泔脚废物厌氧两相发酵工艺及其矿化垃圾协同生物产氢过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泔脚废物日益增长的产量及其环境安全影响已引起人们的普遍关注。从环境友好及废物资源化的角度,厌氧发酵技术是对其进行科学处理的较佳选择。因而,为了推进泔脚废物处理的产业化进程,进行泔脚废物厌氧发酵处理的可行性及其系统工艺研究是非常必要的。此外,氢能是未来最具潜力的可替代能源之一,随着厌氧生物产氢研究的渐渐深入,利用有机废物进行多阶段的产氢、产甲烷资源回收概念已逐步成为世界各国的共识,积极对其展开研究探索,具有重要的技术理论发展意义。
     本文首先从泔脚处理迅速工程化的角度,系统的研究了泔脚的组成、脱水及酸化特性;厌氧发酵的影响因素和启动优化条件;发酵的温度、负荷、营养物、相分离的过程影响;优化工艺的扩大中型试验;沼液的农用影响等工程化必须条件参数。再根据有机废物处理的技术发展趋势,创新性进行了污泥热处理程序、矿化垃圾等多孔介质对泔脚发酵产氢的影响研究,试验探讨了矿化垃圾协同泔脚产氢的内在机制,掌握了泔脚发酵生物产氢的初步条件,取得了较高的生物氢产率。主要的研究成果如下:
     (1)泔脚有机物含量高,极易酸化;亲水性强,难以机械脱水,减容效果差。生物接种率、有机负荷、含水率是影响其厌氧发酵启动的主要因素;小型静态试验表明,80%接种率,90%含水率条件是泔脚废物厌氧发酵启动的最佳条件,系统产气率达到0.65L/g。良好的搅拌条件能促进甲烷化的潜力和进程,降低启动阶段的生物接种率;在70%接种率、90%含水率条件下,具有机械搅拌装置的实验室扩大试验能稳定进行,比气化率达到0.68L/g,沼气中甲烷气浓度达到50~55%之间,具有稳定的沼气化发酵特性。
     (2)小型批量连续发酵表明,发酵负荷是影响发酵稳定和效率的关键因素。中温条件下,泔脚发酵的适宜负荷应介于1.00gVS/L.d左右;提高负荷,系统难以稳定启动运行;试验中,0.90gVS/L.d负荷的平均产气率达到0.56L/gVS。混合营养液的添加能促进甲烷菌的活性恢复,并一定程度刺激甲烷菌的产气活性,试验中,生物气产率提高约17%。高温发酵能促进系统的产气率及产气量,但不能提高系统的有机负荷;适宜负荷下产气量相对于中温条件提高40%左右。进行泔脚预酸化碱度调节的改进两相发酵表明,两相系统的发酵负荷和产气率相比单相系统最大能提高接近50%,发酵负荷为1.5gVS/L.d时,小试产气率达到0.9L/g(VS)。
     (3)基于工程化参数研究的需要,在小型试验的基础上,进行了总容积1300L的预酸化两相连续发酵的中试设备构建设计;运行试验结果表明,在中温发酵条件下,泔脚废物的预酸化两相处理,在较优负荷1.66kg/m3.d时,废物最大停留时间为50d,每吨泔脚能产生102m~3的沼气。与城市有机废物大型发酵工艺的技术与运营指标的对比定性分析表明,本工艺条件下的泔脚厌氧发酵处置具有广阔的社会产业化应用前
The quantity of food origin wastes is increasing dramatically in China cities due to the habits of Chinese and their food structures. According to the local regulations, food origin wastes cannot be used as feedstuff for livestock as it contains hazardous bacteria and virus. Anaerobic digestion is considered to be a favorable option for the effective treatment of the wastes so that methane gas and fertilizer can be produced while the wastes are stabilized. Traditionally, only methane is obtained. Biological hydrogen production from the wastes is highlighted in world using anaerobic digestion.
    In this work, experiments at bench and pilot scale were well conducted for food origin wastes to determine the optimum operating conditions to maximize the biogas output. Apart from that, the influences of biogas fluid from food wastes digestion on germination and sprout growth of familiar plant seeds were also investigated. The seeds used in tests were the seeds of rice- 4512, rice- 1750, wheat and cucumber- Jinyou No.1. The results showed that anaerobic digestion was an effective and promising technology for food origin wastes treatment. Further, the primary research was performed on bio-hydrogen production from food wastes for first time in China, from which some favorable harvests were acquired involved in bio-hydrogen process such as the influences of porous matter addition, aged refuse inoculums, and so on.
