生物质废弃物水热资源化处理过程及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源与资源的短缺和环境污染的日益严重,生物质废弃物资源化的利用研究引起了广泛的关注。水热技术为生物质废弃物的资源化利用提供了一条新的途径。本论文利用水热技术对生物质废弃物进行处理及资源化研究,利用间歇式水热反应器,以生物质废弃物水热降解所产生的还原糖和乳酸为目标产物,较深入地研究了生物质废弃物水热降解的影响因素、反应过程及机理,为工业化应用提供基础。
     以碳平衡为基础对玉米秆、木屑、稻壳和麦麸等生物质废弃物水热降解的产物分布规律进行了研究,考察了反应温度、反应时间、水的用量和反应物粒径以及添加氧化剂H_2O_2条件下对生物质废弃物水热降解所得液相、气相和固相产物分布的影响,结果表明生物质废弃物水热降解可以分为低温液化、中温气化(油化)和高温碳化三个阶段;延长反应时间、增加水的用量和降低反应物的粒径有利于促进液相产物的生成;氧化剂H_2O_2的增加能促进生物质废弃物完全降解。
     分析了反应温度和反应时间对还原糖产率和选择性的影响,探讨不同体系(酸性、碱性、氧化剂、金属离子和醇/水混合体系)下还原糖的产率和选择性,确定了还原糖生成的最佳反应条件。结果表明,在300-350℃时有利于生物质废弃物水热降解反应生成还原糖;Na_2CO_3浓度的增大可促进微晶纤维素、玉米秆和木屑水热降解生成还原糖;氧化剂H_2O_2供给量的增加能够提高微晶纤维素和木屑的水热降解还原糖的产率;乙酸的加入能够促进微晶纤维素向还原糖转化;在乙醇/水反应体系中所有反应物的还原糖产率均随乙醇比例的升高而增加,此时玉米秆获得最大还原糖产率为70.30%;因金属离子不同导致所得还原糖的产率和选择性有较大变化。
     在研究不同条件下微晶纤维素和葡萄糖等模型化合物水热降解产生乳酸的基础上,为增加乳酸产率,进一步考察了金属离子存在下生物质废弃物(玉米秆、木屑、稻壳和麦麸)水热降解产生乳酸的产率和选择性,研究了生物质废弃物水热降解过程及乳酸生成途径,以丙酮醛为原料探讨了金属离子催化条件下乳酸的生成机理。结果表明在400ppm的Ni~(2+)和Co~(2+)条件下微晶纤维素和葡萄糖水热降解获得最大乳酸产率,分别为6.62%和9.51%;400ppm的Cr~(3+)下玉米秆和稻壳最佳乳酸产率分别为9.24%和6.71%;木屑最佳乳酸产率是在400ppm的Zn~(2+)存在下获得,为5.47%;非催化条件下能够获得麦麸的最高乳酸产率为7.46%。表明水热条件下水具有较强的离子化倾向,从而使得水成为Br(?)nsted酸碱并具有一定的催化作用,金属离子在水热催化降解丙酮醛生成乳酸中表现出Lewis碱的特性,能与丙酮醛生成金属复合物,最终生成乳酸,此反应过程符合Cannizzaro反应特性。
     利用热重分析方法研究了微晶纤维素、玉米秆、木屑、稻壳和麦麸的热解行为和特性,确定了相应的动力学模型和参数,结果表明生物质废弃物热解过程的失重明显区主要集中在300-400℃,失重和失重速率曲线随着升温速率的增大向高温区移动,利用Coat-Redfern法模拟所得热解动力学符合一级反应动力学方程。通过对微晶纤维素及其水热降解固相产物的热重、红外、元素、SEM和XRD分析表明微晶纤维素的水热降解主要分成低温水解为主和高温热解为主两个阶段。
Under the background of energy and resource shortage and the environment pollution, the utilization and research of biomass wastes as a kind of resource attracting worldwide attention. Hydrothermal reaction provides an effective method for the reutilization of biomass wastes. The disposal and reutilization of biomass wastes were realized by hydrothermal reaction in batch hydrothermal reactor. To obtain high yield of reducing sugar and lactic acid by hydrothermal reaction, the influence factors, decomposition process and reaction network were investigated. The work can provide base for the industrialization of hydrothermal reaction.
