J. Feng, L. L. Houk. Direct electrochemical degradation of organic wastes in aqueous media. Electrochim. Acta. 2000, 46(2-3): 323~330
    94 F. Feki, F. Aloui, M. Feki et al. Electrochemical oxidation post-treatment of landfill leachates treated with membrane bioreactor. Chemosphere. 2009, 75(2): 256~260
    95 C. Comninellis, E. Plattner. The preparation and behavior of Ti/Au/PbO2 anodes, J. Appl. Electrochem. 1982, 10: 399~404
    96 A. B. Velichenko, E. A. Baranova, D. V. Girenko et al. Mechanism ofelectrodeposition of lead dioxide from nitrate solutions. Russ. J. Electrochem. 2003, 39(6): 615~621
    97 D. Devilliers, M. T. Dinh Thi, E. Mahe et al. Electroanalytic investigations on electrodeposited lead dioxide. J. Electroanal. Chem. 2004, 573: 227~239
    98 W. T. Fu, H. C. F. Martens. Transport properties of bismuth-doped beta-lead dioxide. Solid. State. Commun. 2000, 115 (8): 423~426
    99 Y. Mohd, D. Pletcher. The fabrication of lead dioxide layers on titanium substrate. Electrochim. Acta. 2006, 52: 786~793
    100 M. H. Zhou, Q. Z. Dai, L. C. Lei et al. Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism. Environ. Sci. Technol. 2005, 39: 363~370
    101 Y. H. Song, G. Wei, R. C. Xiong. Structure and properties of PbO2-CeO2 anodes on stainless steel. Electrochim. Acta. 2007, 52: 7022~7027
    102 A. Nanthakumar, N. R. Armstrong. Studies in physical and theoretical chemistry, in: H.O.Finklea (Eds.), Semiconductor Electrodes, Vol.55, Elsevier, Amsterdam, 1988, p.203
    103 Y. Chae, W. G. Houf, A. H. McDaniel et al. Models for the chemical vapor deposition of tin oxide from monobutyltintrichloride. J. Electrochem. Soc. 2006, 152(5): C309~C317
    104 E. Giani, R. Kelly. A study of SnO2 thin films formed by sputtering and by anodizing. J. Electrochem. Soc. 1974, 121: 394~399
    105 J. Pe?a, J. P. Pariente, M. V. Regí. Textural properties of nanocrystalline tin oxide obtained by spray pyrolysis. J. Mater. Chem. 2003, 13: 2290~2296
    106 M. A. D. Santos, A. C. Antunes, C. Ribeiro et al. Electric and morphologic properties of SnO2 films prepared by modified sol-gel process. Mater. Lett. 2003, 57: 4378~4381
    107 F. Montilla, E. Morallón, A. De. Battisti et al. Preparation and characterization of antimony-doped tin dioxide electrodes. Part 1. Electrohcemical characterization. J. Phys. Chem. B. 2004, 108: 5036~5043
    108 R. Kotz, S. Stucki, B. Carcer. Electrochemical waste water treatment using high overvoltage anodes. Part I. Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem. 1991, 21: 14~20
    109 C. Comninellis, C. Pulgarin. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 1993, 23: 108~112
    110 B. C. Lozano, C. Comninellis, A. De. Battisti. Service life of Ti/ SnO2-Sb2O5anodes. J. Appl. Electrochem. 1997, 27: 970~974
    111 S. Yi, W. Q. Zhuang, B. Wu et al. Tay. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ. Sci. Technol. 2006, 40: 2396~2401
    112 M. C. Tomei, M. C. Annesini. 4-nitrophenol biodegradation in a sequencing batch reactor operating with aerobic-anoxic cycles. Environ. Sci. Technol. 2005, 39: 5059~5065
    113 Q. L. Lu, G. A. Sorial. The effect of functional groups on oligomerization of phenolics on activated carbon. J. Hazard. Mater. 2007, 148: 436~445
    114格鲁什科(苏).工业废水中有毒有机化合物手册.烃加工出版社. 1998: 140~141
    115张淑群.化学工业废水处理.北京:中国环境科学出版社. 1991
