分布估计算法及其在生产调度问题中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布估计算法是进化计算领域新兴起的一类概率分析进化算法,它结合了智能计算和统计学习的知识,根据当前种群中若干较好个体的信息建立概率分布模型描述问题解空间的分布,并通过对概率模型随机采样产生新的种群,如此反复进行,实现种群的进化。分布估计算法通过建立概率模型描述变量之间的相关关系,能更有效地混合构造块并实现构造块重组,可以解决传统遗传算法难以解决的问题,尤其是解决非线性、高维复杂问题。分布估计算法求解问题的关键是建立一个能恰当描述问题解分布的概率模型,但是,概率模型的建立是一个非常复杂的问题,如果所建立的模型过于简单则不能正确反映问题的本质特征,影响求解效率,而模型过于复杂则会使算法学习复杂度增大。尤其对于复杂的组合优化问题,由于这类问题本身的复杂性,可行解中各变量间具有很强的相关性,建立一个能准确描述问题可行解的概率分布模型非常困难,在将分布估计算法用于求解复杂的组合优化问题时,如何建立一个能准确描述问题解分布的概率模型成为制约算法应用的瓶颈。
     文中结合优良模式连接的思想、Bayesian统计推断理论与离散quasi-copula理论,对概率模型的建立方式进行改进,以提高算法求解复杂组合优化问题的能力,并将算法用于求解生产调度问题和旅行商问题,主要完成了以下工作:
     1.根据遗传算法中的模式定理与积木块假设理论,通过概率把多个个体的相似特征结合起来考虑,发掘优势群体中个体结构的相似点,提出了基于优良模式连接的思想。在求解问题时,通过在优势群体中考虑个体相似点的信息,对以较高频率出现在后代中的多个相邻变量以概率为基础进行连接,组成一个连接块,令其为优良模式连接块,并在进化过程中以块为整体参与进化,增强那些适应度高于种群平均适应度的模式在下一代中出现的概率,相应地减少那些适应度低于种群平均适应度的模式在下一代中出现的概率。基于这种思想,使算法能有效避免构造块破坏问题,具有较好的连锁学习效果,同时为避免陷入局部最优,有条件的调整每个连接块内部各变量的排列顺序,从而有效提高分布估计算法的优化性能。
     2.将基于优良模式连接的分布估计算法应用于求解Job Shop调度问题、柔性Job Shop调度问题和旅行商问题中。对于Job Shop调度问题和柔性Job Shop调度问题,在建立概率模型时充分利用了相邻工序在优势群体中的信息,通过概率值对以较高频率出现在优势群体中的相邻工序进行连接,从而使建立的概率模型能较好地反应调度问题中工序排序的特点。在旅行商问题中,在建立概率模型时充分考虑相邻城市出现在优势群体中的频率信息,并通过概率的大小对其进行连接,从而使建立的概率模型能较好地反应旅行商问题中个体的结构特征。仿真结果表明,所提出的算法在求解上述问题时表现出较好的性能。
     3. Bayesian统计推断方法与贝叶斯网络优化方法不同,它不需要优化复杂的网络结构,而是直接利用样本提供的信息,通过建立一个后验分布对样本进行推断。因此,本文借鉴Bayesian统计推断理论中对样本的推断思想和方法,充分利用优势群体中个体的信息,建立了一种针对离散优化问题的基于Bayesian统计推理的分布估计算法。首先,针对个体结构的每一个位置,通过优势群体信息建立一种不断更新的先验分布概率模型,利用相邻变量出现在优势群体中的频率,通过计算每一个位置上的条件概率向量建立条件分布概率模型;然后,结合先验分布概率与条件分布概率,通过贝叶斯公式的转化,建立一种后验分布概率模型。这种后验概率分布模型综合了先验概率信息和样本信息,具有较好的统计推断效果,从后验概率模型中抽样产生新群体,通过对后验概率模型的不断更新,实现进化过程。
     4.将基于Bayesian统计推理的分布估计算法应用于求解Job Shop调度问题、柔性Job Shop调度问题和旅行商问题中。根据Job Shop问题和柔性Job Shop调度问题的特点,针对工序排序的每一个位置建立先验分布概率模型,充分利用优势群体中各台机器上工序的排列信息,通过贝叶斯公式,建立一种能较好地反映Job Shop调度问题特点的后验概率模型,并从中抽样产生新群体;对于旅行商问题,充分利用各个城市间的排列位置信息建立先验分布概率模型和条件分布概率模型,通过贝叶斯公式获得一种后验概率模型并用以指导产生新群体。针对典型算例的仿真实验结果表明,该算法具有较好的寻优能力和鲁棒性,所建立的概率模型具有较好的稳定性。
     5.在离散Quasi-copula理论的基础上,针对离散优化问题,提出了一种基于经验Copula的分布估计算法。对个体采用整数编码方式,采用经验分布函数求解各个变量的边缘分布函数,在估计经验Copula函数时,首先将以整数编码的个体映射到(0,1)区间上,然后对单位超立方体进行分割,等分成若干子超立方体,统计优势群体中的个体落入各个子超立方体中的个体数,构造多维经验Copula函数,得到一种针对离散变量的多变量相关的联合分布函数,并从中抽样产生新群体。由于考虑了多变量间的相关性,因而所建立的概率模型能较好地反映问题的特征。同时对算法的时间复杂性进行了分析。
     6.将基于经验Copula的分布估计算法应用于求解旅行商问题和柔性Job Shop调度问题中。通过估计经验Copula,建立了上述问题的多变量相关的联合分布概率模型,并从中采样。仿真实验结果表明,该算法具有较好的求解能力。
Estimation of distribution algorithms is a class of novel evolutionary algorithm based on the probability models in the field of evolutionary computation which combines with intelligence computing theory and the knowledge of statistical studies. According to the information of some better individuals in the current population, the model of probability is built to describe the distribution of all the solutions. Then a new population can be obtained by sampling from this model of probability. This process improves the solution iteratively. The