     The product distributions of maize straw, sawdust, rice husk and wheat bran were described on basis of carbon balance. The effects of reaction temperature, time, water volume, grain size and oxidant on the aqueous, residual and gaseous sample of biomass wastes by hydrothermal decomposition were researched. The results showed that the hydrothermal decomposition of biomass wastes was composed by the liquefaction, oily production and gasification according to different temperature region. The increase of reaction time and water volume and the decrease of grain size can promote the liquefaction of biomass wastes. The increased amount of H_2O_2 can realized the complete decomposition of biomass wastes by hydrothermal reaction.
     The saccharification of micro crystalline cellulose, maize straw, sawdust, rice husk and wheat bran under the hydrothermal conditions was carried out in batch reactors. The effect of reaction temperature, time, water volume, oxidant, acetic acid, ethanol, metal ions (Zn~(2+), Ni~(2+), Co~(2+), Cu~(2+) and Cr~(3+)) and sodium carbonate on the yield of reducing sugar were investigated. The optimal conditions for production of reducing sugar were obtained. The results indicated that 300-350℃in favor of the hydrothermal decomposition of biomass wastes to obtain reducing sugar. The yield of reducing sugar increased with increasing Na_2CO_3 for micro crystalline cellulose, maize straw and sawdust. For micro crystalline cellulose and sawdust, H_2O_2 could accelerate the production of reducing sugar. At the same time, the yield of reducing sugar increased much when adding acetic acid for micro crystalline cellulose. Furthermore, adding ethanol could increase the yield of reducing sugar and it reached the maximum 70.30% for maize straw. The yields of reducing sugar changed according to the difference of metal ions.
     As model compound, the hydrothermal decomposition of micro crystalline cellulose and glucose for the production of lactic acid under different conditions were discussed. To obtain a high yield of lactic acid by hydrothermal reaction, the influences of metal ions(Zn~(2+), Ni~(2+), Co~(2+) and Cr~(3+))on the reaction of biomass-relevant sugars such as maize straw, sawdust, rice husk and wheat bran were investigated. Based on the experimental data, the hydrothermal decomposition process and the catalyst's mode of operation in this reaction network were investigated. In comparison with non-catalytic process, the addition of 400ppm Ni~(2+) catalyst increased the yield of lactic acid to 6.62% for micro crystalline cellulose. The lactic acid yield for glucose was achieved as 9.51% for 400ppm Co~(2+) catalyst. Compared with non-catalytic conditions, the lactic acid yield is 9.24% and 6.71%, respectively starting from maize straw and rice husk at 400ppm for Cr~(3+). Sawdust obtains the highest lactic acid yield 5.47% at Zn~(2+) 400ppm. But as for wheat bran, the highest lactic acid yield 7.46% is obtained under non-catalytic conditions. Hydrothermal reactions makes water a Bronsted base-acid and act as an effective catalyst and the metal ions represent Lewis base character. The conversion process occurs in a very complex network of parallel, consecutive and equilibrium reactions, and the last step being the catalyzed Cannizzaro-type reaction of pyruvaldehyde to lactic acid.
     The pyrolysis behavior and character of micro crystalline cellulose, maize straw, sawdust, rice husk and wheat bran were studied by thermo gravimetric analysis (TGA).The kinetic parameters and model of pyrolysis biomass wastes were established. The experimental results showed that the decomposition of micro crystallite cellulose mainly occurred at the temperature range of 300-400℃.The weight loss(TG) and the rate of weight loss(DTG) shift to higher temperature region with the increase of heating-up rate. The thermal dynamics for biomass wastes was coincidence to the first order reaction dynamics by Coat-Redfern analysis. The Fourier transform spectrum (FTIR), TGA, element, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis indicated that the hydrothermal decomposition of micro crystallite cellulose was composed by low temperature hydrolysis and high temperature pyrolysis.