    116 M. A. Oturan, J. Peiroten, P. Chartrin et al. Complete destruction of p-nitrophenol in aqueous medium by Electro-Fenton method. Environ. Sci. Technol. 2000, 34: 3474~3479
    117 H. Zhang, C. Z. Fei, D. B. Zhang et al. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater. 2007, 145: 227~232
    118 G. S. Wu, A. C. Chen. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. J. Photochem. Photobio. A: Chem. 2008, 195: 47~53
    119 M. Tian, G. S. Wu, B. Adams et al. Kinetics of Photoelectrocatalytic Degradation of Nitrophenols on Nanostructured TiO2 Electrodes. J. Phys. Chem. C 2008, 112, 825-831
    120 R. Sripriya, M. Chandrasekaran, K. Subramanian et al. Electrochemical destruction of p-chlorophenol and p-nitrophenol-Influence of surfactants and anode materials. Chemosphere. 2007, 69: 254~261
    121 Y. Z. Lei, G. H. Zhao, M. C. Liu et al. Simple and Feasible Simultaneous Determination of Three Phenolic Pollutants on Boron-Doped Diamond Film Electrode. Electroanalysis. 2007, 19(18): 1933~1938
    122 N. ?. Popovi?, J. A. Cox, D. C. Johnson. Electrocatalytic function of Bi(V) sites in heavily-doped PbO2-film electrodes applied for anodic detection of selected sulfur compounds. J. Electroanal. Chem. 1998, 455: 153~160
    123 S. Y. Ai, M. N. Gao, W. Zhang et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines. Talanta. 2004, 62, 445~450
    124 I. Avramova, D. Stoychev, T. Marinova. Characterization of a thin CeO2-ZrO2-Y2O3 films electrochemical deposited on stainless steel. Appl. Surf. Sci. 2006, 253: 1365~1370
    125 Z. C. Tang, G. X. Lu. High performance rare earth oxides LnO(x) (Ln = Sc, Y, La, Ce, Pr and Nd) modified Pt/C electrocatalysts for methanol electrooxidation. J. Power. Sources. 2006, 162(2): 1067~1072
    126 J. T. Kong, S. Y. Shi, L. C. Kong et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim. Acta. 2007, 53(4): 2048~2054
    127 Q. X. Chu, Z. H. Liang, Y. F. Sun et al. Study of electrochemical properties of Ti/SnO2+MnOx/PbO2 electrode doped with rare earth Y. Rare. Metal. Mat. Eng. 2009, 38(5): 821~825
    128 D. E. Zhang, X. M. Ni, H. G. Zheng et al. Fabrication of rod-like CeO2: Characterization, optical and electrochemical properties. Solid. State. Sci. 2006, 8(11): 1290~1293
    129 K. C. Fernandes, L. M. Da Silva, J. F. C. Boodts et al. Surface, kinetics and electrocatalytic properties of the Ti/(Ti+Ru+Ce)O-2-system for the oxygen evolution reaction in alkaline medium. Electrochim. Acta. 2006, 51(14): 2809~2818
    130 L. A. De Faria, J. F. C. Boodts, S. Trasatti. Electrocatalytic properties of Ru+Ti+Ce mixed oxide electrodes for the Cl-2 evolution reaction. Electrochim. Acta. 1997, 42(23-24): 3525~3530
    131 L. M. Da Silva, K. C. Fernandes, L. A. De Faria et al. Electrochemical impedance spectroscopy study during accelerated life test of conductive oxides: Ti/(Ru+Ti+Ce)O-2-system. Electrochim. Acta. 2004, 49(27): 4893~4906
    132 B. Tang, L. Zhang, Y. Geng. Determination of the antioxidant capacity of different food natural products with a new developed flow injection spectrofluorimetry detection hydroxyl radicals. Talanta. 2005, 65: 769~775
    133 F. J. Welcher. Standard methods of chemical analysis, 6th ed, Vol. 2, part B. R.E. Krieger Publishing Co Huntington, New York. 1975
    134 C. C. Jara, D. Fino, V. Specchia et al. Electrochemical removal of antibiotics from wastewaters. Appl. Catal. B: Environ. 2007, 70: 479~487
    135 Powder diffraction file JCPDS 35: 1422