    First of all, the food origin wastes were characterized with chemical composition, dehydration behavior and acidification processing. The average water content, VS, C/N, C/P, C/Ca in the wastes was determined to be about 85%, 89%TS, 21.6, 202.8, 34.3, respectively. Plentiful microelements and little poisonous matters in the wastes would benefit for the growth of anaerobic microorganisms. It was also found that the wastes were quite difficult to be dehydrated and readily to be biologically acidified with negligible biogas production.
    The bench scale experiments were conducted aiming to quest for the feasibility of the anaerobic digestion for food origin wastes and find out the digestion conditions preparing for pilot scale experiments. The optimum ratios of sludge to waste food, water contents, organic load, temperature, etc., were explored in a single-phase or two-phase anaerobic digestor. The results indicated that water content should be controlled to over 90% and inoculation rate of 80% (sludge) so that anaerobic digestion can start and run successfully with a methane content of 50~55% in biogas. Meanwhile, an excellent mixing in the digestion system and a steady temperature profile was also required.
引文
[1] 孙向军,冯蒂等.上海市泔脚垃圾的处理及管理.环境卫生工程.2002,9:140~143
    [2] 徐灏闻.2004年餐饮的七彩世界.2005(2):16
    [3] 夏越青,周迎艳.上海市餐厨垃圾的管理.环境卫生工程,2003,11(1):43~45
    [4] 任连海,曹栩然.饮食业有机垃圾的产生现状及处理技术研究.2003,21(2):14~17
    [5] 赵由才主编.生活垃圾资源化原理与技术,化学工业出版社,北京,2002.1:358~368
    [6] Thomas Rundberget, Ida Skaar, Arne Flaoyen.The prensence of Penicillum and Penicillum mycotoxins in food waste. International dournal of food Microbiology,2004(90): 181~188
    [7] 袁婧婷,王革华.全球及我国能源供应中的可再生能源.可再生能源,2003,6:42~44
    [8] 刘宝敏.农业有机废弃物厌氧发酵生物制氢研究.[学位论文]郑州:郑州大学,2003,5
    [9] 陈小林.农村沼气发展前景技术经济分析.江西能源,1996,2:36—37
    [10] M. N. Nijmeh, A. S. Ragab, M. S. Emeish, B. A. Jubran. Design and testing of solar dryers for processing food waste. Applied Thermal Engineering, 1998(18): 1337~1346
    [11] 郝冬青,郝勇等.利用泔脚生产蛋白饲料.环境保护科学,2003,29(6):31~32
    [12] Timothy R. Kelley, Paul M. Walker. Bacterial concentration reduction of food waste amended animal feed using a single-screw dry-extrusion process. Bioresource Technology, 1999(67):247~253
    [13] 李凤娜,王继成.饲料工艺与饲料安全.饲料研究,2005,1:10~12
    [14] Europe investigates hormone-contaminated waste in food chain. The Lancet, 2002, 360 (7):235
    [15] G. stove, AL Michailova. Quantitative determination of sulfonamide residues in foods of animal origin by high performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 2000(871):37~42
    [16] 耿土锁.食物性有机垃圾资源化方法.贵州环保科技,2002,8(2):15~18
    [17] Jae-Jung Lee, Ro-Dong Park, et al. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresource Technology, 2004 (93):21~28
    [18] J. Y. Seo, J. S. Heo, T. H. Kim, W. H. Joo, D. ML Crohn. Effect of vermiculite addition on compost produced from Korean food wastes. Waste Management, 2004(24):981~987
    [19] Sung-Hwan Kwon, Dong-Hoon Lee. Evalution of Korean food waste composting with fed-batch operations Ⅰ:using water extractable total organic carbon contents (TOCw). Process Biochemistry, 2004(39):1183~1194
    [20] Yaowu He, Yuhei Inamori, Motoyuki Mizuochi, Hainan Kong, Norio Iwami, Tieheng Sun. Measurements of N2O and CH4 from the aerated composting of food waste. The Science of the Total Environment, 2000(254):65~74
    [21] 吕凡,何品晶,邵立明,李国建.餐厨垃圾高温好氧生物消化工艺控制条件优化.同济大学学报,2003,31(2):233—238
    [22] Jae Kyoung Cho & Soon Chul Park. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresouree Technology, 1995(52):245~253