引文
[1]Minami E.Saka S.Biomass resources present in Japan-annual quantities grown,unused and wasted.Biomass and Bioenergy,2005,Vol.29:310~320
    [2]张增强,孟昭福.农业废弃物和城市污泥的无害化与资源化.清洁生产,2001,1:19~21
    [3]张洪勋,李林.纤维素类生物质热解技术研究进展.北京联合大学学报(自然科学版),2004,Vol.18(1):17~19
    [4]胡明秀.农业废弃物资源化综合利用途径探讨.安徽农业科学,2004,Vol.32(4):757~759,767
    [5]张承龙.农业废弃物资源化利用技术现状及其前景.中国资源综合利用,2002,2:14~16
    [6]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展.酿酒,2005,Vol.32(2):13~16
    [7]Modell.Processing methods for the oxidation of organics in supercritical water.USPto,4,338,199.1982
    [8]Phillip E S.Organic chemical reactions in supercritical water.Chemical Review,1999,99:603~621
    [9]葛红光,甄宝勤,郭小华.超临界水在降解废弃物及资源化中的应用.化学工业与工程技术,2005,Vol.26(5):4~7.
    [10]孔令照,李光明,贺文智,等.超(亚)临界水热法处理有机废物的研究进展.化工进展,2006,Vol.25(5):469~474
    [11]Liu A,Park Y K,Huang Z.Product identification and distribution from hydrothermal conversion of walnut shells.Energy & Fuels,2006,20:446~454
    [12]Selhan K,Thallada B,Akinori M.Low-temperature hydrothermal treatment of biomass:Effect of reaction parameters on products and boiling point distributions.Energy & Fuels.2004,18:234~241
    [13]Matsumura Y,Sasaki M,Okuda K,et al.Supercritical water treatment of biomass for energy and material recovery.Combustion Science and Technology,2006,Vol.178(1-3):509~536
    [14]He W Z,Li G M,Kong L Z,et al.Application of hydrothermal reaction in resource recovery of organic wastes.Resources,Conservation & Recycling,2008,52:691~699
    [15]Mitsuru S,Tadafumi A,Kunio A.Fractionation of sugarcane bagasse by hydrothermal treatment.Bioresource Technology,2003,86:301~304
    [16]Russell L H,Jerry W K,Gary R L.Hydrolysis of vegetable oils in sub-and supercritical water.Ind Eng Chem Res,1997,36:932~935
    [17]Maschio G,Koufopanos C,Lucchesi A.Pyrolysis,a promising route for biomass
    ??utilization.Bioresource Technology,1992,Vol.42(3):219~231
    [18]Nakom W,Taro S,Wiwut T.Pyrolysis behaviors of rice straw,rice husk,and corncob by TG-MS technique.J Anal.Appl.Pyrolysis.,2007,78:265-271
    [19]Collins P and Ferrier R,Monosaccharides:Their chemistry and their roles in natural products.New York:John Wiley & Sons Publishers,1995.11~14
    [20]利用秸秆合成高品位内燃机燃油.http://www.cas.cn/html/Dir/2007/08/13/4875.htm
    [21]中科院研发甜高粱燃料乙醇获得实质性进展.http://www.gsagr.ac.cn/libr/kjxx/showart.asp?id=158
    [22]Laser M,Schulman D,Allen S G,et al.A comparison of liquid hot water and steam pretreatment of sugar cane bagasse for bioconversion to ethanol.Bioresource Technology,2002.81:33~44
    [23]Kim J S,Lee Y Y,Torget R W.Cellulose hydrolysis under extremely low sulfuric acid and high temperature conditions.Applied Biochemistry and Biotechnology,2001,(91-93):331~340
    [24]Jesus D P,Boukis N,Kraushaar C B.Gasification of com and clover grass in supercritical water.Fuel,2006,85:1032~1038
    [25]Toshiaki H,Seiichi I,Seiji U.Effect of woody biomass components on air steam gasification.Biomass and Bioenergy,2005,28:69~76
    [26]赵雅郡,阎子峰.生物物质催化制氢述评.石油与天然气化工,2004,Vol.33(2):83~87
    [27]Chen G Andries J,Spliethof H.Catalytic pyrolysis of biomass for hydrogen rich fuel gas production.Energy Conversion Management,2003,44:2289~2296
