液体火箭POGO振动的多体动力学建模及稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体火箭POGO振动本质上是液路系统与结构系统耦合产生的一种不稳定现象,是载人航天任务需要特别关注的问题。传统方法需人工选择几阶重要结构模态,这在研究模态密集的大型捆绑火箭的POGO稳定性时给建模与分析带来困难,因此有必要发展更有效的分析方法。此外,火箭实飞数据表明POGO振动对工作参数非常敏感。因此,找出具有POGO鲁棒性的参数区域具有重要意义。针对这两大类问题,本文主要进行了如下三项研究:
     提出用三个无量纲数表征单结构振子和单液路振子耦合的稳定性。并解析/半解析地研究了各工作参数对POGO稳定性的影响。结果表明,将液路频率降至低于结构频率有利于减弱稳定性对参数的敏感度,从而获得POGO鲁棒性,即对一定质量范围的有效载荷和不同工况都稳定。
     提出了一种一维流-管耦合动力学的有限元建模方法,用于描述空间任意构型输运管路的大范围运动。管壁由本文发展的Euler-Bernoulli梁单元建模,该单元采用四元数描述截面姿态,从根本上避免了用Euler角做广义坐标引入的三维奇异性问题,并在插值位移场时通过次序插值保证了Euler-Bernoulli梁的直法线假设,即中心切向与截面垂直。流体单元的控制体与运动的梁单元时刻重合,对流体可压与不可压两种情况分别建立控制方程,并考虑对结构的作用力。算例表明,该方法能很好的描述一维流-管的耦合动力学。
     建立了基于多体动力学系统方程的液体火箭POGO稳定性分析方法。解决了流固耦合求解不收敛问题,将推进剂系统的各单元引入多体动力学求解框架中,使得可通过求解线化系统方程的特征值来判断系统稳定性。然后,建模并研究了某大型液体捆绑火箭在推进剂完全轴对称构型和局部非轴对称构型下的POGO稳定性。结果表明,除纵向模态外,即使在轴对称布局下,助推推进剂与结构的耦合也可能导致非轴对称的整体弯曲模态或局部模态的失稳,这可通过蓄压器调频来消除;管路的局部非轴对称构型也有可能引起系统不稳定,这种不稳定性需从管路设计上而非蓄压器调频来消除。
POGO vibration, resulted from the closed-loop instability between propulsionsystem and structure modes, is highly concerned in manned space flight. In analysis,only few important structure modes should be artificially selected, this complex themodeling work for checking stability of powerful bundled liquid rocket since a lot ofdensity structure modes has to be considered carefully. Hence, it is very necessary todevelop another easier and efficient approach for stability analysis. Besides, an idealrocket should be pogo robust, which means pogo free for a certain kind of payload andwide range of working conditions. While, flight data show that pogo stability behaviorsmission-specific and is highly sensitive to the dynamical working conditions. Therefore,it will be meaningful to qualitatively investigate the effect of physical factors onstability, and figure out the important parameters domain for achieving robust pogostability. This thesis is aimed at studying these two major problems.
     Firstly, the effects of physical parameters on pogo stability are qualitativelyinvestigated through analytically approach. In the analysis, coupling between rocketstructure and a single-propellant system is transformed to a number of two coupledoscillators, which describe the involved structure mode and the propulsion mode,respectively. Analytical results on the pogo stability are obtained in terms of3dimensionless parameters. The effects of these three dimensionless parameters and alldimensional physical parameters on pogo stability are extensively discussed. Resultsshow that regulating the frequency of propulsion with accumulator until it is lower thanthat of structure is an efficient way to achieve robust pogo stability.
     Secondly, a finite element approach of analyzing one dimensional fluid-structureinteraction problem is developed for modeling the suction line with arbitrary spatialconfigurations subjecting to large deformation. The pipe structure is divided through thenewly proposed Euler-Bernoulli beam element based on quaternion. Quaternionsinstead of Euler angles are adopted as nodal variables to avoid the traditional singularityproblem when describing the attitude of cross section. To meet the Euler-Bernoullibeam requirement, a requital interpolation method is also specially developed toguarantee the perpendicularity of cross section and tangent. The liquid in pipe isformulated through finite volume method whose control volume keeps on coinciding with the corresponding beam element during deformation. The governing equation ofcompressible and uncompressible liquid is established, and the reaction force tostructure is formulated. Numerical results show this approach is suitable for modelingfluid-structure interaction in one dimensional pipe.