    136 K. T. Kawagoe, D. C. Johnson. Electrocatalysis of anodic oxygen-transfer reactions-oxidation of phenol and benzene at bismuth-doped lead dioxideelectrodes in acidic solutions. J. Electrochem. Soc. 1994, 141(12): 3404~3409
    137 J. Feng, D. C. Johnson. Electrocatalysis of anodic oxygen transfer reaction: titanium substrates for pure and doped lead dioxide films. J. Electrochem. Soc. 1991, 138: 3329~3337
    138 M. Musiani, F. Furlanetto, P. Guerriero. Electrochemical deposition and properties of PbO2+Co3O4 composites. J. Electroanal. Chem. 1997, 440(1-2): 131~138
    139 S. Cattarin, P. Guerriero, M. Musiani. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides. Electrochim. Acta. 2001, 46 (26-27): 4229~4234
    140 P. J. Blood, I. J. Brown, S. Sotiropoulos. Electrodeposition of lead dioxide on carbon substrates from a high internal phase emulsion (HIPE). J. Appl. Electrochem. 2004, 34: 1~7
    141 A. B. Velichenko, R. Amadelli, E. A. Baranova et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties. J. Electroanal. Chem. 2002, 527: 56~64
    142 E. Brillas, J. C. Calpe, J. Casado. Mineralization of 2, 4-D by advanced electrochemical oxidation processes. Water. Res. 2000, 34(8): 2253~2262
    143 S. Meinero, O. Zerbinati. Oxidative and energetic efficiency of different electrochemical oxidation processes for chloroanilines abatement in aqueous solution. Chemosphere. 2006. 64(3): 386~392
    144 A. J. Bard, L. R. Faulkner. Electrochemical Methods: Fundamentals and Applications, 2nd Edition. New York; Chichester: John Wiley & Sons. 2000
    145 C. C. Jin, I. Taniguchi. Electrocatalytic oxidation of glucose on gold nanocomposition electrodes. Chem. Eng. Technol. 2007, 30(9): 1298~1301
    146 T. Vijayabarathi, S. Muzhumathi, M. Noel. The use of hydrated nickel-cobalt mixed oxide electrodes for oxidation of aliphatic and aromatic alcohols. J. Appl. Electrochem. 2007, 37: 297~301
    147曹楚南,张鉴清著.电化学阻抗谱导论.科学出版社. 2002
    148 J. C. K. Ho, G. T. Filho, R. Simpraga et al. Structure influence on electrocatalysis and adsorption of intermediates in the anodic O2 evolution at dimorphic alpha-PbO2 and beta-PbO2. J. Electroanal. Chem. 1994, 366(1-2): 147~162
    149 B. Adams, M. Tian, A. C. Chen. Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochim. Acta. 2009, 54: 1491~1498
    150 X. M. Chen, G. H. Chen, P. L. Yue. Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content. J. Phys. Chem. B. 2001, 105(20): 4623~4628
    151 S. P. Tong, C. A. Ma, H. Feng. A novel PbO2 electrode preparation and its application in organic degradation. Electrochim. Acta. 2008, 53: 3002~3006
    152 G. N. Martelli, R. Ornelas, G. Faita. Deactivation mechanisms of oxygen-evolving anodes at high-current densities. Electrchim. Acta. 1994, 39(11-12): 1551~1558
    153 G. Saracco, L. Solarino, R. Aigotti et al. Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochim. Acta. 2000, 46(2-3): 373~380
    154 D. Fino, C. C. Jara, G. Saracco et al. Deactivation and regeneration of Pt anodes for the electro-oxidation of phenol. J. Appl. Electrochem. 2005, 35(4): 405~411
    155 A. N. Ilichev, G. A. Konin, V. A. Matyshak et al. Formation mechanism of O2(-) radical anions in the adsorption of NO+O-2 and NO2+O-2 mixtures on ZrO2 according to EPR and TPD data. Kinet. Catal. 2002, 43(2): 214~222