    [28]3MW 生物质气化高效发电系统关键技术通过验收.http://www.smexm.gov.cn/2006-5/200659173942291.htm
    [29]泛太平洋工业生物技术与生物能源高峰论坛.http://www.cn-ferment.com/News/content/2007/11/5521.htm
    [30]Griffitha J W,Raymond D H.The first commercial supercritical water oxidation sludge processing plant.Waste Management,2002,22:453~459
    [31]Suzuki H,Cao J,Jin F.Wet oxidation of lignin model compounds and acetic acid production.J Mater Sci,2006,41:1591~1597
    [32]Takehiro M,Motonobu G,Akio K.Supercritical water oxidation of a model municipal solid waste.Ind Eng Chem Res,2000,39:2807~2810
    [33]Sasaki M,Furukawa M,Minami K.Kinetics and mechanism of cellobiose hydrolysis and retro-aldol condensation in subcritical and supercritical water.Ind Eng Chem Res,2002,41:6642~6649
    [34]生物质洁净转化和利用中的绿色化学研究通过验收.http://www.cas.cn/html/Dir/2006/03/15/13/80/83.htm
    [35]张正斌,徐萍.科学发展生物能源的若干问题探讨.http://www.cas.cn/html/Dir/2007/07/03/15/01/98.htm
    [36]Peter K,Eckhard D.An assessment of supercritical water oxidation (SCWO) existing
    ??problems,possible solutions and new reactor concepts.Chemical Engineering Journal.2001,83:207~214
    [37]Masaru W,Takafumi S,Hiroshi I.Chemical reactions of C1 compounds in near-critical and supercritical water.Chemical Review,2004,104:5803~582
    [38]Lavric E D,Weyten H,Ruyck.D J.Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process.Energy Conversion and Management,2005,46:1345~1364
    [39]孔令照,李光明,张波,等.纤维素废弃物水热处理制H_2的研究进展.环境污染治理技术与设备,2006,7:7~12
    [40]Metzger J O.Production of liquid hydrocarbons from biomass.Angew Chem Int Ed,2006,45,696~698
    [41]Emanuel,N M.The oxidation of hydrocarbons in the liquid phases.1st ed,New York:Pergamon,1965.234~245
    [42]Emanuel,N M.The oxidation of hydrocarbons in the liquid phase.1st ed,New York:Pergamon.1967.123~132
    [43]Yesodharan S.Supercritical water oxidation:An environmentally safe method for the disposal of organic wastes.Current Science,2002,Vol.82,(9-10):1112~11122
    [44]任天瑞,沈斌,李永红.纤维素的均相化学反应.化学进展,2004,Vol.16(6):948~953
    [45]Willian S M,Michael J.Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose.Ind Eng Chem Res.1992.31:94~100
    [46]朱道飞,王华,包桂蓉.纤维素亚临界和超临界水液化实验研究.能源工程,2004,5:6~10
    [47]Willian S M,Michael J.Uncatalyzed solvlysis of whole biomass hemicellulose by hot compressed liquid water.Ind Eng Chem Res.1992.31:1157~1161
    [48]朱跃钊,卢定强,万红贵.木质纤维素预处理技术研究进展.生物加工过程,2004,11:11~16
    [49]Sakanishi K,lkeyama N,Sakaki T.Comparison of the hydrothermal decomposition reactivities of chitin and cellulose.Ind EngChem Res,1999,38:2177~2181
    [50]王宇卓,聂永丰,任连海.我国食品废物处理概况及管理对策探讨.环境科学动态,2004,3:34~35
    [51]Mitsuru S,Bernard K,Roberto M.Cellulose hydrolysis in sub-critical and supercritical water.Journal of Supercritical Fluids.1998.13:261~268
    [52]Sharma A,Nakagawa H,Miura K.A novel nickel/carbon catalyst for CH_4 and H_2 production from organic compounds dissolved in wastewater by catalytic hydrothermal gasification.Fuel,2006,Vol.85(2):179~184
    [53]Selhan K,Thallada B,Akinori M.Hydrothermal upgrading of biomass:Effect of K_2CO_3 concentration and biomass/water ratio on products distribution.Bioresource Technology,2005,1:1~9
    [54]Minowa T,Zhen F,Ogi T.Cellulose decomposition in hot-compressed water with alkali or nickel catalyst.Journal of Supercritical Fluids,1998,13:253~259