     Finally, a multibody dynamic approach of modeling liquid rocket is proposed forpogo stability analysis. All of components in propulsion system are successfullyimplemented into multibody dynamic program after fixing the converging problem metat solving motion equations of liquid and structure simultaneously. POGO stability of apropulsion system with both axisymmetric and non-axisymmetric configurations isnumerically addressed. Results show that, on the one hand, except longitudinalvibration modes, instability might happen at the bending modes or local models evenwith axisymmetric propulsion configuration, and this kind of instability could bemitigated by accumulator. On the other hand, non-axisymmetric configuration offeedline might introduce another kind of instability, which could be eliminated throughdesign of feedline instead of accumulator.
引文
[1] Rubin S. Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO)[J].Journal of Spacecraft and Rockets,1966,3:1188-1195.
    [2] Rubin S, Prevention of Coupled Structure-Propulsion Instability (POGO), AIAA SP-8055,October1970.
    [3] About G B, P.; Bonnal, C.; David, N.; Lemoine, J. C., A new approach of pogo phenomenonthree-dimensional studies of the Ariane4launcher, in International Astronautical Congress,37th. Innsbruck, Austria: IAF-86-105,1986, pp. Oct.4-11.
    [4] Walker J H, Winje R A, McKenna K J, An Investigation of Low Frequency LongitudinalVibration of the Titan II Missile during Stage I Flight, TRW Space Technology Labs Rept.6438-6001-RU-000, March1964.
    [5] Wagner R G, Rubin S, Detection of Titan Pogo Characteristics by Analysis of Random Data,presented at Proc. ASME Symposium on Stochastic Processes in Dynamical Problems, LosAngeles,1969.
    [6] Dordain J J, Lourme D, Estoueig C. Study on Pogo Effect on Launchers Europa-II andDiamond-B[J]. Acta Astronautica,1974,1:1357-1384.
    [7]马道远,王其政,荣克林.液体捆绑火箭POGO稳定性分析的闭环传递函数法[J].强度与环境,2010,37:1-7.
    [8] Larsen C E. NASA Experience with Pogo in Human Spaceflight Vehicles[J].2008.
    [9] Iacopozzi M, Lignarolo V, Prevel D, Pogo Characterisation of Ariane V Turbopump LOXPump with Hot Water, in AIAA/SAE/ASME/ASEE29th Joint Propulsion Conference andExhibit. Montery, CA: AIAA,1993.
    [10] Sterett J B, Riley G F, Saturn V/Apollo vehicle POGO stability problems and solutions inAMERICAN INST OF AERONAUTICS AND ASTRONAUTICS, ANNUAL MEETINGAND TECHNICAL DISPLAY,7th. Houston, TEX.,1970.
    [11] Buchanan H J, Jarvinen W a, Kiefling L a, et al. Simulation of Saturn V S-II stage propellantfeedline dynamics[J]. Journal of Spacecraft and Rockets,1970,7:1407-1412.
    [12] Worlund A L, Hill R D, Murphy G L, Saturn V Longitudinal Oscillation (POGO) solution, inAIAA5th Propulsion Joint Specialist Conference. Colorado, USA,1969.
    [13] Pragenau G L v, Stability analysis of Apollo-Saturn V propulsion and structure feedback loop,in AIAA Guidance, Control, and Flight Mechanics Conference. Princeton, New Jersey:AIAA-1969-877,1969.
    [14] Castenholz P D, Investigation of17-Hz Closed-loop instability on S-II Stage of Saturn V,Rocketdyne, Canoga Park, California NASA-CR-144131, August19691969.
    [15] Sanchini D J, Colbo H I, Space Shuttle Main Engine Development, in AIAA/SAE/ASME16th Joint Propulsion Conference. Hartford, Connecticut: AIAA-1980-1129,1980.
    [16] Rubin S, Wagner R G, Payne J G, Pogo Suppression on Space Shuttle Early Studies, TheAerospace Corporation, Washington, D. C. AIAA-CR-2210, March1973.
    [17]任辉,任革学,荣克林,等.液体火箭Pogo振动蓄压器非线性仿真研究[J].强度与环境,2006,33:1-6.
    [18]杨明,杨智春,史淑娟.液体火箭POGO振动时域分析方法研究[J].强度与环境,2010,37:29-36.
    [19]严海,方勃,黄文虎.液体火箭的POGO振动研究与参数分析[J].导弹与航天运载技术,2009,304:35-40.
