活性PbO_2颗粒制备及其增强铅基合金的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有色金属锌电积过程中,普遍使用的是Pb-Ag(0.7-1.2%)合金阳极,该合金材料具有成型容易,制造简单等优点,但存在一些不足之处,如寿命短、槽电压高、电流效率和机械性能低等。目前新型二氧化铅电极材料具有耐腐蚀性好、导电性强、析氧过电位高、催化性好、成本低等优点,而引起广泛的关注。
     本论文在氢氧化钠碱性体系中,利用直流电沉积的方法,在不锈钢基体上电沉积α-PbO2-CeO2-Co3O4复合镀层。研究了电沉积工艺参数对复合镀层的影响。确定了最佳工艺条件:电流密度为1.5 A/dm2, Co3O4 30g/L, CeO2 15 g/L,温度40℃、电沉积时间2h。在此条件下,所制备α-PbO2-CeO2-Co3O4复合镀层含5.43% Co3O4和4.64% CeO2,综合性能较好,硫酸锌电解液中电催化活性较高,SEM图片表明添加活性颗粒Co3O4和惰性颗粒CeO2完全可以改变镀层的表面形貌,表面粗糙和晶粒细化,使镀层的比表面积增大和寿命延长。
     在不锈钢基α-PbO2-CeO2-Co3O4复合镀层上制备β-PbO2-CNT,对掺杂不同浓度的CNT进行电化学分析,得到最佳掺杂CNT的浓度为20g/L。阳极极化曲线表明该浓度下,不锈钢基/β-PbO2-CNT复合镀层的电催化活性较好,动力学参数a和b值均比不添加CNT镀层电极要小。Tafel曲线表明,掺杂CNT也能改善电极的耐腐蚀性能,但是效果不明显。循环伏安得到掺杂CNT没有改变β-PbO2的反应机理,还原峰发生偏移和减小。扫描电镜图片看出,未添加CNT的β-PbO2镀层的晶粒形貌呈正八面体形状,晶粒相对粗大。添加CNT的β-PbO2复合镀层的晶粒表面不统一。有正八面体的β-PbO2颗粒,还有表面分布的CNT,以及受CNT的影响,表面生成的小的八面体β-PbO2晶粒。
     用α-PbO2-CeO2-Co3O4/β-PbO2-CNT复合镀层制备出PbO2颗粒,并将PbO2颗粒压入Pb-(1%)Ag阳极表面作为一种新型阳极材料。与传统Pb-(1%)Ag阳极相比,该新型复合电极可使电积锌时的槽电压降低,电流效率提高。
Pb-Ag (0.7-1.2%) alloy anodes have been commonly used at Non-ferrous metals zinc electrowinning process, which was easy to be manufactured and simply to be formed. However, there were also some shortcomings, such as short lifetime, high cell voltage, low current efficiency and mechanical properties. At present, A great interest was attracted in the improvement of lead dioxide as zinc electrowinning anode material, owing to its good corrosion resistance, highly electrical conductivity, good catalytic, low cost, and so on.
     First of all, the anodic coating ofα-PbO2-Co3O4-CeO2 on stainless steel was prepared by DC deposition in this paper. The effect of different conditions and solid particles on the binding, appearance and deposition rate of the composite were researched. The results determined the optimum conditions for electrode preparations: the current density 1.5 A/dm2, electroplating time 2 h, temperature 40℃, and Co3O4 30 g/L and CeO2 15 g/L. SEM,XRD and linear sweep voltammetry(LSV) were used for the analysis of the surface structure, phase composition and oxygen evoluction potential analysis in zinc sulfate electrolyte. The results showed that the particles of depositing can not only improve electrode surface area but also reduce the granularity of pellet. Adding Co3O4 and CeO2 coating electrode restrained the preferential growth and weakened diffraction intensity ofα-PbO2.Theα-PbO2-CoaO4-CeO2 electrode has an lower oxygen evolution potential and higher electrocatalytic activity than PbO2 electrode.
     With the different dosage of CNT in Pb(NO3)2 electroplating solution,β-PbO2-CNT were prepared on stainless steel/α-PbO2-Co3O4-CeO2 composite coatings. It can be seen from electrochemical analysis that doped with different concentrations of CNT,20 g/L was determined as the optimal doping CNT concentration. It indicates from the anode polarization curves that kinetic parameters a and b values of stainless steel/β-PbO2-CNT composite coating was smaller than that of without adding CNT and has better electro-catalytic activity. Tafel curve shows that the doped CNT can improve the corrosion resistance of the electrode, but the effect is not obvious.It can be seen from cyclic voltammetry that doped CNT does not change the reaction mechanism ofβ-PbO2, the reduction peak is not shifted and reduced. SEM images show that grain morphology ofβ-PbO2 coating without adding CNT was octahedral shape and coarse grains, relatively. The grain surface ofβ-PbO2 coating with CNT was not uniform. There were octahedralβ-PbO2 particles, the CNT distribution surface and the small octahedralβ-PbO2 particles at the surface by the impact of CNT.