algorithm relies on the construction and maintenance of a probability model that characterizes the correlation between variables involved. So the building block is mixed and recombined effectively. It is shown a good performance on such problems that traditional GA is difficult to solve, especially on nonlinear and high-dimensional complex ones. The key of EDAs for solving problems is to construct a probability model which can characterize the promising solution accurately. However, it is very difficult to construct a proper model because the model can’t reflect the problem’s essential properties if its structure is too simple while the complexity of algorithm will be increased rapidly if the structure is too complex. Especially, for combinatorial optimization problems, which have strong correlation among variables of the feasible solution because of the complexity of the problem itself. So it is a bottleneck problem to build an accurate probability distribution model to represent distribution of the feasible solutions of the problem when using the estimation of distribution algorithm to solve the complex combinatorial optimization problems.
     In this paper, the ideas such as superior pattern connection,Bayesian Statistical Inference and Discrete Quasi-Copula theory, are introduced. The ability of solving the complex combinatorial optimization problem is improved by improving the way of building the probability model. Synchronously, the algorithm is used to solve the production scheduling problem and traveling salesman problem. The main achievement is as follows:
     1. Based on the scheme theorem and the hypothesis of building blocks of genetic algorithm, the similar characteristics of some individuals are considered and explored together. The idea of superior pattern connection is proposed. Information of the similarities of individuals in superior population is considered when solving problems. Based on information of probability, multi-neighboring variables are connected into a whole block when their frequency appearing in superior population is higher. In addition, it is taken as the connection block of superior pattern and it appears as a whole part in iterative process. This enhances the probability of those patterns appearing in the next generation whose fitness values are higher than the average fitness value of population. At the same time, the probability of those schemes with lower fitness values than the average fitness of population in the next generation are decreased. This algorithm can effectively avoid the problem of building blocks destroyed and has better performances of chain learning. Besides, local adjustment to the variables within each sub-block is introduced under some conditions to avoid trapping in the local optimal, which can improve the the performance of algorithm effectively.