    156 L. Diez, M. H. Livertoux, A. A. Stark et al. High-performance liquid chromatographic assay of hydroxyl free radical using salicylic acid hydroxylation during in vitro experiments involving thiols. J. Chromatogr. B. 2001, 763(1-2): 185~193
    157 A. L. Rose, T. D. Waite. Chemiluminescence of luminol in the presence of iron(II) and oxygen: Oxidation mechanism and implications for its analytical use. Anal. Chem. 2001, 73(24): 5909~5920
    158 Y. Z. Xian, M. C. Liu, Q. Cai et al. Preparation of microporous aluminium anodic oxide film modified Pt nano array electrode and application in direct measurement of nitric oxide release from myocardial cells. Analyst. 2001, 126(6): 871~876
    159 M. Wettasinghe, F. Shahidi. Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago officinalis L.) seeds. Food. Chem. 1999, 67(4): 399~414
    160 D. Pavlov. The lead-acid battery lead dioxide active mass: a gel-crystal system with proton and electron conductivity. J. Electrochem. Soc. 1992, 139: 3075~3080
    161 D. Pavlov, B. Monahov. Mechanism of the elementary electrochemical processes taking palce during oxygen evolution on the lead dioxide electrode. J. Electrochem. Soc. 1996, 143: 3616~3629
    162 Y. Q. Cong, Z. C. Wu. Electrocatalytic generation of radical interediates over lead dioxide electrode doped with fluoride. J. Phys. Chem. C. 2007, 111: 3442~3446
    163 N. ?. Popovi?, J. A. Cox, D. C. Johnson. A mathematical model for anodic oxygen-transfer reactions at Bi(V)-doped PbO2-film electrodes J. Electrochem. Chem. 1998, 456: 203~209
    164 X. P. Zhu, S. Y. Shi, J. J. Wei et al. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environ. Sci. Technol. 2007, 41: 6541~6546
    165 N. ?. Popovi?, D. C. Johnson. A ring-disk study of the competition between anodic oxygen-transfer and dioxygen evolution reactions. Anal. Chem. 1998, 70: 468~472
    166 I. Sires, E. Brillas, G. Cerisola et al. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes. J. Electroanal. Chem. 2008, 613(2): 151~159
    167 S. P. Tong, C. A. Ma, H. Fei. Deactivation of two different kinds of anodes during the degradation of organics and their oxidative mechanisms. Acta. Phys. Chim. Sin. 2007, 23(3): 424~428
    168 S. Y. Ai, Q. J. Wang, H. Li et al. Study on production of free hydroxyl radical and its reaction with salicylic acid at lead dioxide electrode. J. Electroanal. Chem. 2005, 578(2): 223~229
    169 M. E. Hyde, R. M. J. Jacobs, R.G. Compton. An AFM study of the correlation of lead dioxide electrocatalytic activity with observed morphology. J. Phys. Chem. B. 2004, 108: 6381~6390
    170 C. Flox, C. Arias, E. Brillas et al. Electrochemical incineration of cresols: A comparative study between PbO2 and boron-doped diamond anodes. Chemosphere. 2009, 74: 1340~1347
    171 U. T. Un, U. Altay, A. S. Koparal et al. Complete treatment of olive mill wastewaters by electrooxidation. Chem. Eng. J. 2008, 139: 445~452
    172 G. Perchet, G. Merlina, J. C. Revel et al. Evaluation of a TiO2 photocatalysis treatment on nitrophenols and nitramines contaminated plant wastewaters by solid-phase extraction coupled with ESI HPLC-MS. J. Hazard. Mater. 2009, 166: 284~290
    173 X. T. Shen, L. H. Zhu, G. X. Liu et al. Tang. Enhanced Photocatalytic Degradation and Selective Removal of Nitrophenols by Using Surface MolecularImprinted Titania. Environ. Sci. Technol. 2008, 42(5): 1687~1692
    174 J. A. Dean. Handbook of Organic Chemistry. McGraw-Hill, New York. 1987