     PbO2 particles were prepared withα-PbO2-Co3O4-CeO2/β-PbO2-CNT Composite coating, then PbO2 particles were pressed into Pb-(1%) Ag anode surface as a new type of anode material, compared to Pb-(1%) Ag anode in zinc electrowinning process, this anode material has lower cell voltage and high current efficiency
引文
[1]http://baike.baidu.com/view/728334.htm
    [2]衷水平,赖延清,将良兴.等.锌电积用Pb-Ag-Ca-Sr四元合金阳极的阳极极化行为[J].中国有色金属学报,2008,17(7):1342-1346.
    [3]徐瑞东,潘茂森,郭忠诚.锌电积用惰性阳极材料的研究现状[J].电镀与环保,2005,25(1):4-7.
    [4]潘君益,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南冶金,2004,33(6):31-35.
    [5]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171.
    [6]张冬,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南冶金,2008,37(6):48-53.
    [7]康斌.锌电积阳极板材的研究发展现状[J].四川冶金,2008,30(2):14-19.
    [8]衷水平,赖延清,将良兴等.锌电积新型阳极与电积新工艺研究进展[J].材料导报,2008,22(2):86-89.
    [9]Lupi C,pilone D.new lead alloy anodes and organic depolaiser utilization in zinc electrowinning[J].hydrometallurg,1997,44(3):347-358.
    [10]M Petrova,Z Noncheva,Ts DOBREV,St Rashkov.Inverstigation of the process of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc[J].hydrometallurgy, 1996,40:293-318.
    [11]St Rashkov,Ts Dobrev,Z Noncheva,Y Stefanov,B Rashkova,M Petrova.Lead-cobalt anpdes for electro winning of zinc from sulphate electrolytes[J]. hydrometallurgy,1999(52):223-230.
    [12]A Felder,R David prenhaman.lead alloys for permanent anodes in the nonferrous metals industry[J].Overview,2006:28-31.
    [13]I Ivanov,Y Stefanov,Z Noncheva,M Petrova,TS Dobrev,L Mirkova.Insoluble anodes used in hydrometallurgy part Ⅱ anodic behaviour of lead and lead-alloy anodes[J].hydrometallurgy,2000,57:125-139.
    [14]M Petrova,Y Stefanov,Z Nonchea,Ts Dobrev,St Rashkov.Electrochemical behaviour of lead alloys as anodes in zinc electrowinning [J].British corrosion journal,1999,34:198-200.
    [15]Pu yu,Thomas J,O keefe.Evaluation of lead anode reactions in acid sulfate electrolytes[J].Electrochemical Society,2002,149(5):558-569.
    [16]苏向东,罗宏,李鹏等.电积铜用惰性Pb基合金阳极的工业试验[J].有色金属(冶炼部分),2002,33(4):43.
    [17]徐金法.电积锌阳极材质的发展[J].有色矿业,1999,4:30-32.
    [18]康厚林.Pb-Ag-Ca-Sr四元合金阳极在电解锌生产线的应用[J].有色矿冶,1995(5):25-30.
    [19]Y Lai, L Jiang, J Li, S Zhong, et al. A novel porous Pb-Ag anode for energy-saving in zinc electro-winning:Part I:Laboratory preparation and properties [J]. Hydrometallurgy,2010,102:73-80.
    [20]S Zhong, Y Lai, L Jiang,et al.Fabrication and anodic polarization behavior of lead-based porous anodes in zinc electrowinning[J].2008,15(6):757-762.
    [21]孙凤梅,潘建跃,罗启富等.Pb02阳极材料的研究进展[J].兵器材料科学与工程,2004,27(1):68-72.
    [22]Munichandraiah N.Insoluble anode of porous lead dioxide for electro-synthesis preparation and characterization[J].Appl electrochemical 1987, (17): 22-23.
    [23]张招贤,钛电极工学[M].北京:冶金工业出版社,2000,172-191.
    [24]M Ueda, A Watanabe,T Kameyama. Performance characteristics of a new type of lead dioxide-coated titanium[J].iournal of applied electrochemistry,1995, 25:817-822.