    [23] M. Murto, L. Biornsson, B. Mattiasson. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. Journal of Environmental Management, 2004(70): 101~107
    [24] Yu-Sheng Wang, William S.Odle, William E. Eleazer, Morton A.Barlaz. Methane potential of foodwaste and anaerobic toxicity of leachate produced during food waste decomposition. Waste Management & Research, 1997(15):149~167
    [25] Kang, H.& Jewell, W.J. Anaerobic plug flow reactor performance. Korean Society of Environmental Enging, 1990,12(1):55~64
    [26] I.I.I. Ghanem, Gu Guowei, Zhu Jinfu. Leaehate production and disposal of Kitchen food solid waste by dry fermentation for biogas generation. Renewable Energy, 2001(23):673~784
    [27] Q. Wang, K. Ymamabe, et al. Suppression of growth of putrefactive and food poisoning bacteria by lactic acid fermentation of kitchen waste. Process Biochemistry, 2001(37):351~357
    [28] Sang-Hyoun Kim, Sun-Kee Han, Hang-Sik Shin. Feasibility of biohydrogen production by anaerobic oc-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy, 2004 (29): 1607~1616
    [29] Sun-Kee Han, Hang-Sik Shin. Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy, 2004(29): 569~577
    [30] 徐金兰.厌氧折流板反应器(ABR)系统的特性及调控研究:[学位论文].西安:西安建筑科技大学,2003,9
    [31] Georgia Dinopoulou et al. Anaerobic acidogenesis of a complex wastewater:Ⅰ. The influence of operational parameters on reactor performance. Biotechnology and Bioengineering, 1988,31:958~968
    [32] Georgia Dinopoulou et al. Anaerobic acidogenesis of a complex wastewater:Ⅱ. Kinetics of growth, inhibitation and product formation. Biotechnology and Bioengineering, 1988,31:969~978
    [33] S.R. Guiot et al.. Assessment of maeroenergetic parameters for an anaerobic upflow biomass bed and filter (UBF) reactor. Biotechnology and Bioengieering, 1989,34:1277~1288
    [34] Tian cheng Zhang and T. Noike. Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processen. Wat.Res., 1994,28(1):27~36
    [35] Daniel R., Noguera et al. Soluble microbial products (SMP) in anaerobic chemostats. Biotechnology and Bioengieering, 1994,44:1040~1047
    [36] R.E.斯皮斯,李亚新译.工业废水的厌氧生物技术.北京:中国建筑工业出版社,2001,4
    [37] Hae Sung Jee, Naomichi Nishio, Shiro Nagai. Influence of redox potential on biomethanation of H2 and CO2 by methanobacterium Thermoautotrophieum in Eh-stat batch cultures[J]. Journal of Genernal Applied and Microbiology, 1987,33:401~408
    [38] Fetzer Silke, Conrad Ralf. Effect of redox potential on methanogenesis by Methanosarcina Barkeri[J]. Arch Microbiol, 1980,124(1): 1~11
    [39] 周洪波等.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响.中国沼气,2000,18(4):20~23
    [40] 何成达.DASB、S-SFCW特性及联合工艺处理生物污水的研究.[学位论文]:河海大学环境工程学位,2005,3
    [41] 丛者禹.厌氧微生物的营养元素.环境科学动态.2000(2):31
    [42] 李亚新.厌氧消化过程中甲烷菌的无机营养需要.中国给水排水,1995,11(4):23~25
    [43] P. A. Alphenaar et al. Phosphorus requirement in high-rate anaerobic wastewater treatment. Wat. Res., 1993,27(5):749~756
    [44] Grobicki A. and Stuckey D. C. The role of ormate in the anaerobic baffled reactor. W'at.Res. 1989,23(12): 1599~1602
    [45] Grobieki A. and Stuckey D.C. Performance of the Anaerobic Baffled Reactor under steady-state and shock loading conditions. Blot. andBioeng., 1991,37:344~355
    [46] 张光明,王伟.厌氧消化处理生活垃圾工艺研究.中国沼气,1997,15(2):14~16
    [47] Sanit-Joly C. The VALOGRA processes for treatment of household wastes. ISWA Year Book, 1993:58~61
    [48] Kaybanian M.. Innovative two stage process for the recovery of energy and compost from MSW. Wat. Sci.& Tech., 1992,29(2):133~143
    [49] F G Poland, S Ghosh. Anaerobic Stabilization of Organic Waste Two-pHase Concept[J]. Envir Let. 1981, (1): 255-266.