    [20] Swanson L A, Giel T V, Design Analysis of the Ares I Pogo Accumulator in45thAIAA/ASME/SAE/ASEE Joint Propulsioin Conference and Exhibit. Denver, Colorado,2009.
    [21] Quinn J E, Overview of the Main Propulsion System for the NASA Ares I Upper Stage, in45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Denver, Colorado,2009.
    [22] Nagai H, Mori T, Noda K, et al. Status of H-II rocket first stage propulsion system[J]. Journalof Propulsion and Power,1992,8:313-319.
    [23] Ujino T, POGO analysis on the H-II launch vehicle, in ASME, ASCE, AHS, and ASC,Structures, Structural Dynamics and Materials Conference,30th. Mobile, AL,1989, pp.460-467.
    [24] Ono Y, Kohsetsu Y, Shibukawa K, POGO ground simulation test of H-I launch vehicle'ssecond stage, in AIAA9th Annual Meeting and Technical Display. Washington, D. C.: AIAAPaper No.73-31,1987.
    [25] Champion R H, Darrow R J, X-34MAIN PROPULSION SYSTEM DESIGN ANDOPERATION, in AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,34th.Cleveland, OH: AIAA-1998-4032,1998.
    [26] Sgarlata P K, Winters B A. X-34PROPULSION SYSTEM DESIGN[J].AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,33rd,1997.
    [27] Sgarlata P K, Winters B A, X-34propulsion system design, in AIAA/ASME/SAE/ASEEJoint Propulsion Conference and Exhibit,33rd. Seattle, WA,1997.
    [28] R. R, Ariane5Propulsion Requirements and Constraints for a Cost Effective Unmanned(Commercial)/Manned(HERMES) Compatible Advanced Launcher, inAIAA/SAE/ASME/ASEE26th Joint Propulsion Conference. Orlando, FL: AlAA-1990-2699,1990.
    [29] Souchier A, Pasquier J, Ariane4Liquid Boosters and First Stage Propulsion System, inAIAA/SAE/ASME19th Joint Propulsion Conference. Seattle, Washington:AIAA-1983-1192,1983.
    [30] Langer S L, Tygielski P, Mathematical Model of the Space Shuttle Main Engine GaseousOxygen Control Valve, in AIAA/SAE/ASME/ASEE28th Joint Propulsion Conference andExhibit. Nashville, TN,1992.
    [31]荣克林.北京强度环境研究所完成CZ-2F火箭POGO振动研究[J].强度与环境,2008,38:64-64.
    [32] Goldman R L, Miessner W W, Longitudinal Oscillation Instability Study POGO, inSimulation: SAGE,1966.
    [33] Arnold V I. Ordinary differential equations[M]. Cambridge, Massachusetts: MIT Press,1978.
    [34] McKenna J J, Walker J H, Winje R A, Analytical Model for Missile Axial OscillationInduced by Engine-Strucutral Coupling, in AIAA Unmanned Spacecraft Meeting. New York:AIAA,1965.
    [35] Holster J L, Astleford W J. Analytical Model for Liquid Rocket Propellant FeedlineDynamics[J]. Journal of Spacecraft and Rockets,1974,11:180-187.
    [36] Pratt M J, Liquid surface motions in longitudinally excited rigid transparent models inAmerican Institute of Aeronautics and Astronautics, Annual Meeting and Technical Display,10th. Washington, D.C.: AIAA-1974-256,1974.
    [37] Bramblett G, Knowles R, Sack L, Pump Cavitation Impedance as a Factor in VehicleLongitudinal Vibrations, in AIAA Second Propulsion Joint Specialist Conference. ColoradoSprings, Colorado: AIAA-1966-559,1966.
    [38] Norquist L W S, Marcus J P, Development of Close-coupled Accumulators for SuppressingMissile Longitudinal Oscillations (POGO), in AIAA5th Propulsion Joint SpecialistConference. U. S. Air Force Academy, Colorado,1969.
    [39] Brennen C, Acosta A J. Theoretical, Quasi-Static Analysis of Cavitation Compliance inTurbopumps[J]. J. Spacecraft,1973,10:175-180.
    [40] Shimura T, Kamijo K. Dynamic Response of the LE-5Rocket Engine Liquid OxygenPump[J]. Journal of Spacecraft and Rockets,1985,22:195-200.
    [41] Shimura T, The Effects of Geometry in the Dynamic Response of the Cavitating LE-7LOXPump, in AIAA/SAE/ASME/ASEE29th Joint Propulsion Conference and Exhibit. MontereyCA: AIAA,1993.