    [25]潘会波.金属阳极涂层的研制及应用[J].稀有金属材料与工程,1990,(1):56-58.
    [26]王静毅,胡熙恩.脉冲电镀制备钛基二氧化铅电极[J].过程过程学报,2003,3(6):540-543.
    [27]崔瑞海,田玖,杨丽娟等Ti/Sb2O5+SnO2/PbO2电极电催化氧化对氨基苯酚[J].分子科学学报2008,24(4):262-266.
    [28]梁振海,边书田,任所才等.硫酸中钛基二氧化铅阳极研究[J].稀有金属材料与工程,2001,30(3):232-234.
    [29]许学敏,张秋香,丁平.析氧体系阳极制备及性能[J].化学世界,1998(1):26-29.
    [30]王雅琼,童宏扬,许文林Sb2O5+SnO2中间层的制备条件对Ti/Sb2O5+SnO2/PbO2电极性能的影响[J].应用化学,2004,21(5):437-441.
    [31]Andrc Savall,Electrochemical degradation of phenols in aqueous solutions mechanistic aspects and comparision of various PbO2 electrode formnlations[J]. transaction of the saest,1999,34:93-100。
    [32]Kumagai N,The effect of sputter-deposited Ta in termediate layer on durability of IrO2-coated Ti electrodes for oxygen evolution[J].
    [33]J Gonzalez Garcia, J Iniesta, E Exposito, et al. Early stages of lead dioxide electrodeposition on rough titanium[J].Thin solid films,1999,352:49-56.
    [34]陈步明,郭忠诚,杨显万.电沉积α-PbO2和β-PbO2镀层的热力学分析[J].中国有色冶金,2009(2):56-58.
    [35]陈振方,将汉瀛.有色金属电极新型阳极及其行为的研究[J].有色金属(冶炼部分),1989,20(3):16-19.
    [36]于文强,易清风.一种新的钛基Mn02电极的制备及其电容特性[J].湖南科技大学学报(自然科学版)2009,24(1):102-106.
    [37]崔玉虹,刘正乾,刘志刚等.Ce掺杂钛基二氧化锡电极的制备及其点催化性能研究[J].功能材料(增刊),2004:(35):2035-2039.
    [38]C Comninellis. Preparation of SnO2-Sb2O5 by the spray surpluses technique [J]. APP electrochem,1996,26:83-89.
    [39]I.-H.Yeo,D.C.Johnson. Effect of groups ⅢA and ⅤA metal oxides in electrodeposited β-PbO2 dioxide electrodes in acidic media[J].Journal of Electrochemical Society,1987,134:1973-1977.
    [40]B.S.Nielsen, J.L.Davis, P.A.Thiel. Surface properties of PbO2 and Bi-modified PbO2 electrodes. Journal of Electrochemical Society,1990,137: 1017-1022
    [41]I.-H.Yeo,S.Kim,R.Jacobson,et al. Comparison of structural data with electrocatalytic phenomena for bismuth-doped lead dioxide. Journal of Electrochemical Society,1989,136:1395-1401.
    [42]Jianren Feng,Dennis C.Johnson.Titanium substrates for pure and doped lead dioxide films. Journal of Electrochemical Society,1991,138:3328-3337.
    [43]Natasa D.Popovie, James A.Cox, Dennis C.Johnson. A mathematical model for anodic oxygen-transfer reactions at Bi(Ⅴ)-doped PbO2-film electrodes. Journal of Electroanalytical Chemistry,1998,456:203-209.
    [44]赵海燕,曹江林,曹发和等.F-和Fe3+掺杂对Ti基Pb02阳极性能的影响[J].无机化学学报,2009,25(1):117-123.
    [45]A B Velichenko,R Amadell,G L.Zucchini,et al. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts. Electrochimica Acta,2000,45:4341-4350.
    [46]Leonardo S. Andrade, Luis Augusto M. Ruotolo, Romeu C. Rocha-Filho, et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater. Chemosphere,2007,66:2035-2043.
    [47]Sandro Cattarin, Isabelle Frateur, Paolo Guerriero,et al. Electrodeposition of PbO2+CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution. Electrochimica Acta,2000,45(14):2279-2288.
    [48]Renzo Bertoncello, Sandro Cattarin, Isabelle Frateur, et al. Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti. Journal of Electroanalytical Chemistry,2000,492:145-149
    [49]赵海燕,曹江林,张鉴清.掺杂F-对Pb02阳极性能和电催化活性的影响[J].无机化学学报,2007,23(12):2079-2084.