    [50] S Ghosh, et al. Pilot-scale gasification of municipal solid waste by high-rate and two-pHase anaerobic digestion[J]. Wat Sci Tech, 2000,41(3): 101—110.
    [51] Scherer P A, et al. Development of a methanogebic process to degrade exhaustively the organic fractin of municipal "grey waste"under thermopHinic and hyperthermopHinic conditions[J], Wat. Sci. Tech., 2000,41(3):83-92.
    [52] B G Yeoh. Two-pHase Anaerobic Treatment of Cane-molasses Alcohol Stillage[A]. Proc. 8th Internation Conf, on Anaerobic Digestion[C], 1997, (2): 208-215.
    [53] Gabriele Schober, et al. One and two-stage digestion of solid organic waste[J]. War. Res., 1999,33(3): 854—860.
    [54] 姚毅.污泥两相及单相厌氧消化的比较研究:[学位论文].上海:同济大学环境工程学院,1992
    [55] Therkeleen H H, Carlson O A. Thermophilic anaerobic digestion of a strong complex substrate. Journal WPCF, 1979,51:1949
    [56] 高廷耀,周恭明等.污泥两相和单相厌氧消化性能比较研究.同济大学学报,1997,25(6):629~634
    [57] 叶芬霞,李颖.有机废物两相厌氧消化的基质特异性及其应用.中国沼气,2002,20(3):8~12
    [58] 于晓章.厌氧发酵过程中温度对甲烷产量的影响.生态科学,2004,23(4):310~314
    [59] Pavan P, et al. Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradalbility. Wat. Sci. Tech., 2000,41(3):75~82
    [60] Scherer, P.A. Vollmer, G.-R., Fakhouri, T., Martensen, S., Development of a methanogenic process to degrade exhaustively nunicipal "residual refuse"(MRR) resp. "grey waste" under thermophilic and hyperthermophilic conditions. In: Mata-Alvarez, J., Tilche, A., Cecchi, F.(Eds), Proceedings of the Second International Symposium in Anaerobic Digestion of Solid Wastes, Barcelona, vol. I.Grafiques 92, 1999,15-18 June:65~74
    [61] C. Maibaum and V. Kuehn. Thermophilic and mesophilic operation of an anaerobic treatment of chicken slurry together with organic residual substances. War. Sci. Tech., 40(1):231~236
    [62] 赵庆良,王宝贞等.高温/中温两相厌氧消化处理混合基质的性能评价.中国给水排水,1995,11(2):14~18
    [63] 赵庆良,王宝贞等.高温/中温两相厌氧消化反应中有机酸的变化.环境科学,1996,17(3):44~47
    [64] 李俊涛.泔脚垃圾厌氧发酵产沼技术研究:[学位论文].上海:同济大学环境学院,2003,9
    [65] Lay, et al. Analysis of environmental factors affecting methane production from high-solids organic waste[J]. Wat.sci.Tech., 1997,36(6-7),493-500.
    [66] Walter J. Wujcik, etal. Dry anaerobic digestion. Biotechnoi. Bioeng. Syrup., No10, 43-65.
    [67] Y.S.G. Chan. Codisposal refuse, sewage sludge and marine dredgings for methane production[J], Envinronrnental Pollution, 1999,106:123-132.
    [68] Hamzawi, et al. Anaerobic digestion of co-mingled municipal solid waste and sewage sludge[J]. Water Sci. Technol., 1998,38(2), 127-132.
    [69] Demirekler W, et al. Co-digestion of organic solid waste and sludge from sewage treatment[J]. Wat. Sci. Tech., 2000,41(3): 213-222.