    [55] Minowa T, Zhen F, Ogi T. Liquefaction of cellulose in hot-compressed water using sodium carbonate: production distribution at different reaction temperature. Journal of Chemical Engineering of Japan, 1999, Vol. 30(1): 186~190
    [56] Bicker M, Kaiser D. Dehydration of d-fructose to hydroxymethylfurfural in sub- and supercritical fluids.Journal of Supercritical Fluids, 2005, 36: 118~126
    [57] Kabyemela B M, Adschiri T, Malaluan R M. Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics.Ind Eng Chem Res, 1999, 38:2888~2895
    [58] Mitsuru S, Zhen F, Yoshiko F, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res, 2000, 39: 2883~2890
    [59] Mitsuru S, Zhen F, Yoshiko F, et al. Dissolution and hydrolysis of cellulose in sub-critical and supercritical water. Industrial & Engineering Chemistry Research, 2000, 39: 2883~2890
    [60] Kim I C, Park S D, Kim S. Effects of sulfates on the decomposition of cellobiose in supercritical water. Chemical Engineering and Processing, 2004,43:997~1005
    
    [61] 吕秀阳.氧浓度对近临界水中纤维素分解的影响.太阳能学报, 2002, vol. 23(4): 467~471
    [62] Jomaa S, Shanableh A, Khalil W. Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Advances in Environmental Research, 2003, 7: 647~653
    [63] Shanableh A. Production of useful organic matter from sludge using hydrothermal treatment.Water Research, 2000, Vol. 34(3):945~951
    [64] Armando T Q, Muhammad F, Kilyoon K et al. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes. Journal of Hazardous Materials.2002, B93: 209~220
    [65] Selhan K, Thallada B, Akinori M et al. Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal, 2005,108:127~137
    [66] Jin F M, Ausushi K, Heiji E. Oxidation of garbage in supercritical water. High Pressure Research, 2001, 20: 525~531
    [67] Jin F M, Takehiko M, Heiji E. Oxidation reaction of high molecular weight carboxylic acids in supercritical water. Environmental Science and Technology, 2003, Vol. 37(14):3220~3231
    [68] Jin F M, Zhou Z Y, Takehiko M. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environmental Science and Technology, 2005, Vol. 39(6): 1893~1902
    [69] Motonobu G, Ryusaku O, Tsutomu H, et al. Hydrothermal conversion of municipal organic waste into resources. Bioresource Technology, 2004, 93: 279~284
    [70] Lourdes C, David V. Formation of organic acids during the hydrolysis and oxidation of
    ??several wastes in sub-and supercritical water.Ind Eng Chem Res.2002.41:6503~6509
    [71]Kishida H,Jin F and Zhou Z,Conversion of glycerin into lactic acid by alkaline hydrothennal reaction.Chemical Letter,2005.34:1560~1561
    [72]Jin F M,Zhou,Z Y,Kishida H.Hydrothermal conversion of biomass into acetic acid.Journal Mater Science.2006.41:1495~1500
    [73]Bicker M,Endres S,Ott L,et al.Catalytical conversion of carbohydrates in sub-critical water:A new chemical process for lactic acid production.Journal of Molecular Catalysis A:Chemical.2005.239:151~157
    [74]Hiroyuki Y,Omid T.Sub-critical water hydrolysis treatment for waste squid entrails and production of amino acids,organic acids,and fatty acids.Journal of Chemical Engineering of Japan,2004,Vol.37(2):253~260.