    [50]DAN Yuan-yuan, LU Hai-yan,LIU Xiao-lei,LIN Hai-bo,ZHAO Jing-zhe. Ti/PbO2+nano-Co3O4 composite electrode material for electrocatalysis of O2 evolution in alkaline solution[J].international journal of hydrogen energy, 2011(36)1949-1954.
    [51]谢香兰,曹梅,郭忠诚Ti/Pb-WC复合镀电流密度对镀层性能的影响[J].材料保护,2011,44(2):24-26.
    [52]周剑锋.聚苯胺及碳化物增强铅基惰性阳极材料的研究[D].昆明:昆明理工大学,2010.
    [53]姜妍妍.-直流电沉积Ti基复合阳极材料的性能研究[D].昆明:昆明理工大学,2010.
    [54]蔡天晓,鞠鹤,武宏让等.β-PbO2电极中加入纳米级Ti02的性能研究[J].稀有金属材料与工程,2003,32(7):558-560.
    [55]叶匀分,王志宏.采用过电位阳极处理废水的研究[J].1999,(11):18-21.
    [56]J Feng, D C Johnson. Electrocatalysis of anodic oxygen-transfer reaction:alpha-lead dioxide electrodeposited on stainless steel substrates[J].APP electrochem, 1990,(20):116-124.
    [57]苗治广.电沉积法制备SS-PbO2-WC-ZrO2-聚苯胺复合惰性阳极材料的研究与应用[D].昆明:昆明理工大学.
    [58]曹建春,郭忠诚,潘君益等.新型不锈钢基PbO2/PbO2-CeO2复合电极材料的研制[J].昆明理工大学学报(理工版),2004,29(5):39-41.
    [59]张殿宏.不锈钢基Sb掺杂SnO2阳极的制备及催化性能研究[D].黑龙江:黑龙江大学,2009.
    [60]宋曰海.不锈钢基不溶性催化电极的制备—及其对难降解有机废水的电催化降解作用[D].北京:北京工业大学,2007.
    [61]张殿宏.不锈钢基Sb掺杂SnO2阳极的制备及催化性能研究[D].黑龙江:黑龙江大学.2009.
    [62]CHEN Bu-ming, GUO Zhong-cheng, YANG Xian-wan.Morphological study of electrodepositing alpha-lead dioxide on aluminum substrate electrode [J]. Transactions of nonferrous metals society of china,2010,20(1):97-103.
    [63]黄慧,许金泉,郭忠诚.电沉积Al/Pb-WC-ZrO2系复合电极材料的研究[J].材料研究与应用,2008,2(2):115-118.
    [64]曹梅.Al基SnO2+Sb2O3, SnO2+Sb2O3+MnO2涂层二氧化铅电极的制备及其应用[D].昆明:昆明理工大学.2005。
    [65]常志文,郭忠诚,潘君益等Al/Pb-WC-ZrO2-Ag和Al/Pb-WC-ZrO2-CeO2复合电极材料的性能研究[J].昆明理工大学学报,2007,32(3):13-17.
    [66]刘小丽,陈步明,郭忠诚等.铝基β-PbO2-WC-TiO2复合电极材料的研制[J].电镀与涂饰,2010,29(11):1-3.
    [67]石小钊,郭忠诚,陈步明等.电积锌用铝基β-PbO2-WC-TiO2-ZrO2-Sn02复合阳极的电沉积制备[J].电镀与涂饰,2009,28(8):9-11.
    [68]王峰,俞斌.一种新型PbO2电极的研制[J].应用化学,2002,19(2):193-195.
    [69]李国防,凌翠霞,乔庆东.铁基PbO2电极的电沉积制备和表征[J].商丘师范学院学报,2006,22(2):117-120.
    [70]魏敏,李国防,李贯良等.电沉积制备铁基β-PbO2电极[J].化学世界2007,(6):337-340.
    [71]池迪书,阮秀英,张永祥等.ABS塑料基体二氧化铅电极的制造/性能及其应用.福建师范大学学报自然科学版,1992,8(2):60-64.
    [72]周海晖,陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试[J].表面技术,2000,29(2):15-16.
    [73]Kaushik dsa, Aparesh Mondal,.Discharge behaciour of electro-deposited lead and lead dioxide electrodes on carbon in aqueous sulfuric acid. Journal of power sources,1995,55(2):251-254.
    [74]Andrzej C,Malgorzata Z.Electrochemical behavior of lead dioxide deposited on reticulated vitreous carbon[J]. Journal of power sources,1997,64:29-34.