    [70] P. Sosnowski, A. Wieczorek, S. Ledakowicz. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in environmental research, 2003(7):609~616
    [71] Mogens Hedegaard and Volker Jaensch. Anaerobic co-digestion of Urban and Rural wastes. Renewable Energy, 1999(16): 1064~1069
    [72] F.J.Callaghan, et al. Co-digestion of waste organic solid:batch studies. Bioresource Technology,1999(67):117~122
    [73] H.M.Poggi-Varaldo,L.Valdes, F.Esparza-Garcia. Solid substrate anaerobic co-degestion of paper mill sludge, biosolids, and municipal solid waste. War Sci, Tech, 1997(35):197~204
    [74] Osman Nuri Agdag, Delia Teresa Sponza. Co-digestion of industrial sludge with municipal solid wastes in anaerobic simulated landfilling reactors. Process Biochemistry, 2005(40): 1871~1879
    [75] Jih-gawlin, et al. Enhancement of anaerobic digestion of waste activated sluge by alkaline solubilization[J]. Bioresource Technology, 1997, 62: 85-90.
    [76] Nallathambi Gunaseelan V. Effect of inoculelum/substrate ratio and pretreatment on methane yield from parthenium[J]. Biomass and Bioenergy, 1995, 8(1):39-44.
    [77] Amenda Ward, et al. Effect of autothermal treatment on anaerobic digestion in the dual digestion process[J]. Wat Sci Tech, 1998,38(8): 425-442.
    [78] H Hartmann, et al. Increase of anaerobic degradation of partieule matter in full-scale biogas plant by mechanical maceration[J]. War Sci Tech, 2000,41 (3): 145-152.
    [79] In Wook Nab, et al. Mechanical Pretreatrnent of waste activated sludge for anaerobic digestion procese[J]. Wat Sci Tech, 2000,34(8):2362-2368.
    [80] Engelhart, et al. Effects of disintegration on anaerobic degradation of sewage excess sludge in downflow stationary fixed film digesters[J]. Wat Sci Tech, 2000,41 (3): 171-180.
    [81] 潘丽娜等.沼肥与其它肥料用于草莓生产的试验对比.中国沼气,2004,22(2):34~37
    [82] 李长时等.沼肥对日光温室黄瓜增产效果的试验.农村能源,1995,59(1):17~20
    [83] 何楚碧等.柑桔施用沼肥丰产何沼气贮藏保险技术操作要点.中国沼气,1995,13(4):37~40
    [84] 戴德球等.水稻施用沼液生产试验报告.中国沼气,2000,18(2):34~36
    [85] 袁炳富等.烟草施用沼肥有利于生长.农村能源,1994,55(3):24
    [86] 章亦军.棉花沼液浸拌种处理与沼液提苗的效果.江西棉花,2001,23(3):31~34
    [87] 李正华.厌氧发酵液的抗病防虫机理及其应用技术研究[学问论文].郑州:河南农业大学,2002,6
    [88] 瞿晓苍.设施蔬菜面临的污染问题及对策.中国种业,2005,1:36~37
    [89] 于泉林.NaCl对水稻不同品种发芽和幼苗生长的影响.种子,2003,129(3):41~54
    [90] 扬秀林等.NaCl胁迫对黄瓜种子萌发及幼苗生长盼影响.甘肃农业大学学报,2004,39(1):6~9
    [91] Das D, Vezuriglu T N. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy, 2001 (26):13~28
    [92] Benemann J. Hydrogen biotechnology: progress and prospects. Nature Biotechnology, 1996(14): 1101~1103
    [93] 比尔工作室编著.新科技启蒙.北京:中国劳动社会保障出版社,1999
    [94] 任南琪,王爱杰等编著.厌氧生物技术原理与应用.化学工业出版社,北京:2004,3
    [95] 任南琪,李建政,林明,王勇.产氢发酵细菌产氢机理探讨.太阳能学报,2002,23(1):124~127
    [96] Tanisho S, Kamiya N, Wakao N. Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica el Biophisica Acta, 1989,97(3):1~6
    [97] 刑德峰,任南琪,宫曼丽.PCR-DGGE技术解析生物制氢反应器生物多样性.环境科学,2005,26(2):172~176
    [98] 李永峰,任南琪,杨传平等.一株产氢产酸厌氧细菌的16s rDNA序列分析.东北林业大学学报,2005,33(2):65~67
    [99] 林明.高效产氢发酵新菌种的产氢机理及生态学研究:[学位论文]哈尔滨:哈尔滨工业大学,2002