    [75]Hiroyuki Y,Masaaki T,Yohei T.Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis.Biotechnology Progress.1999.15:1090~1094.
    [76]Nobuaki S,Armando T Q,Kilyoon K,et al.Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water.Ind.Eng.Chem.Res.2004.43:3217~3222
    [77]Kruse A,Gawlik A.Biomass conversion in water at 330-410℃ and 30-50MPa.Identification of key compounds for indicating different chemical reaction pathways.Ind Eng Chem Res,2003,42:267~279
    [78]Matsumura Y,Yokoyama S.Current situation and prospect of biomass utilization in Japan.Biomass and Bioenergy,2005,29:304~309
    [79]Pavel K,Josef P,Michal R.Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water at temperatures from 313 K to the melting point.J Chem Eng Data.2006,51:616~622
    [80]Paul T W,Jude O.Composition of products from the supercritical water gasification of glucose:a model biomass compound.Ind Eng Chem Res,2005,44:8739-8749
    [81]Lee I G,Kim M S,Ihm S K.Gasification of glucose in supercritical water.Ind Eng Chem Res.2002.41:1182~1188
    [82]Hao X H,Guo L J,Mao X,et al.Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water.International Journal of Hydrogen Energy,2003,28:55~64
    [83]殷延开,陈玉放,戴现波.纤维素的溶解及活化过程.纤维素科学与技术,2004,Vol.12 (2):54~62
    [84]Tang H Q,Kuniyuki K.Supercriticat water gasification of biomass:thermodynamic analysis with direct Gibbs free energy minimization.Chemical Engineering Journal,2005,106:261~267
    [85]Osada M,Sato T,Watanabe M,et al.Catalytic gasification of wood biomass in subcritical and supercritical water.Combustion Science and Technology,2006,Vol.178(1-3):537~552
    [86]Kruse A,Henningsen T.Biomass Gasification in supercritical water:influence of the dry matter content and the formation of phenols.Ind Eng Chem Res,2003,42:3711~3717
    [87]Kruse A,Krupka A,Schwarzkopf V.Influence of proteins on the hydrothermal gasification and liquefaction of biomass.1.Comparison of different feedstocks.Ind Eng Chem Res,2005,44:3013~3020
    [88]Sinag A,Kruse A,Rathert J.Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor.Ind Eng Chem Res,2004,43:502~508
    [89]Takuya Y,Yoshito O.Partial oxidative and catalytic biomass gasification in supercritical water:a promising flow reactor system.Ind Eng Chem Res,2004,43:4097~4104
    [90]Jin F M,Kishita A,Moriya T.Kinetics of oxidation of food wastes with H_2O_2 in supercritical water.Journal of Supercritical Fluids.2001.19:251~262
    [91]毛肖岸,郝小红,郭列锦,等.超临界水中纤维素气化制氢的实验研究.工程热物理学报,2003,Vol.24(3):388~4390
    [92]Ayhan D.Hydrogen-rich gas from fruit shells via supercritical water extraction.International Journal of Hydrogen Energy,2004.29:1237~1243
    [93]Yukihiko M.Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan.Energy Conversion and Management.2002.43:1301~1310
    [94]Calzavara Y,Joussot D C,Boissonnet G,et al.Evaluation of biomass gasification in supercritical water process for hydrogen production.Energy Conversion and Management,2005.46:615~631
    [95]Ali S,Andrea K,Jens R.Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor.Ind Eng Chem Res,2004,43:502~508
    [96]Michael J A,Jr,Stephen G A et al.Biomass gasification in supercritical water.Ind Eng Chem Res,2000,39:4040~4053