    [42] Shimura T. Geometry Effects in the Dynamic Response of Cavitating LE-7Liquid OxygenPump[J]. Journal of Propulsion and Power,1995,11:330-336.
    [43] Rubin S, An Interpretation of Transfer Function Data for a Cavitating Pump in40thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida,2004.
    [44] Dotson K W, Rubin S, Sako B H. Mission-Specific Pogo Stability Analysis with CorrelatedPump Parameters[J]. Journal of Propulsion and Power,2005,21:619-626.
    [45] Muller S, Breviere F, Kernilis A, et al., Influence of pump cavitation process on POGOdiagnosis for the A5E/CA upper stage, in46th AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit. Nashville, TN,2010.
    [46]王其政.结构耦合动力学[M].北京:中国宇航出版社,1999:334.
    [47] Nayfeh A H, Mook D T. Nonlinear oscillations[M]. New York: John Wiley&Sons,1979.
    [48] Shupert T C, Ward T L. Turbopump transient response test facility and program[J]. Journal ofSpacecraft and Rockets,1965,2:820-822.
    [49] Dotson K W, Rubin S, Sako B H, Effects of Unsteady Pump Cavitation onPropulsion-Structure Interaction (POGO) in Liquid Rockets, in45thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Material Confer. PalmSprings, California: AIAA,2004.
    [50] Oppenheim B W, Rubin S. Advanced Pogo Stability Analysis for Liquid Rocekts[J]. Journalof Spacecraft and Rockets,1993,30:2048-2062.
    [51] Sutton G P. History of Liquid Propellant Rocket Engines in the United States[J]. Journal ofPropulsion and Power,2003,19:978-1007.
    [52] Lehoucq R B, Sorensen D C, Yang C. Arpack User's Guide: Solution of Large-ScaleEigenvalue Problems With Implicityly Restorted Arnoldi Methods[M]. Philadelphia: Soc forIndustrial&Applied Math:142.
    [53] Holster J L, Liquid Rocket Propellant Feedline Dynamics, in AIAA/SAE9th PropulsionConference. Las Vegas, Nevada: AIAA-1973-1286,1973.
    [54]汤家力.含时变索梁柔性多体系统的建模与数值方法研究[博士学位论文].北京:清华大学航天航空学院,2009.
    [55]虞磊.基于绝对结点坐标法的柔性多体系统建模与计算方法研究[博士学位论文].北京:清华大学航天航空学院,2010.
    [56] Ryan R S, Papadopoulos J G, Kiefling L A, et al. A Study of Saturn AS-502CouplingLongitudinal Structural Vibration and Lateral Bending Response during Boost[J]. Journal ofSpacecraft and Rockets,1970,7:113-118.
    [57] Zhao Z, Ren G, Yu Z, et al. A Parameter Study on Pogo Stability of Liquid Rockets[J].Journal of Spacecraft and Rockets,2011.
    [58] Abramson H N, Kana D D, Lindholm U S. An experimental study of liquid instability in avibrating elastic tank[J]. Journal of Spacecraft and Rockets,1966,3:1183-1188.
    [59] Rossoni M, McDonnell Douglas Delta II Main Liquid Oxygen Tank Bi-Level PressurizationSystem, in AIAA/SAE/ASME/ASEE26th Joint Propulsion Conference. Orlando, FL:AlAA-1990-2060,1990.
    [60] Watnabe A, Endo M, Yamazaki I, et al., Battleship Tank Firing Test of H-II Launch Vehicle,First Stage, in AIAA/SAE/ASME/ASEE27th Joint Propulsion Conference. Sacramento, CA:AIAA-1991-2051,1991.
    [61] Simo J C, VU-Quoc L. On the Dynamics in Space of Rods Undergoing Large Motions-AGeometry Exact Approach[J]. Computer Methods in Applied Mechanics and Engineering,1988,66:125-161.
    [62] Simo J C, Vu-Quoc L. A three-dimensional finite-strain rod model. part II: Computationalaspects[J]. Computer Methods in Applied Mechanics and Engineering,1986,58:79-116.
    [63] Simo J C, Vuquoc L. On the Dynamics Of Flexible Beams under Large Overall Motions-The Plane Case.1[J]. Journal of Applied Mechanics-Transactions of the Asme,1986,53:849-854.
    [64] Simo J C. A finite strain beam formulation. The three-dimensional dynamic problem. PartI[M]. Kidlington, ROYAUME-UNI: Elsevier,1985.