     2. The estimation of distribution algorithm based on the superior pattern connection is used to solve job shop scheduling problem, flexible job shop scheduling problem and traveling salesman problem. For job shop scheduling problem and flexible job shop scheduling problem, the probability model is constructed using frequency information of pair-wise operations neighboring in superior population. These multi-neighboring operations are connected into a whole block based on information of probability. For the frequency appearing in superior population is higher, it makes the model of probability constructed well to reflect the characteristic of sequence of operations. For the traveling salesman problem, frequency information of pair-wise cities neighboring in superior population is used to build the probability model. These multi-neighboring cities are connected into a whole block according to the size of probability. So the model of probability constructed can well represent the structure of individual. The simulation results show that the proposed algorithm has a better performance for solving the problems mentioned above.
     3. The theory of Bayesian statistical inference is different from the Bayesian network optimization method. It does not require the process of optimization for the complex network structure when solving the problems while the information of samples provided is directly used to construct the probability distribution. The samples are inferred through the establishment of a posterior distribution. Based on Bayesian statistical inference theory, a new estimation of distribution algorithm for discrete optimization problems is proposed by using the information of individuals in superior population. At first, according to each position of individual’s structure, the model of priori distribution probability is built by extracting the information of superior solutions updating. Then the model of conditional probability is also built by computing the vector of conditional probability on each position of individual and using the frequencies of neighboring variables appearing in superior population. After that, the model of posterior probability is given by combining the above two models with Bayesian formula. This model combines with information of priori distribution and conditional distribution. It has good results of statistical inference, and is used to guide new populations generation. The evolutionary process is achieved by updating iterately the model of posterior probability.
     4. The estimation of distribution algorithm based on Bayesian statistical inference theory is used to solve job shop scheduling problem, flexible job shop scheduling problem and traveling salesman problem. According to the characteristics of job shop scheduling problem and flexible job shop scheduling problem, the model of priori distribution probability is built for each position of operations sequence. Making the best use of information of the sequence of operations on each machine, the posterior probability model that can well reflect the characteristics of problems is constructed by using Bayesian formula. The next population is generated by sampling from this model of posterior probability. For the traveling salesman problem, information of permutation between cities is used to build the models of priori probability and posterior probability. The model of posterior probability is constructed by Bayesian formula and the next population is generated by sampling from this model. The simulation results for typical instances show that the proposed algorithm has the preferable search ability and robustness and the model of probability constructed has better stability.
     5. Based on discrete quasi-copula theory, an estimation of distribution algorithm based on the empirical copula function is proposed to solve discrete optimization problems.The individual is encoded with integer. The empirical distribution function is used to solve the marginal distribution function of each variable. When estimating the empirical copula function, firstly, the individuals of superior population are mapped into the interval (0,1). Then, the unit hypercube is equally partitioned into some sub-hypercubes and a multi-dimensional empirical copula function is constructed by counting the number of individuals in each sub-hypercube. A probability model of multivariate correlation for discrete variables is obtained and the next population is generated by sampling from the model. Because the proposed algorithm considers the multivariate correlation during constructing the model of probability, the probability models can well reflect the characteristics of problems’structure. Moreover, the time complexity of algorithm is analyzed.
     6. The estimation of distribution algorithm based on empirical copula is used to solve traveling salesman problem and flexible job shop scheduling problem. A model of multivariate correlation for these two problems is constructed by estimating the empirical copula and sampling from them. The simulation results show that the proposed algorithm has a better search ability.
引文
[1]黄速建,黄群慧.现代企业管理——变革的观点.北京:经济管理出版社,2008.
    [2]于景元,涂元季.从定性到定量综合集成方法的实现和应用.系统工程理论与实践,2002, 10: 26-32
    [3]陈荣秋.生产计划与控制:概念、方法与系统.武汉:华中理工大学出版社,1995.
    [4]熊锐,吴澄.车间生产调度问题的技术现状与发展趋势.清华大学学报:自然科学版, 1998, 38(10): 55-60.
    [5]戴绍利,谭跃进,汪浩.生产调度方法的系统研究.系统工程, 1999, 17(1):41-45.
    [6] Baker K R. Introduction to sequencing and scheduling , New york,1974.
    [7] Prabhakar G. Projects and their management: A literature review. International Journal of Business and Management, 2008, 3(8):3-9.
    [8]王凌.车间调度及其遗传算法. 2003年5月第一版.北京:清华大学出版社,2003,22-26.