    [97]Xu X D,Yukihiko M,Jonny S et al.Carbon-catalyzed gasification of organic feedstocks in supercritical water.Ind Eng Chem Res,1996,35:2522~2530
    [98]闫秋会,郭烈锦,梁兴,等.煤与生物质共超临界水催化气化制氢的实验研究.西安交通大学学报,2005,Vol.39(5):5454~457
    [99]闫秋会,郭烈锦,张西民,等.超临界水中葡萄糖气化制氢的热力学分析.化工学报,2004,Vol.55(1):1916~1920
    [100]Takuya Y,Yoshito O,Yukihiko M.Gasification of biomass model compounds and real biomass in supercritical water.Biomass and Bioenergy,2004.26:71~78
    [101]Takafumi S,Mitsumasa O,Masaru W,et al.Gasification of alkylphenols with supposed noble metal catalysts in supercritical water.Ind Eng Chem Res,2003,42:4277~4282
    [102]Takafumi S,Takeshi F,Yasuyoshi I.Effect of water density on the gasification of lignin with magnesium oxide suppoaed nickel catalysts in supercritical water.Ind Eng Chem Res,2006.45:615~622
    [103]Minoru I,Sakae T,Ichiro Y,et al.Production of COx—Free hydrogen from biomass and NaOH mixture:effect of catalysts.Energy & Fuels,2006,Vol.20(2):748~753
    [104]Minowa T,Ogi T.Hydrogen production from cellulose using a reduced nickel catalyst.Catalysis Today,1998,45:411~416
    [105]Pedro D,Nikolaos B,Bettina K.Influence of process variables on gasification of corn silage in supercritical water.Ind Eng Chem Res,2006,45:1622~1630
    [106]毛肖岸,郝小红,张西民.超临界水中葡萄糖气化制氢实验研究.化学工程,2004,Vol.32(5):26~28
    [107]Schmieder H,Abeln J,Boukis N et al.Hydrothermal gasification of biomass and organic wastes.Journal of Supercritical Fluids,2000,17:145~153
    [108]Andrea K,Danny M,Pia R et al.Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide.Ind Eng Chem Res,2000,39:4842~4848
    [109]Masaru W,Hiroshi I,Mitsumasa O,et al.Catalytic effects of NaOH and ZrO_2 for partial oxidative gasification of n—hexadecane and lignin in supercritical water.Fuel,2003,82:545~552
    [110]Boukis N,Diem V,Habicht W,et al.Methanol reforming in supercritical water.Ind Eng Chem Res,2003,42:728~735
    [111]Jayant B G,Ram B G.Hydrogen production by methanol reforming in supercritical water:suppression of methane formation.Ind Eng Chem Res,2005,Vol.44(13):4577~4585
    [112]Wang J,Takarada T.Role of calcium hydroxide in supercritical water gasification of low—rank coal.Energy & Fuels,2001,15:356~362
    [113]Liu X G,Li B Q,Kouichi M.Analysis of pyrolysis and gasification reactions of hydrothennally and supercritically upgraded low-rank coal by using a new distributed activation energy model.Fuel Processing Technology,2001,69:1~12
    [114]吕友军,冀承猛,郭烈锦.农业生物质住超临界水中气化制氢的实验研究.西安交通大学学报.2005,Vol.39 (3):238~242
    [115]冀承猛,郭烈锦,吕友军,本质素在超临界水中气化制氢的实验研究.太阳能学报.2007,Vol.8(9):961~966
    [116]Anikeev V,Yermakova A,Goto M.Decomposition and oxidation of aliphatic nitro compounds in supercritical water.Ind Eng Chem Res,2004,43:8141~8147
    [117]Chien Y C,Wang H P,Lin K S,et al.Oxidation of printed circuit board wastes in supercritical water.Water.Research.2000,Vol.34(17):4279~4283
    [118]Takehiko M,Heiji E.Characteristics of polyethylene cracking in supercritical water compared to thermal cracking.Polymer Degradation and Stability,1999,65:373~386
    [119]Yukitoshi T,Kiyoshi K,Kazue T,et al.Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in sub-critical and supercritical regions.Journal of Supercritical Fluids.2004,31:185~193
