AM真菌和类黄酮与紫穗槐的互作及DDRT-PCR筛选特异片段体系建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根(arbuscular mycorrhiza, AM)对植物具有广泛的侵染性,世界上大约80%以上的有花植物以及蕨类和苔藓植物都具有丛枝菌根。在大部分植物中丛枝菌根都被证明能够促进植物对矿物质元素的吸收和利用,改善植物营养状况,增强植物的抗逆性,提高植物的产量和质量,加快移栽苗成活速度等方面具有积极的促进作用。目前,关于共生体识别信号研究是国际上研究植物-微生物共生现象的热点关于共生体初始识别信号研究主要集中在根瘤菌与宿主植物之间的相互识别,而对菌根共生体的相互识别信号还只是推断,并且宿主植物都是以草本豆科植物为试材。
     本试验通过对木本豆科植物紫穗槐接种AM真菌,并同时采用类黄酮物质刺激接种了AM真菌的紫穗槐等苗木培养,定期观察侵染率的情况及各种生长量的变化,得出AM真菌对于木本豆科植物紫穗槐的生长有明显的促进作用,侵染率达到90%左右;接种了AM真菌的紫穗槐茎高﹑根长和鲜重比未接种紫穗槐的平均高出2cm﹑2cm和0.1g;类黄酮物质对接种AM真菌的紫穗槐样品也有着相同的促进作用。不同浓度的类黄酮物质对接种AM真菌的紫穗槐而且,随着类黄酮浓度的增加,促进作用也越加的明显,茎高﹑根长和鲜重都增加了4cm﹑4cm和0.1g;表明类黄酮物质在AM真菌侵染木本豆科植物紫穗槐的过程中具有信号物质的功能。
     本试验采用mRNA差异显示技术分离紫穗槐与AM真菌接种木本豆科植物紫穗槐两组对照间的特异基因片段,利用分子生物学方法检测与相关信号物质有关的基因,通过试验分离出了3条特异性条带。
There are extensive infectivity between arbuscular mycorrhiza and plants, which including 80% of flowering plants, fern and bryophyte in the world. It had been demonstrated that arbuscular mycorrhiza can promote the absorption and exploitation of plant to mineral element, improve the nutritional status of plants, strengthen the antireversion force of plants, increase the yield and quality of plants, accelerate the survival rate of transplants. At present, the identification signals on the symbiosis of the international research study on the plant - the hot microbial symbiosis on the symbiotic identification signals of the initial study focused on Rhizobium and the interaction between the host plant identification, and the mycorrhizal symbiosis of mutual recognition Signal is only infer that the host and leguminous plants are herbaceous plants were used.
     In this paper, , Amorpha fruticosa was plant with flavonoid and AMF, the infection rate and variance of yield was observed regularly. The results showed that the AMF could conspicuous promote the growth of Amorpha fruticosa,Infection rate of about 90% AM fungi inoculation of the high﹑ Amorpha fruticosa stem and root fresh weight than unvaccinated Amorpha fruticosa higher than the average 2 cm﹑ 2 cm and 0.1 g.The flavonoid can also promote the growth of Amorpha fruticosa .Its high﹑roots stem fresh weight and have increased by 4 cm﹑ 4 cm and 0.1 g.
     And become more and more conspicuous along with the increase of flavonoid so that the flavonoid was take on some ability of signals in the process of infection between AMF to Amorpha fruticosa.
     In this paper, the technology of mRNA differential display was used for separate the specificity gene-fragment between non-innoculation and mon-innoculation AM fungi. The gene that was refer to the signal was detected by the technology of molecular biology and several specificity gene-fragment separated.
引文
[1] D.S. Hayman. The physiology of vesicular-arbuscular endomyc-orrhizal symbiosis[J]. Can.J.Bot., 1982, 61: 944-963.
    [2]朱教君,徐慧.外生菌根菌与森林树木的相互关系[J].生态学杂志, 2003,22(6):70-76.
    [3]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社, 2000. 1-186.
    [4]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社, 1997.
    [5]王保民,任萌圃.丛枝菌根应用研究进展[J].湖北农业科学, 2004, (3): 56-58.
    [6] S.E. Smith, D.J. Read. Mycorrhizal Symbiosis[M]. Califor-nia: Academic Press, Inc, 1997. 9.
    [7] Morton. Lynch: The Rhizosheree, John wiley&sons. 1990,80:520~524.
    [8]张梅芳.菌根的研究和应用概况[J].广西农学院学报, 1989, 8(2): 75-81.
    [9] G. Oldroyd, M.J. Harrison, M. Udvardi. Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses[J]. Plant Physiology, 2005, 137: 1205 -1210.
    [10]郭忠勇,田长彦.不同形态磷肥对棉花生长和AM真菌接种效应的影响[J].干旱区研究, 2008, 25(2):196-200.
    [11]邵菊芳. AM真菌的孢子萌发及双重培养研究[D].硕士学位论文.华中农业大学, 2004.