    [9]任珺,陶玲.进化生态学的数量研究方法.北京:中国林业出版社,2004.
    [10] Binato S, Hery W J, Loewenstern D M, et al. A GRASP for job shop scheduling. In: Ribeiro. C.C, Hansen p.(Eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers. 2002
    [11] Zhang G H, Shao X Y, Li P G, et al. An effective hybrid particle swarm optimization for multi-objective flexible job-shop scheduling problem. Computers &Industrial Engineering, 2009, 56, 1309-1318.
    [12] Lin T J, Horng S J, Kao T W, et al. An efficient job-shop scheduling algorithm based on particle swarm optimization. Expert Systems with Applications, 2010, 37: 2629-2636.
    [13] Amirthagadeswaran K S, Arunachalam V P. Enhancement of performance of genetic algorithm for job shop scheduling problems through inversion operator. The International Journal of Advanced Manufacturing, 2007, 32(7): 780-786.
    [14] Lian Z G, Jiao B, Gu X S. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan, Applied Mathematics and Computation , 2006,183: 1008-1017.
    [15] Pezzella F, Morganti G, Ciaschetti G. A genetic algorithm for the flexible job-shop scheduling problem. Computers and Operations Research, 2008, 35(10): 3202-3212.
    [16] Zhang H P, Gen M. Multistage-based genetic algorithm for flexible job-shop scheduling problem. Journal of Complexity International, 2005(11): 221-232.
    [17]于晓义,孙树栋,褚葳.基于并行协同进化遗传算法的多协作车间计划调度.计算机集成制造系统,2008, 14(20): 2449-2455.
    [18]徐宗本.计算智能-模拟进化计算.北京:高等教育出版社,2004.
    [19] Watanabe M, Ida K. A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem. Computers and Industrial Engineering, 2005,48(4):743-752.
    [20] Garey M R, Johnson D S, Ravi Sathi. The complexity of flow shop and job shop scheduling. Mathematics of Operations Research, 1976, 1(2): 117-129.
    [21]周树德,孙曾圻.分布估计算法综述.自动化学报,33(2):113-124.
    [22]运筹学编写组.运筹学. 1990年1月第2版.北京:清华大学出版社,2002,8-32.
    [23] Cheng R W, Gen M, Tsujimura Y. A tutorial survey of job-shop scheduling problems using genetic algorithm-I, representation. Computers & Industrial Engineering, 1996, 30(4): 983-997.
    [24] Yang S, Wang D. A new adaptive neural network and heuristics hybrid approach for job-shop scheduling. Computers & Op-erations Reasearch, 2001, 28(10):955-971.
    [25] Dubois D, Prade H. Fuzzy constraints in job shop scheduling. Journal of Intelligent Manafacturing, 1995(6):215-234.
    [26] Goncalves J F, Mendes J J M, Resende M G C. A hybrid genetic algorithm for the job shop scheduling problem, European Journal of Operational Research, 2005,167, 77-95.
    [27]杨汉桥,林晓辉.遗传算法与模拟退火算法寻优能力综述.机械制造与自动化,2010,39(2):73-75.
    [28]李俊青,潘全科,王玉婷.多目标柔性车间调度的Pareto混合禁忌搜索算法.计算机集成制造系统,2010, 16(7): 1419-1426.
    [29] Kacem I, Hammadi S, Borne P. Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic , Mathematics and Computers in Simulation, 2002(b), Vol. 60, 245-276.
    [30] Kacem I, Hammadi S, Borne P. Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems, IEEE Trans. on Man and Cybernetics-Part C, 2002, 32(1): 1-13.
    [31] Xia W J, Wu Z M. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems, Computers & Industrial Engineering, 2005, 48: 409-225.
    [32]贾兆红,陈华平,孙耀晖.多目标粒子群优化算法在柔性车间调度中的应用,小型微型计算机系统,2008, 5: 885-889.
    [33] Pelikan M, Goldberg D E, Lobo F. A Survey of Optimization by Building and Using Probabilistic Models, ILLiGAL Report No.99018, University of I11inois at Urbana_Champaign, I11inois Genetic Algorithms Laboratory, Urbana, I11inois, 1999
    [34]余建军,张定超,周铭新.生产调度研究综述.中国制造业信息化,2009, 38(17): 13-17.