    [100] 王建龙,文湘华编著.现代环境生物技术.北京:清华大学出版社,2000
    [101] 刘宝敏.农业有机废弃物厌氧发酵生物制氢研究.[学位论文]郑州:郑州大学,2003,5
    [102] Lay J J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotech. Bioeng., 2000,68(3):269~278
    [103] Ueno Y, Sato S, Morimoto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng., 1996,82(2): 194~197
    [104] Yu HQ, Zhu Z H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy, 2002(27): 1359~1365
    [105] 李建政,任南琪,林明,王勇.有机废水发酵法生物制氢中试研究.太阳能学报,2002,23(2):252~255
    [106] 蔡木林.污水厂剩余活性污泥厌氧发酵产氢技术研究.[学位论文]北京:中国科学院生态环境研究中心,2004,6
    [107] Okamoto M, Milyahara T, Mizuno O, Noike T. Biological hydrogen potential of material characteristic of the organic fraction of municipals solid wastes. Was. Sci. Technol., 2000,41(3):25~32
    [108] Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng., 2001,910):58~63
    [109] Evvyemie D, Mor/moto K, Karita S, Kimura T, Sakka K, Ohmiya K. Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. J. Biosci. Bioeng., 2001,91(4):339~343
    [110] 石磊.矿化垃圾生物反应床处理填埋场渗滤液的工艺与机理研究:[学位论文].上海:同济大学,2006,6
    [111] 柴晓利.矿化垃圾吸附与降解酚类化合物的机理及工艺研究:[学位论文].上海:同济大学,2003,6
    [112] 郭雅丽.生活垃圾填埋场稳定化垃圾生物反应床处理城市污水的工艺与机理研究:[学位论文].上海:同济大学,2002,6
    [113] 邵芳.矿化垃圾生物反应床生物降解性能及其在猪场废水处理中的应用研究:[学位论文].上海:同济大学,2002,6
    [114] 王敏.矿化垃圾生物反应床处理焦化废水研究:[学位论文].上海:同济大学,2004,3
    [115] 赵由才,朱青山主编.城市垃圾卫生填埋场技术与管理手册.北京:化学工业出版社,2000,7:184~193
    [116] 国家环保局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第三版).1989,5
    [117] 鲍士旦主编.土壤农化分析(第三版).北京:中国农业出版社,2000,12
    [118] 邹鹏.高分子絮凝剂对污泥脱水性能的影响.化工环保,2004(24)114~116
    [119] 张学才等.城市有机垃圾的生物气化.淮南工业学院学报.2000,2(20):34~37
    [120] 高彩凤等.城市有机垃圾资源化的研究.矿业安全与环保.2000,5(27):32~34
    [121] 幽景元等.生活垃圾厌氧发酵条件的正交试验.能源工程,2003,3:28~30
    [122] 张爱军等.有机固体废物固态厌氧消化处理的研究现状与发展.环境科学研究,2002,15(5):52~54
    [123] 固体废弃物处理.同济大学环境学院.1997.1:155
    [124] D.L.Klass,S.Ghosh.从百慕大草厌氧消化制取甲烷,沼气(资料汇编)第四集,77-87
    [125] 徐金兰,王志盈等.ABR系统中酸解过程的污泥特性及分析.环境污染治理技术与设备,5(2),2004:46~51
    [126] Hill D.T. and Barth C.L. A dynamic model for simulation of animal waste digestion, J.WPCF (1977):2129~2143
    [127] Havlik Ⅰ.,Voturba J. and Sobotka M. Mathematical modeling of an anaerobic digestion process: Application of dynamic mass-energy balance. Folia Micro. 1986(31):56~89
    [128] Moletta R., Verrier D. and Albagnac G. Dynamic modeling of anaerobic digestion. Wat. Res. 1986,20(4):427~434
    [129] V.A.Vavilin, S.V.Pytov and L.Ya. Lokshina. A description of hydrolysis kinetic in anaerobic degradation of particulate organic matter. Bioresource Technology,1996(56):229~237
    [130] Lettinga G. Advanced anaerobic wastewater treatment in near future. Wat. Sci. Tech, 1997,35(10):5~12
    [131] 沈耀良.废水生物处理新技术.北京:中国环境科学出版社,1999
    [132] 沈耀良等.厌氧生物处理反应器混合流态及其分析.环境科学与技术,2002(3):13~18
    [133] 瞿晓苍.设施蔬菜面临的污染问题及对策.中国种业,2005,1:36~37
    [134] 于泉林.NaCl对水稻不同品种发芽和幼苗生长的影响.种子,2003,129(3):41~54
    [135] 扬秀林等.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响.甘肃农业大学学报,2004,39(1):6~9
    [136] 贾风纪等.沼气发酵液对小麦种子发芽的影响.中国沼气,2004,22(3):34