    [12]柯世省.丛枝菌根与植物营养[J].生物学教学, 2007, 32(8): 4-6
    [13]郑伟文,宋亚娜. VA菌根真菌和根瘤菌对翼豆生长、固氮的影响[J].福建农业学报, 2000, 15(2): 50-55.
    [14]王贤波.丛枝菌根(AM)的研究进展及展望[J].杭州农业科技, 2007(2): 19-21.
    [15]李晓林,姚青. VA菌根与植物的矿质营养[J].自然科学进展, 2000, 10(6): 524-530.
    [16] J.M. Scervino, M.A. Ponce, E.B. Rosa, et al. Arbuscular mycorrhizal colonizationof tomato by Gigaspora and Glomus species in the presence of root flavonoids[J]. Journal of Plant Physiology, 2005, 6: 625-633.
    [17]马琼,黄建国.菌根及其在植物吸收矿质元素营养中的作用[J].吉林农业科学, 2003, 28(2): 41-43.
    [18] J.C. Tarafdar. Effect of vesicular-arbuscular mycorrhizal and phosphatase-producing fungal inoculation on growth and nutrition of white clover supplied with organic phosphorus[J]. Folia Microbiologica, 1995, 40 (3): 327-332.
    [19]李登武,王冬梅,贺学礼.丛枝菌根真菌对烟草钾素吸收的研究[J].应用生态学报, 2003, 14(10): 1719-1722.
    [20]王虹,李莺,赵丽莉.VA菌根真菌对紫茉莉生长的影响[J].陕西农业科学,1999,(01):88-89
    [21]刘润进,郝文英. VA菌根真菌对植物水分代谢的影响[J].土壤学报, 1994, 31: 46-53.
    [22]赵士杰,李树林. VA菌根促进韭菜增产的生理基础研究[J].土壤肥料, 1993, 4: 38-40
    [23]王曙光,林先贵,施亚琴.丛枝菌根(AM)与植物的抗逆性[J].生态学杂志, 2001, 20(3) :27-30
    [24] F. Gu, X.L. Li, F.S. Zhang, S.X. Li. Effects of arbuscular mycorrhizal fungus on the growth of corn under NaCl stress condition[A]. In: In:Proceedings of Second International Conference on Mycorrhiza[C]. Uppsala Sweden, 1998, 61.
    [25]杨秀梅,陈保冬.丛枝菌根真菌(Glomus intraradices)对铜污染土壤上玉米生长的影响[J].生态学报, 2008, 28(3):1052-1058.
    [26]陶红群,李晓林,张俊玲.丛枝菌根菌丝对重金属元素Zn和Cd吸收的研究[J].环境科学学报, 1998, 18(5): 545-548.
    [27]陶红群,李晓林,张俊玲.锌污染条件下VA菌根对三叶草生长和元素吸收的影响[J].应用与环境生物学报, 1997, 3(3): 263-267
    [28] P.M. Antunes. I. Rajcan. M.J. Goss . Specific flavonoids as interconnecting signalsin the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean Robson[J]. Soil biology & biochemistry, 2006, 38: 533-543.
    [29]刘杏忠,刘润进,秦志林. VAM菌定殖于大豆胞囊线虫在我国的发现[J].土壤学报, 1994, 31: 230-233.
    [30]赵淑梅,张从景.紫穗槐的综合利用及栽培技术[J].防护林科技, 2005, 66(3): 86-88.
    [31] O.N. Allen, E.K. Allen. The leguminosae: a source book of characteristics, uses, and nodulation[M]. Wisconsin: University of Wisconsin Press, 1981.18-50.
    [32]侯宽昭.中国种子植物科属词典[M].北京:科学出版社, 1982. 26.
    [33]中国药科大学.中药辞海(第三卷)[M].北京:中国医药科技出版社, 1997. 861
    [34]中国药材公司.中国中药资源志要[M].北京:科学出版社, 1994. 548.
    [35]万永霞.紫穗槐的价值及其繁殖[J].特种经济动植物, 2004, 01: 31.
    [36]杨汉乔.两种饲料槐的组织培养及紫穗槐的辐射诱变育种探讨[D].硕士学位论文,辽宁师范大学, 2007.
    [37] H.P. Bais, T.L. Weir, L.G. Perry, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266.
    [38] H. Vierheilig, B. Iseli, et al. Resistance of Urtica dioicato mycorrhizal colonization: a possible involvement of Urtica dioica agglutinin[J]. Plant Soil, 1996, 183: 131-136.
    [39] P.M. Antunes, A. Varennes, I. Rajcan. et al. Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan[J]. Soil Biology and Biochemistry, 2006, 38: 1234-1242.
    [40] P.M. Antunes, I. Rajcan, M.J. Goss. Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi,Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr[J]. Soil Biology and Biochemistry, 2006, 38: 533-543.
    [41] A.M. Hirsch, M.R. Lum, J.A. Downie. What makes the rhizobia-legume symbiosis so special? [J]. Plant Physiol, 2001, 127: 1484-1492.