    [35]徐俊刚,戴国忠,王宏安.生产调度理论和方法研究综述.计算机研究与发展,2004, 41(2): 257-267.
    [36] Dorndorf U, Pesch E. Evolution based learning in a job shop environment, Computers and Operations Research, 1995, 22(1):25-40.
    [37]唐海波,叶春明.仿生群智能算法在生产调度中的应用综述.工业工程,2010, 13(3): 1-5.
    [38] Croc F, Tadei R, Volta G. A genetic algorithm for the job shop problem. Computers and Operations Research, 1995, 22(1) : 15-24
    [39] Adams J, Balas E, Qawack D. The shifting bottleneck procedure for job shop scheduling. International Journal of Flexible Manufacturing Systems, 1987, 34(3):391-401
    [40] Yazdani M, Amiri M, Zandieh M. Flexible job-shop scheduling with parallel variable neighborhood search algorithm. Expert Systems with Applications. 2010, 37, 678-687.
    [41]李黎,成哗,袁守华.基于瓶颈分析的优先权调度算法研究.计算机集成制造系统,2005,11(12): 247-250.
    [42]张志伟,芮延年,任芸丹.基于人工智能工程机械优化调度方法的研究,苏州大学学报(工程版),2004, 24(5): 128-130.
    [43]梁吉霖.一种车间生产调度仿真的优化方法.沿海企业与科技,2006,79(12): 91-93.
    [44]郑峰,孙树栋,吴秀丽.基于遗传算法和模型仿真的调度规则决策方法,计算机集成制造系统,2004,10(7):808-814.
    [45]赵健.采用面向对象方法实现任务调度算法仿真.人工智能及识别技术. 2010, 6(19): 5309-5311.
    [46] Whitley D. A genetic algorithm tutorial. Statistics and computing, 1994, 4(2): 65-85.
    [47] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston, MA: Addison-Wesley Longman Publishing Co, 1989
    [48]玄光男,程润伟.遗传算法与工程优化.于歆杰,周根贵(译),第一版,北京:清华大学出版社,2005.
    [49]张长胜,孙吉贵,欧阳丹彤.一种自适应粒子群算法及其应用研究.电子学报, 2009, 37(2): 299-304.
    [50] Harik G, Goldberg D. Learning linkage. Foundations of genetic algorithms , 4, 1997, 4:247–262.
    [51] Larranaga P, Lozano J. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002
    [52]林亚平.概率分析进化算法及其研究进展.计算机研究与发展,2001,38(1):43-48.
    [53] Baluja S. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning: Technical Reprot. Pittsburgh, PA: Carnegie Mellon University, 1994
    [54]丁才昌,方勃,鲁小平.分布估计算法及其性能研究.武汉大学学报(理学版),2005, 51(s2): 125-128.
    [55] Handa H. EDA-RL: estimation of distribution algorithms for reinforcement learning problems. Proceedings of the 11th Annual conference on Genetic and evolutionary computation. New York: ACM, 2009:405-412
    [56] Romero T, Larranaga P. Triangulation of Bayesian networks with recursive estimation of distribution algorithms. International journal of approximate reasoning, 2009, 50(3):472–484.
    [57] Simonescu P, Beale D, Dozier G. Teeth-number synthesis of a multispeed planetary transmission using an estimation of distribution algorithm. Journal of Mechanical Design, 2006, 128:108-119.
    [58] Inza I, Larranaga P, Etxeberria R, et al. Feature subset selection by Bayesian network-based optimization. Artificial Intelligence, 2000, 123(1-2):157-184.
    [59] Cesar R. Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms. Pattern Recognition, 2005, 38(11):2099–2113.
    [60] Sagarna R, Lozano J. On the performance of estimation of distribution algorithms applied to software testing. Applied Artificial Intelligence, 2005, 19(5):457–489.
    [61] Blanco R, Larranaga P, Inza I, et al. Gene selection for cancer classification using wrapper approaches. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(8):1373-1390.