    [75]草茂盛,李大勇,荆天辅等.复合材料概论[书].哈尔滨:哈尔冰工业大学出版社.2000
    [76]Larry A.Larew, James S.Gordon, Yun-Lin Hsiao, et al. Application of on electrochemical quartz crystal microbalance to a study of pure and bismuth-doped beta-lead dioxide film electrodes. Journal of Electrochemical Society, 1990,137:3071-3078.
    [77]Marco Musuani, Ferdinando Furlanetto, Paolo Guerriero. Electrochemical deposition and properties of PbO2+Co3O4 composites. Journal of Electroanalytical Chemistry,1997,440:131-138.
    [78]Renzo Bertoncello, Sandro Cattarin, Isabelle Frateur, et al. Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti. Journal of Electroanalytical Chemistry,2000,492:145-149.
    [79]姚金江.电沉积法制备Al/Pb/PbO2复合阳极材料的新技术研究[D].昆明:昆明理工大学,2008.
    [80]陈步明.新型节能阳极材料制备技术及电化学性能研究[D].昆明:昆明理工大学,2009.
    [81]骆心怡,何建平,朱正吼等.纳米氧化铈颗粒对电沉积锌层耐腐蚀性的影响[J].材料保护,2003,36(1):1-4.
    [82]李晓欣.复合电沉积法制备铜/碳纳米管薄膜及其形成机理研究[D].北京:北京化工大学2010.
    [83]王欢.新型碳纳米管修饰电极在核苷类药物和蛋白质分析中的应用[D],西北大学,2009
    [84]Shaikh S Li LLafdi K,et al.Thermal conductivity of an aligned carbon nanotube array[J].Carbon,2007,45:2608-2613.
    [85]Yakobson B I,Brabec C J,Bernholc J. Nanomechanics of carbon tubes:instabilities beyond linear response [J].physical review letters,1996,76(14):2511-2514.
    [86]Treacy M M J,Ebbesen T W,Gibson J M. Exceptionally high young's modulus observed for individual carbon nanotubes[J].Nature,1996,381(6584):678-680.
    [87]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2003,183-191
    [88]杨百勤,李靖,杜宝中.碳纳米管修饰电极的现状[J].分析仪器,2008(5)1-4.
    [89]P J Britto, K S V Santhanam, P M Ajayan. Carbon nanotube electrode for oxidation of dopamin[J].Bioelectrochemistry and bioenergtics,1996,41(1):121-125.
    [90]Wang Jian-xiu, Li Mei-xian,Shi zu-jin,et al. Electrocatalytic oxidation of 3,4-dihydroxypenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes[J]. Electrochemical acta,2001,47(1):651-657.
    [91]任秀斌,陆海彦,刘亚男等.钛基二氧化铅电极电沉积制备过程中的立体生长机理[J].第十一届全国有机电化学与工业学术会议论文集[].73-79.
    [92]任秀斌,陆海彦,刘亚男等.钛基二氧化铅电极电沉积制备过程中的立体生长机理[J].化学学报,2009,67(9):888-892.
    [93]陈玉峰,吴英绵,赵菁等.电沉积Pt基二氧化铅电极的机理研究[J].河北化工,2007,30(12):18-19.
    [94]郭忠诚,杨显万著.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社,2002.
    [95]N Guglielmi, Kinetics of the deposition of inert particles from electrolytic baths[J].journal of the electrochem,1972,119(8):1009-1012.
    [96]Celis J P, Roos J P.Kinetics of the deposition of alumina particles from copper sulfate plating bath [J] journal of the electrocjemical society,1977,124(10):1508.
    [97]Valdes J L.Electrodeposition of colloidal particles [J]. journal of the electrocjemical society,1987,134(4):223-225.
    [98]Fransaer J, Celis J P,Roos J R. A mathematical model for the electrolytic codeposition of particles with ametallic matrix[J]. journal of the electrocjemical society,1992,139(2):413-425.
    [99]郭忠诚.电沉积RE-Ni-W-P-SiC复合材料的基础理论研究及应用[D].昆明:昆明理工大学,2000.
    [100]Iijima S.heical microtubules of graphitic carbon[J].nature,1991,354:56-58.
    [101]张丽,赫玉欣.碳纳米管纳米复合材料的研究现状及问题[J].广东化工,2011,38(5):42-43.
    [102]吴红军,阮琴,王宝辉等Ru-Co-Ce复合氧化阳极制备及析氧性能研究[J].稀有金属材料与工程,2010,39(6):1111-1115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700