    175 M. B. Smith, J. March. Effect of structure on reactivity, in: Advanced Organic Chemistry Reactions, Mechanisms, and Structure, 5th ed. Wiley, New York. 2001]
    176 M. Ksibi, A. Zemzemi, R. Boukchina. Photocatalytic degradability of substituted phenols over UV irradiated TiO2. J. Photochem. Photobiol. A: Chem. 2003, 159: 61~70
    177 A. Heintz, S. Kapteina, S. P. Verevkin. Pairwise-substitution effects and intramolecular hydrogen bonds in nitrophenols and methylnitrophenols. Thermochemical measurements and ab initio calculations. J. Phys. Chem. A. 2007, 111: 6552~6562
    178 J. G. Speight. Lange's Chemistry Handbook Version 16th. McGraw-Hill, New York. 2004
    179 K. Tanaka, W. Luesaiwong, T. Hisanaga. Photocatalytic degradation of mono-, di- and trinitrophenol in aqueous TiO2 suspension. J. Mol. Catal. A: Chem. 1997, 122: 67~74
    180 B. Sangchakr, T. Hisanaga, K. Tanaka. Photocatalytic degradation of sulfonated aromatics in aqueous TiO2 suspension. J. Photochem. Photobiol. A: Chem. 1995, 85: 187~190
    181 L. Oliviero, J. Barbier, D. Duprez. Wet Air Oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Appl. Catal. B: Environ. 2003, 40: 163~184
    182 L. L. Houk, S. K. Johnson, J. Feng et al. Electrochemical incineration of benzoquinone in aqeous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyt. J. Appl. Electrochem. 1998, 28: 1167~1177
    183 B. Nasr, G. Abdellatif, P. Ca?izares et al. Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes. Environ. Sci. Technol. 2005, 39: 7234~7239
    184 U. Casellato, S. Cattarin, M. Musiani. Preparation of porous PbO2 electrodes by electrochemical deposition of composites. Electrochim. Acta. 2003, 48(27): 3991~3998
    185 G. H. Chen, X. M. Chen, P. L. Yue. Electrochemical behavior of novel Ti/ItOx-Sb2O5-SnO2 anodes. J. Phys. Chem. B. 2002, 106: 4364~4369
    186 V. A. Alves, L. A. D. Silva, J. F. C. Boodts et al. Kinetics and mechanism ofoxygen evolution on IrO2-based electrodes containing Ti and Ce acidic solutions. Electrochim. Acta. 1994, 39(11-12): 1585~1589
    187 H. T. Liu, J. Yang, H. H. Liang et al. Effect of ceriumon the anodic corrosion of Pb-Ca-Sn alloy in sulfuric acid solution. J. Power. Sources. 2001, 93(2): 230~233
    188 G. X. Xu. Rare Earth. Metallurgical Industry Press, Beijing. 1995
    189 F. M. Minachev. The Application of Rare Earth for Catalyst. Science Press, Beijing. 1987
    190 Y. X. Bai, J. J. Wu, X. P. Qiu et al. Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1-xO2/C catalysts for ethanol electro-oxidation. Appl. Catal. B: Environ. 2007, 73(1-2): 144~149
    191 J. Morales, G. Petkova, M. Cruz et al. Nanostructured lead dioxide thin electrode. Electrochem. Solid. St. 2004, 7(4): A75~A77
    192 J. Morales, G. Petkova, M. Cruz et al. Synthesis and characterization of lead dioxide active material for lead-acid batteries. J. Power. Sources. 2006, 158: 831~836
    193任秀斌,陆海彦,刘亚男等.钛基二氧化铅电极电沉积制备过程中的立体生长机理.化学学报. 2009, 67: 888~892
    194 Z. C. Wu, M. H. Zhou, D. H. Wang. Synergetic effects of anodic-cathodic electrocatalysis for phenol degradation in the presence of iron(II). Chemosphere. 2002, 48: 1089~1096
    195 S. Balaji, V. V. Kokovkin, S. J. Chung et al. Destruction of EDTA by mediated electrochemical oxidation process: Monitoring by continuous CO2 measurements. Water. Res. 2007, 41: 1423~1432