    [62] Saeys Y, Degroeve S, Aeyels D, et al. Fast feature selection using a simple estimation of distribution algorithm: a case study on splice site prediction. Bioinformatics, 2003, 19 ,Suppl 2.
    [63] Goldinho P, Meiguins A, Oliveira R, et al. An Estimation of Distribution Algorithms Applied to Sequence Pattern Mining. Innovations in Computing Sciences and Software Engineering, 2010:589-593.
    [64] Santarelli S, Yu T, Goldberg D, et al. Military antenna design using simple and competent genetic algorithms. Mathematical and Computer Modelling, 2006,43(9-10):990-1022.
    [65] Naeem M, Lee D. Estimation of Distribution algorithm for sensor selection problems. Radio and Wireless Symposium, 2010 IEEE. Washington, DC: IEEE, 2010:388-391.
    [66]刘新亮,张涛,郭波.基于分布估计算法的备件优化配置.系统工程理论与实践, 2009(2).
    [67]窦丽华,王高鹏,陈杰等.求解弹头散布均匀度的分布估计算法.控制理论与应用, 2009, 26(6):624–628.
    [68]吴红,王维平,王磊等.分布估计算法在巡航导弹航迹规划中的应用.电光与控制, 2010, 17(7):6–10.
    [69] Yanga X, Birkfellnerb W, Niederera P. Optimized 2D/3D medical image registration using the estimation of multivariate normal algorithm (EMNA). Proceedings of Biomedical Engineering, 2005, 458(48):163-168.
    [70] Rivera J, Santanar R. Improving the discovery component of classifier systems by the application of estimation of distribution algorithms[J]. Proceedings of Student Sessions ACAI, 1999, 99:43-44.
    [71] Zhang Q, Sun J, Tsang E, et al. Combination of guided local search and estimation of distribution algorithm for quadratic assignment problems. Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, in GECCO 2003. Germany: Springer, 2003:42-48.
    [72] Aickelin U, LI J. An estimation of distribution algorithm for nurse scheduling. Annals of Operations Research, 2007, 155(1):289-309.
    [73] Cantu-paz E. Pruning neural networks with distribution estimation algorithms. Genetic and Evolutionary Computation—GECCO 2003. Germany: Springer, 2003:205-205.
    [74]钟伟才,刘静,刘芳,等.建立在一般结构Gauss网络上的分布估计算法.电子与信息学报, 2005, 27(3):467-470
    [75] Larranaga P, Etxeberria R, Lozano J A, et al. Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks. In: Proceedings of the GECCO-2000 Workshop in Optimization by Building and Using Probabilistic Models. San Francisco, 2000, 201-204
    [76]张建华,曾建潮.基于序贯重点采样粒子滤波和Cholesky分解的分布估计算法.计算机研究与发展, 2010, 47(11): 1978-1985
    [77] Nelsen R B. Introduction to copulas. Springer, New York, 1999.
    [78] Wang L F, Zeng J C, Hong Y. Estimation of distribution algorithm based on archimedean copulas. Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. New York: ACM, 2009:993–996.
    [79] Wang L F, Wang Y, Zeng J C, et al. An Estimation of Distribution AlgorithmBased on Clayton Copula and Empirical Margins. Life System Modeling and Intelligent Computing, 2010:82–88.
    [80] Wang L F, Zeng J C. Estimation of distribution algorithm based on copula theory. Exploitation of Linkage Learning in Evolutionary Algorithms, 2010:139-162.
    [81]杨广益,欧阳智敏,全惠云.松驰互补的分布估计算法求解多维背包问题.计算机工程与应用,2007,43(12):77-80.
    [82]侯云鹤,郑风雷,鲁丽娟,熊信.基于分布估计算法的输电网扩展规划.电网技术,2004, 23:32-37.
    [83]赵中煜,彭宇,彭喜元.基于分布估计算法的组合电路测试生成,电子学报2006,24(12): 2384-2386.
    [84] Tang M L, Raymond Y K L. A Hybrid Estimation of Distribution Algorithm for the Minimal Switching Graph Problem. Proceeding of the International Conference on Computational Intelligence for Modeling, Control and Automation, 2005, 1:708-713.