    [42] M.R. Lum, A.M. Hirsch. Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment [J]. J. Plant Growth Regul, 2003, 21: 368-382.
    [43] V. Gianinazzi-Pearson. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis [J]. Plant Cell, 1996, 8: 1871-1883.
    [44] E.P. Journet, N. El-Gachtouli, V. Vernoud, et al. Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells[J]. Mol.Plant Microbe In, 2001, 14: 737-748.
    [45] Z.P. Xie, J. Muller, A. Wiemken, et al. Nod factors and triiodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lab purpureus[J]. New Phytol, 1998, 139: 361-366.
    [46] Z.P. Xie, C. Staehelin, H. Vierheilig, et al. Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans [J]. Plant Physiol, 1995, 108: 1519-1525.
    [47] S. Kosuta, M. Chabaud, G. Lougnon, et al. Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots of Medicagotruncatula[J]. Plant Physio, 2003, 131: 952-962.
    [48]刘炜,冯虎元.丛枝菌根共生关系的信号机制研究进展[J].西北植物学报, 2006, 10: 35-36.
    [49] M.R. Lum, A.M. Hirsch. Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment[J]. J.Plant Growth Regul, 2003, 21: 368-382.
    [50] C. Galleguillos, C. Aguirre, J.M. Barea, et al. Growth promoting effect of twoSinorhizobium melilotistrains (a wild type and its genetically modified derivative) on a non-legume plantspecies in specific interaction with two arbuscular mycorrhizal fungi[J]. Plant Sci, 2000, 159: 57-63.
    [51] R. Catoira, C. Galera, F. Billy, et al. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway[J]. Plant Cell, 2000, 12: 1647-1666.
    [52] U. Mathesius. Conservation and divergence of signalling pathways between roots and soil microbes the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls [J]. Plant Soil, 2003, 255: 105-119.
    [53] M. Parniske. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?[J]. Curr. Opin. Plant Biol, 2000.3: 320-328.
    [54] B.K. Riely, J.M. Ané, R.V. Penmetsa, et al. Genetic and genomic analysis in model legumes bring Nod-factor signaling to center stage[J]. Curr. Opin. Plant Biol, 2004, 7: 408-413.
    [55] M. Buee, M. Rossignol, A. Jauneau, et al. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates[J]. Mol. Plant-Microbe. Interact. 2000, 13: 693-698
    [56] J.M. Scervino, M.A. Ponce, R. Erra-Bassells, et al. Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids[J]. Journal of Plant Physiology, 2005, 162: 625-633.
    [57]赵丹丹,李涛,赵之伟.丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展[J].生态学杂志, 2006, 3: 50-53.
    [58] G. Larose, R. Chênevert, P. Moutoglis. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus[J]. Journal of Plant Physiology, 2002, 159:1329-1339.
    [59]赵昕,阎秀峰.丛枝菌根真菌对植物次生代谢的影响[J].植物生态学报, 2006, 3: 50-55.
    [60] U.A. Hartwig, C.A. Maxwell, C.M. Joseph, et al. Chrysoerioland luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti[J]. Plant Physiol, 1990, 92: 116-122.
    [61] N.K. Peters, J.W. Frost, S.K. Long. A plant flavone, luteolin, induces expression of Rhizobium melilotinodulation genes[J]. Science, 1986, 233: 977-980.
    [62]董昌金,赵斌.类黄酮物质apigenin和daidzein诱导AM真菌侵染十字花科植物芥菜[J].科学通报,2004,5:49(10):953-960
    [63]于永光,赵斌.不同pH水平下两种菌根真菌对紫云英生长的影响及其相互作用[J].菌物学报, 2008, 27(2): 209-216.
    [64]吴乃虎.基因工程原理[M].北京:科学出版社, 2003.
    [65]罗焕亮,陈伟元,邵志芳,伍慧雄,李森,张景宁.VA菌根对植物的增效作用研究[J].华南农业大学学报, 2002, 1: 18-22.
    [66] H.P. Bais, T.L. Weir, L.G. Perry, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu-al Review of Plant Biology, 2006, 57: 233-266.
    [67] M. Buee, M. Rossignol, A. Jauneau, et al. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates[J]. Mol. Plant-Microbe. Interact, 2000, 13: 693-698.
    [68]刘易科,孙洪波,简波,胡珀,高小伟,侯文胜. 2种大豆总RNA提取方法的改良.西北农业科技大学学报, 2006, 12:17-19.
    [69] Smartlb. Isolation of RNA from plant tissue[C].A laboratory guide to RNA: isaolation, a analysis and synthesis. New York: Wiley-LissInc, 1996: 3(10): 34-38.
    [70] F.R. Katterman, I. Shttuckv. An effective method of DNA isolation from the matureieaves of Gossypium species that contain large amount of pheno-lic tirpenoids and anninas[J]. Prep Biochem, 1983, 13: 347-359.
    [71]周春娥,段红英,齐力旺.木本植物老根老叶总RNA的提取方法[J].安徽农业科学, 2007, 10: 5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700