    196 M. Matheswaran, S. Balaji, S. J. Chunga et al. Mediated electrochemical oxidation of phenol in continuous feeding mode using Ag (II) and Ce (IV) mediator ions in nitric acid: A comparative study. Chem. Eng. J. 2008, 144: 28~34
    197 S. Balaji, S. J. Chung, T. Ramesh et al. Mediated electrochemical oxidation process: electro-oxidation of cerium(III) to cerium(IV) in nitric acid medium and a study on phenol degradation by cerium(IV) oxidant. Chem. Eng. J. 2007, 126: 51~57
    198 T. Tzedakis, A. Savall. Electrochemical regeneration of Ce(IV) for oxidation of p-methoxytoluene. J. Appl. Electrochem. 1997, 27: 589~597
    199 D. Pleecher, E. M. Valdes. Studies of the Ce(III)/Ce(IV) couple in multiphasesystems containing a phase transfer reagent-I. Conditions for the extraction of Ce(IV) and electrode kinetics. Electrochim. Acta. 1988, 33: 499~507
    200 M. Panizza, G. Cerisola. Application of diamond electrodes to electrochemical processes. Electrochim. Acta. 2005, 51: 191~199
    201 G. Siné, C. Comninellis. Nafion?-assisted deposition of microemulsion -synthesized platinum nanoparticles on BDD Activation by electrogenerated ?OH radicals. Electrochim. Acta. 2005, 50: 2249~2254
    202 P. Caňizares, R. Paz, C. Sáez et al. Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes: A comparison with other advanced oxidation processes. Electrochim. Acta. 2008, 53: 2144~2153
    203 P. Caňizares, R. Paz, C. Sáez et al. Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes: A comparison with other advanced oxidation processes. Electrochim. Acta. 2008, 53: 2144~2153
    204 E. Weiss, K. G. Serrano, A. Savall et al. A kinetic study of the electrochemical oxidation of maleic acid on boron doped diamond. J. Appl. Electrochem. 2007, 37: 41~47
    205 T. A. Ivandini, T. N. Rao, A. Fujishima et al. Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal. Chem. 2006, 78: 3467~3471
    206 A. Kapalka, G. Fóti, C. Comninellis. Investigation of the anodic oxidation of acetic acid on boron-doped diamond electrodes. J. Electrochem. Soc. 2008, 15(3): E27~E32
    207 H. G. Leu, S. H. Lin, T. Z. Lin. Enhanced electrochemical oxidation of anionic surfactants. J. Environ. Sci. Health. A. 1998, 33(4): 681~699
    208 G. Lissens, J. Pieters, M. Verhaege et al. Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochim. Acta. 2003, 48(12): 1655~1663
    209 M. Panizza, M. Delucchi, G. Cerisola. Electrochiemcial degradation of anionic surfactants. J. Appl. Electrochem. 2005, 35: 357~361
    210 E. Weiss, K. G. Serrano, A. Savall. Electrochemical degradation of sodium dodecylbenzene sulfonate on boron doped diamond and lead dioxide anodes. J. New. Mat. Electr. Sys. 2006, 9(3): 249~256
    211 E. Weiss, K. G. Serrano, A. Savall. Electrochemical mineralization of at boron doped diamond anodes. J. Appl. Electrochem. 2007, 37: 1337~1344
    212 M. E. Makgae, M. J. Klink, A. M. Crouch. Performance of sol-gel TitaniumMixed Metal Oxide electrodes for electro-catalytic oxidation of phenol. Appl. Catal. B: Environ. 2008, 84: 659~666
    213 X. M. Chen, G. H. Chen. Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution. Electrochim. Acta. 2005, 50: 4155~4159
    214 L. V. Gómez, E. Horváth, J. Kristóf et al. Investigation of IrO2–SnO2 thin film evolution from aqueous media. Appl. Surf. Sci. 2006, 253: 1178~1184
    215 L. V. Gomez, S. Ferro, A. De Battisti. Preparation and characterization of RuO2–IrO2–SnO2 ternary mixtures for advanced electrochemical technology. Appl. Catal. B: Environ. 2006, 67: 34~40