    [85] Bozejko W, Wodeckib M. Solving permutational routing problems by population-based metaheuristics. Computers & Industrial Engineering, 2009.57(1): 269-276.
    [86] Robles V, Miguel P D, Larranaga P. Solving the traveling salesman problem with EDAs. Larranaga P, Lozano J A,(eds), Estimation of Distribution Algorithms, Kluwer Academic Publishers, 2002,Chapter 10, 211-229.
    [87] Ventresca M, Tizhoosh H R. A diversity maintaining population-based incremental learning algorithm. Information Siences,2008, 178:38-4056.
    [88] Tsutsui S, Probabilistic Model-Building Genetic Algorithms in Permutation Representation Domain Using Edge Histogram, Proc. of the 7th Parallel Problem Solving from Nature-PPSN VII, 2002, 224-233
    [89] Jarboui B, Eddaly M, Siarry P. An Estimation of distribution Algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers & Operations Research, 2009, 36:2638-2646.
    [90] Tsutsui S, Pelikan M, Ghosh A. Edge histogram based sampling with local search for solving permutation problems. The International Journal of Hybrid Intelligent Systems, 2006,3(1):11-22.
    [91] Cho D, Zhang B. Evolutionary continuous optimization by distribution estimation with variational Bayesian independent component analyzers mixture model. Parallel Problem Solving from Nature-PPSN VIII. Germany: Springer, 2004:212–221.
    [92] Paul T, Iba H. Reinforcement learning estimation of distribution algorithm. Genetic and Evolutionary Computation—GECCO 2003. Germany: Springer, 2003:212-212.
    [93] Grosset L, Riche R, Haftka R. A study of the effects of dimensionality onstochastic hill climbers and estimation of distribution algorithms. Artificial Evolution. Germany: Springer, 2004:27-38.
    [94] Sun J, Zhang Q, Tsang E. DE/EDA: A new evolutionary algorithm for global optimization[J]. Information Sciences, 2005, 169(3-4):249–262.
    [95] Pena J, Ronles V, Larranaga P, et al. GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. Innovations in Applied Artificial Intelligence, 2004:361-371.
    [96] Iqbal M, DE O M. An estimation of distribution particle swarm optimization algorithm. Ant Colony Optimization and Swarm Intelligence, 2006:72-83.
    [97]周雅兰,王甲海,印鉴.一种基于分布估计的离散粒子群优化算法.电子学报, 2008, 36(006):1242–1248.
    [98] Ahn C, An J, Yoo J. Estimation of Particle Swarm Distribution Algorithms: Combining the Benefits of PSO and EDAs. Information Sciences, 2010.
    [99] Wright A, Poli R, Stephens C, et al. An estimation of distribution algorithm based on maximum entropy. Genetic and Evolutionary Computation–GECCO 2004. Germany: Springer, 2004:343–354.
    [100] Zhou S, Sun Z. Can Ensemble Method Convert‘aWeak’Evolutionary Algorithm to a‘Strong’One. International Conference on Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Germany: Springer, 2005,2.
    [101]钟伟才,刘静,刘芳等.二阶卡尔曼滤波分布估计算法.计算机学报, 2004,27(9):1272-1277.
    [102]程玉虎,王雪松,郝名林.一种多样性保持的分布估计算法.电子学报,2010, 38(3):591–597.
    [103] Muhlenbein H, Paass G. From recombination of genes to the estimation of distributions I. Binary Parameters. In Proc. PPSN IV, Berlin, 1996, 178-187.
    [104] Harik R, Lobo F G, Goldberg D E. The compact genetic algorithm. In Proc. IEEE Conf. Evolutionary Computation, Indianapolis, USA, 1998, 523-528.
    [105] Sebag M, Ducoulombier A. Extending Population-Based Incremental Learning to Continuous Search Spaces. In: Proceedings of the 5th Conference on Parallel Problem Solving from Narute- PPSN V. Berlin: Springer-Verlag, 1998. 418-427
    [106] De Bonet J S, Isbell C L, Voila P. MIMIC: Finding Optima by Estimation Probability Densities. In: Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1997, (9):424-430
    [107] Pelikan M, Müehlenbein H. The Bivariate Marginal Distribution Algorithm. Advances in Soft Computing Engineering Design and Manufacturing, 1999, 521-531.