    [65] McRobie F A, Lasenby J. Simo–Vu Quoc rods using Clifford algebra[J]. InternationalJournal for Numerical Methods in Engineering,1999,45:377-398.
    [66] Shabana A A, Yakoub R Y. Three dimensional absolute nodal coordinate formulation forbeam elements: Theory[J]. Journal of Mechanical Design,2001,123:606-613.
    [67] Shabana A A. Uniqueness of the Geometric Representation in Large Rotation Finite ElementFormulations[J]. Journal of Computational and Nonlinear Dynamics,2010,5:044501.
    [68] Dmitrochenko O N, Pogorelov D Y. Generalization of Plate Finite Elements for AbsoluteNodal Coordinate Formulation[J]. Multibody System Dynamics,2003,10:17-43.
    [69] Gerstmayr J. Strain tensors in the absolute nodal coordinate and the floating frame ofreference formulation[J]. Nonlinear Dynamics,2003,34:133-145.
    [70] Iwai R, Kobayashi N. A new flexible multibody beam element based on the absolute nodalcoordinate formulation using the global shape function and the analytical mode shapefunction[J]. Nonlinear Dynamics,2003,34:207-232.
    [71] Kübler L, Eberhard P, Geisler J. Flexible Multibody Systems with Large Deformations andNonlinear Structural Damping Using Absolute Nodal Coordinates[J]. Nonlinear Dynamics,2003,34:31-52.
    [72] Sopanen J T, Mikkola A M. Description of Elastic Forces in Absolute Nodal CoordinateFormulation[J]. Nonlinear Dynamics,2003,34:53-74.
    [73] Sugiyama H, Escalona J L, Shabana A A. Formulation of three-dimensional joint constraintsusing the absolute nodal coordinates[J]. Nonlinear Dynamics,2003,31:167-195.
    [74] Sugiyama H, Shabana A A. On the use of implicit integration methods and the absolute nodalcoordinate formulation in the analysis of elasto-plastic deformation problems[J]. NonlinearDynamics,2004,37:245-270.
    [75] Dufva K E, Sopanen J T, Mikkola A M. A two-dimensional shear deformable beam elementbased on the absolute nodal coordinate formulation[J]. Journal of Sound and Vibration,2005,280:719-738.
    [76] Garcia-Vallejo D, Valverde J, Dominguez J. An internal damping model for the absolutenodal coordinate formulation[J]. Nonlinear Dynamics,2005,42:347-369.
    [77] Kimmo S K, Jussi T S, Aki M M. A Linear Beam Finite Element Based on the AbsoluteNodal Coordinate Formulation[J]. Journal of Mechanical Design,2005,127:621-630.
    [78] Yoo W S, Lee J H, Park S J, et al. Large oscillations of a thin cantilever beam: Physicalexperiments and simulation using the absolute nodal coordinate formulation[J]. NonlinearDynamics,2003,34:3-29.
    [79] Yoo W S, Dmitrochenko O, Pogorelov D Y. Review of finite elements using absolute nodalcoordinates for large-deformation problems and matching physical experiments[J].Proceedings of the ASME International Design Engineering Technical Conferences andComputers and Information in Engineering Conference, Vol6, Pts A-C,20051285-1294.
    [80] Garcia-Vallejo D, Mikkola A M, Escalona J L. A New Locking-Free Shear Deformable FiniteElement Based on Absolute Nodal Coordinates[J]. Nonlinear Dynamics,2007,50:249-264.
    [81] Sugiyama H, Suda Y. A Curved Beam Element in the Analysis of Flexible Multi-BodySystems Using the Absolute Nodal Coordinates[J]. Proceedings of the Institution ofMechanical Engineers Part K-Journal of Multi-Body Dynamics,2007,221:219-231.
    [82] Gerstmayr J, Matikainen M K, Mikkola A M. A geometrically exact beam element based onthe absolute nodal coordinate formulation[J]. Multibody System Dynamics,2008,20:359-384.
    [83] Aki M, Oleg D, Marko M. Inclusion of Transverse Shear Deformation in a Beam ElementBased on the Absolute Nodal Coordinate Formulation[J]. Journal of Computational andNonlinear Dynamics,2009,4:011004.
    [84] Dombrowski S V. Analysis of Large Flexible Body Deformation in Multibody Systems UsingAbsolute Coordinates[J]. Multibody System Dynamics,2002,8:409-432.
    [85]朱大鹏.多体动力学框架下的大变形曲梁单元及其应用[硕士学位论文].北京:清华大学清华大学航天航空学院,2008.