    216 C. C. Hu, K. H. Chang, C. C. Wang. Two-step hydrothermal synthesis of Ru–Sn oxide composites for electrochemical supercapacitors. Electrochim. Acta. 2007, 52: 4411~4418
    217 R. Cossu, A. M. Polcaro, M. C. Lavagnolo et al. Electrochemical treatment of landfill leachate: oxidation at and Ti/SnO2 anodes. Environ. Sci. Technol. 1998, 32: 3570~3573
    218 C. Borrás, C. Berzoy, J. Mostany et al. Oxidation of p-methoxyphenol on SnO2-Sb2O5 electrodes: Effects of electrode potential and concentration on the mineralization efficiency. J. Appl. Electrochem. 2006, 36: 433~439
    219 C. Borrás, C. Berzoy, J. Mostany et al. A comparison of the electrooxidation kinetics of p-methoxyphenol and p-nitrophenol on Sb-doped SnO2 surfaces: Concentration and temperature effects. Appl. Catal. B: Environ. 2006, 72: 98~104
    220 L. Lipp, D. Pletcher. The preparation and characterization of tin dioxide coated titanium electrodes. Electrochim. Acta. 1997, 42: 1091~1099
    221 X. M. Chen, F. R. Gao, G. H. Chen. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation. J. Appl. Electrochem. 2005, 25: 185~191
    222 R. J. Watts, M. S. Wyeth, D. D. Finn et al. Optimization of Ti/SnO2–Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J. Appl. Electrochem. 2008, 38: 31~37
    223 P. D. Yao, Q. N. Jin, X. M. Chen et al. Ti/SnO2-Sb electrodes for pollutant degradation prepared using ultrasonic spray pryolysis. Eletrochem. Solid. St. 2008, 11(5): J37~J39
    224 H. Y. Ding, Y. J. Feng, J. F. Liu. Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition. Mater. Lett. 2007, 61: 4920~4923
    225王静,冯玉杰,刘正乾.稀土Gd掺杂对SnO2电催化电极性能影响的研究.功能材料. 2005, 36(6): 877~880
    226 B. C. Lozano, C. Comninellis, A. De Battisti. Preparation of SnO2-Sb2O5 films by the spray pyrolysis technique, J. Appl. Electrochem. 1996, 26: 83~89
    227 E. Guerrini, V. Consonni, S. Trasatti. Surface and electrocatalytic properties of well-defined and vicinal RuO2 single crystal faces. J. Solid. State. Electrochem. 2005, 9: 320~329
    228 V. Dharuman, K. C. Pillai. RuO2 electrode surface effects in electrocatalytic oxidation of glucose. J. Solid. State. Electrochem. 2006, 10: 967~979
    229 H. Y. Wang, W. F. Schneider. Effects of coverage on the structures, energetics, and electronics of oxygen adsorption on RuO2(110). J. Chem. Phys. 2007, 127: 064706
    230 S. H. Yuan, M. Tian, Y. P. Cui et al. Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J. Hazard. Mater. 2006, 137(1): 573~580
    231 V. Kavitha, K. Palanivelu. Degradation of nitrophenols by Fenton and photo-Fenton processes. J. Phtoch. Photobio. A. 2005, 170: 83~95
    232 J. D. Rodgers, W. Jedral, N. I. Bunce. Electrochemical oxidation of chlorinated phenols. Environ. Sci. Technol. 1999, 33(9): 1453~1457
    233 X. P. Zhu, M. P. Tong, S. Y. Shi et al. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environ. Sci. Technol. 2008, 42(13): 4914~4920
    234 C. A. M. Huitle, A. De Battisti, S. Ferro et al. Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes. Environ. Sci. Technol. 2008, 42(18): 6929~6935
    235 M. Panizza, G. Cerisola. Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 1. Cyclic voltammetry and potential step experiments. Electrochim. Acta. 2003, 48: 3491~3497

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700