    [108] Baluja S, Davies S. Using optimal dependency-trees for combinatorialoptimization: learning the structure of the search space. In Proc. of the 14th international conference on machine learning. San Francisco, CA: morgan Kaufmann, 1977, 30-38.
    [109] Harik G. Linkage Learning via Probabilistic Modeling in the ECGA. Illigal Rep. No.99010, Illinois Genetic Algorithms Lab, University of Illinois, Urbana-Champaign, Illinois, 1999.
    [110] Muhlenbein H, Mahnig T. FDA: a scalable evolutionary algorithm for the optimization of additively decomposed functions, Evolutionary Computation, 1999,Vol.7(4):353-376.
    [111] Pelikan M, Goldberg D E, Cantu-paz E. BOA: the Bayesian Optimization Algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference. Orlando, 1999, 525-532
    [112] Pelikan, M., Goldberg D E, Cantu-paz E. Linkage Problem, Distribution Estimation, and Bayesian Networks: [Technical Report]. Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, 1998
    [113] Shakya S. DEUM: A Framework for an Estimation of Distribution Algorithm based on Markov Random Fields:[PhD thesis]. Aberdeen, UK: The Robert Gordon University, April 2006
    [114] Hohfeld M, Rudolph G. Towards a theory of population-based incremental learning. In: Proceedings of the Fourth IEEE Conference on Evolutionary Computation. Kawasaki: Citeseer, 1997, 1:1-5
    [115] Gonzalez C, Lozano J, Larranaga P. Analyzing the PBIL algorithm by means of discrete dynamical systems. Algorithms (EDAs), 1:2-15
    [116] Müehlenbein H. The Equation for Response to Seletion and Its Use for Prediction. Evolutionary Computation, 1997,5(3):303-346
    [117] Zhang Q. On Stability of Fixed Points of Limit Models of Univariate Marginal Distribution Algorithm and Factorized Distribution Algorithm. IEEE Transactions on Evolutionary Computation, 2004, 8(1):80-93
    [118] Zhang Q, Mühlenbein H. On the Convergence of a Class of Estimation of Distribution Algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(2):127-136
    [119] Gao Y, Culberson J. Space Complexity of Estimation of Distribution Algorithms. Evolutionary Computation, 2005, 13(1):125-143
    [120] Pelikan M, Goldberg D E,Cantù-Paz. Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence. In: Proceeding of the Genetic and Evolutionary Computation Conference. Las Vegas, 2000, 275-282
    [121] Pelikan M. Hierarchical Bayesian Optimization algorithm: Towards a New Generation of Evolutionary Algorithms. New York: Springer-Verlag, 2005
    [122] Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian Optimization Algorithm. International Journal of Approximate Reasoning, 2002, 31(3):221-258
    [123]范金城,吴可法.统计推断导引,北京:科学出版社,2004.
    [124]姜单.信息论与编码.中国科学技术大学出版社,2004.
    [125] Kolesarova A, Mordelova J. Quasi-copulas and copulas on a discrete scale. Soft Comput, 2006, 10:459-501.
    [126] Klement EP, Kolesarova A. Extensions to quasi-copulas and copulas as special 1-Lipschitz aggregation operators. Kybernetika, 2005, 41:329-448.
    [127] Neslehova J. On rank correlation measures for non-continuous random variables. Journal of Multivariate Analysis, 2007,98:544-567.
    [128] Molina J. J. Q, Sempt C. Discrete quasi-copulas, Insurance: Mathematics and Economics, 37(2005),27-24.
    [129] Aguilo. I, Suner. J, Torrens. J. matrix representation of discrete quasi-copulas, Fuzzy Sets and Systems 159(2008): 1658-1672.
    [130]同济大学概率统计教研组.概率统计.上海:同济大学出版社,2000
    [131] Strelen. J. C, Nassaj. F. ANALY AND GENERATION OF RANDOM VECTORS WITH COPULAS, proceedings of the 2007 Winter Simulation Conference 488-496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700