    [137] 季方兴等.沼液浸种.农村能源,1995,62:18
    [138] 周桃华.NaCl胁迫对棉子萌发及幼苗生长的影响.中国棉花,1995,22(4):11~12
    [139] 郭望模等.盐胁迫下不同水稻种质形态指标与耐盐性相关分析.植物遗传资源学报,2003,4(3):245~251
    [140] 孔东等.水盐胁迫对向日葵幼苗生长发育的影响.灌溉排水学报,2004,23(5):32~35
    [141] 刘国道等.盐分浓度对7种热带牧草种子萌发的影响.热带农业科学,2004,24(3):24~27
    [142] 宋洪川等.沼气发酵液及其处理液对乌塌菜种子发芽的影响.农村能源,2001,6:11~15
    [143] Das D, Vezuriglu T N. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 2001,26:13~28
    [144] Benemann J. Hydrogen biotechnology: progress and prospects. Nature Biotechnology. 1996,14:1101~1103
    [145] Okamoto M, Milyahara T, Mizuno O, Noike T. Biological hydrogen potential of material characteristic of the organic fraction of municipals solid wastes. Wat. Sci. Technol.2000,41 (3):25~32
    [146] B. E. Logan, S. E. Oh, I. S. Kim, S. V. Ginkel. Biological hydrogen production measured in batch anaerobic respirometers. Environment Science Technology, 2002, 36:2530~2535
    [147] 秦智.生物制氢反应器发酵类型控制对策及生物强化作用研究.[学位论文]哈尔滨:哈尔滨工业大学博士论文,2003,12
    [148] 宫曼丽,任南琪,唐婧.pH5条件下生物制氢反应器的启动及运行特性.环境科学,2005,26(3):177~180
    [149] 孙寓姣,任南琪,王勇.丁酸型产氢-产酸发酵细菌pn生态位探讨.太阳能学报,2004,25(2):232~235
    [150] 王勇,孙寓姣,任南琪,李建政.C/N对细菌产氢发酵类型及产氢能力的影响.太阳能学报,2004,25(3):375~378
    [151] C.Y.Lin, C.H. Lay. A nutrient formulation for fermentation hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy,2005(30):285~292
    [152] Nandi R, Sengupta S. Micorbial production of hydrogen: an owerview, Critical Rewiews in Microbiology. 1998,24(1):61~84
    [153] Taguchi F, Chang J D, Mizuami N. Isolation of a hydrogen production bacterium, Clostridium beijerinckii strain AM21B from termites. Can.J.Microbiol. 1993,39:726~730
    [154] 肖楠.有机废水产酸发酵理论与控制对策.[学位论文]哈尔滨:哈尔滨建筑大学市政环境工程学院,1996
    [155] Zwietering, M. H., Rombout, F. M. and van't Rient, K., Comparison of definitions of lag phase and the exponential phase in bacterial growth. J.Appl. Bacterial., 1992,72:139~145
    [156] Lay J, Lee Y J, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Was. Res. 19991,33(11):2579~2586
    [157] 韩长龙.以动态植种方式促进高浓度固体废弃物之发酵产氢.[学位论文冶湾:高雄第一科技大学,2003
    [158] 周德庆著.微生物学教程.北京:高等教育出版社,1993
    [159] 王罗春,赵由才,陆雍森.填埋场稳定化及其研究现状.城市环境与城市生态,2000,13(5):36-39.
    [160] C.Y. Lin, C.H. Lay. Carbon/nitrogen - ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy. 2004(29):41~45
    [161] Annika T. Nielsen, Helena Amandusson, Robert Bjorklund, et al. Hydrogen production from organic waste. International Jounral of Hydrogen Energy, 2001 (26):547~550
    [162] Okamoto M, Milyahara T, Mizuno O, Noike T. Biological hydrogen potential of material characteristic of the organic fraction of municipals solid wastes. Wat. Sci. Technol.2000, 41 (3):25~32
    [163] Mizuno O, Ohard T, Shinya M, Noike T. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Wat. Sci. Technol. 2000(42) 345~350
    [164] Yao-Ting Fan, Ya-Hui Zhang, Shu-Fang Zhang, et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresoree Technology, 2006(97):500~505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700