    [86] Haug E J. Computer Aided Kinematics and Dynamics of Mechanical Systems, Volume1:Basic Methods[M]. Boston: Allyn and Bacon,1989.
    [87] Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff andDifferential-Algebraic Problems[M].2nd. Berlin: Springer-Verlag,1996.
    [88] Burgermeister B, Arnold M, Esterl B. DAE time integration for real-time applications inmulti-body dynamics[J]. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik,2006,86:759-771.
    [89] Bottasso C L, Dopico D, Trainelli L. On the optimal scaling of index three DAEs inmultibody dynamics[J]. Multibody System Dynamics,2008,19:3-20.
    [90] Arnold M, Fuchs A, Fuhrer C. Efficient corrector iteration for DAE time integration inmultibody dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:6958-6973.
    [91] Arnold M, Burgermeister B, Eichberger A. Linearly implicit time integration methods inreal-time applications: DAEs and stiff ODEs[J]. Multibody System Dynamics,2007,17:99-117.
    [92] Kramer E. Dynamics of Rotors and Foundations[M]. New York: Springer-Verlag,1993.
    [93] Kane T R, Ryan R R. Dynamics of a cantilever beam attached to a moving base [J]. Journalof Guidance, Control, and Dynamics,1987,10:139-151.
    [94] Hanagud S, Sarkar S. Problem of the dynamics of a cantilevered beam attached to a movingbase [J]. Journal of Guidance, Control, and Dynamics,1989,12:438-441.
    [95] Dodge W G, Moore S E, ELBOW: A Fortran Program for the Calculation of Stresses, StressIndices, and Flexibility Factors for Elbows and Curved Pipe, Oak Ridge NaationalLaboratory, Oak Ridge, Tenn. ORNL-TM--4098,1972.
    [96] CAF D J. Analysis of pulsations and vibrations in fluid-filled pipe systems. Eindhoven:Eindhoven University of TechnologyDept of Mechanical Engineering,1994.
    [97] Landau L D, Lifshitz E M. Fluid Mechanimcs[M]. Oxford: Butterworth-Heinemann,1999.
    [98] Hanks B R, Stephens D G. The Use of Hellium Bubbles as a POGO Fix in Lanch VehiclePropellant Lines[J]. Volume of Technical Papers on Structural Dynamics,1969,42-46.
    [99] Caratensen E L, Foldy L L. Propagation of Sound Through a Liquid Containing Bubbles[J].Journal of the Acoustical Society of America,1947,19:481-501.
    [100] Laird D T, Kendig P M. Attenuation of Sound in Water Containing Air Bubbles[J]. Journal ofthe Acoustical Society of America,1952,24:29-32.
    [101] Karplus H B. The Velocity of Sound in a Liquid Containing Gas Bubbles[J]. The Journal ofthe Acoustical Society of America,1958,29:1261.
    [102] Wylie E B, Streeter V L. Fluid Transients in Systems[M]. New York: Prentice Hall,1993.
    [103] Ohayon R. Variational analysis of a slender fluid–structure system: The elasto-acousticbeam—a new symmetric formulation[J]. International Journal for Numerical Methods inEngineering,1986,22:637-647.
    [104] Dodge W G, Moore S E. Stress indices and flexibility factors for moment loadings on elbowsand curved pipe[J]. Weld. Res. Counc. Bull,1972,179:1-16.
    [105] Wiggert D C, Tijsseling A S. Fluid transients and fluid-structure interaction in flexibleliquid-filled piping[J]. Applied Mechanics Reviews,2001,54:455-481.
    [106]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [107]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [108] Everstine G C. Dynamic Analysis of Fluid-Filled Piping Systems Using Finite ElementTechniques[J]. Journal of Pressure Vessel Technology,1986,108:57-61.
    [109] Hatfield F J, Wiggert D C, Davidson L C. Experimental validation of the componentsynthesis method for predicting vibration of liquid-filled piping[J]. Shock Vibration Bull.,1984,54.
    [110]丁文镜.自激振动[M].北京:清华大学出版社,2009.
    [111] Pa doussis M P, Issid N T. Dynamic stability of pipes conveying fluid[J]. Journal of Soundand Vibration,1974,33:267-294.
    [112] Shin Y, Chung J, Kladias N, et al. Compressible flow of liquid in a standing wave tube[J].Journal of Fluid Mechanics,2005,536:321-345.
    [113] Young W C. Roark's formulas for stress and strain[M], sixth Edition, New York: McGrawHill,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700