    [120]Hideyuki T,Yoko S,Bunpei H.Decomposition reactions of epoxy resin and polyetheretherketone resin in sub—and supercritical water.Journal of Mater Cycles Waste
    ??Management,2004,6:1~5
    [121]Dubhois M A,Dozol J F,Massiani C,et al.Reactivities of polystyrenic polymers with supercritical water under nitrogen or air.Identification and formation of degradation compounds.Ind Eng Chem Res,1996,35:2743~2747
    [122]马沛生,樊丽华,侯彩霞.超临界水降解聚苯乙烯及其混合塑料.高分子材料科学与工程,2005,Vol.21(1):268~271
    [123]苏晓丽,赵玉龙,张荣等.超临界水中聚乙烯油化的研究.燃料化学学报,2004,Vol.32(6):750~757
    [124]孔令照,李光明,贺文智,等.微品纤维素水热降解的液化产物分布.辽宁石油化工大学学报,2007,Vol.27(3):25~28
    [125]Jin F M,Cao,J C,Heiji E.Identification of oxidation products and oxidation pathways of high molecular weight dicarboxylic acids under hydrothermal condition.Journal of Supercritical Fluids,2006,Vol.39(1):80~88
    [126]Zhou Z Y,Jin F M,Enomoto H.A continuous flow reaction system for producing acetic acid by wet oxidation of biomass waste.Journal Mater Science,2006,41:1501~1507
    [127]凌芳,孔令照,李光明,等.农业废弃物水热糖化的实验研究.农业环境科学学报,2008,Vol.27(1):375~379
    [128]Lippold U.Iodometric determination of glucose.Biochemische Zeitschrift,1952,323:115~118
    [129]Metwally M,Ragaab G.Kinetic titrimetric determination of glucose by iodometric back titration of acid chromium trioxide.Egyptian Journal of Biomedical Sciences,2005,17:283~293
    [130]Dai Z,Hatano B,Tagaya H.Catalytic dehydration of propylene glycol with salts in near-critical water.Appl Catal:A,2004,258:189~193
    [131]Oka H,Yamago S,Yoshida J,et al.Evidence for a hydroxide ion catalyzed pathway in ester hydrolysis in supercritical water.Angew Chem Int Ed,2002,Vol.41(4):623~625
    [132]Siskin M,Katritzky A R.Reactivity of organic compounds in superheated water:general background.Chemical Review,2001,Vol.101(4):825~836
    [133]Jin F M,Cao J X,Zhou Z Y.Effect of lignin on acetic acid production in wet oxidation of lignocellulosic wastes.Chemistry Letters,2004,Vol.33(7):910~911
    [134]Vid S,Matija S,Jana K.The role of transition metals in oxidative degradation of cellulose.Polymer Degradation and Stability,2007,92:476~481
    [135]Arai Y,Sako T and Takebayashi Y,Supercritical fluids molecular interactions,physical properties and new applications.Stuttgart:Springer Publishers,2002,20~45
    [136]Calzavara Y,Joussot D C,Turc H A.A new reactor concept for hydrothermal oxidation.Journal of Supercritical Fluids,2004,31:195~206
    [137]Kabyemela B M,Takigawa M,Adschiri T.Mechanism and kinetics of cellobiose decomposition in sub—and supercritical water.Ind Eng Chem Res,1998,37:357~361
    [138]田心健,王川.半纤维素水解产物的分离研究.四川轻化工学院学报,2001,Vol.14
    ??(2):63~65
    [139]Krammer P,Vogel H.Hydrolysis of esters in subcritical andsupercritical water.Journal of Supercritical Fluids,2000,16:189~206
    [140]Jin F M,Zhou Z Y,Enomoto H.Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid—base catalytic effect of subcritical water.Chemistry Letters.2004,Vol.33(2):126~127
    [141]Luijkx G C,Rantwijk F V,Bekkum H V.The role of deoxyhexonic acids in the hydrothermal decarboxylation of carbohydrates.Carbohydr Res,1995,272:191~202
    [142]Mok W S,Antal M J.Formation of acrylic acid from lactic acid in supercritical water.J Org Chem,1989,54:4596~4602
    [143]Lira C T,McCrackin P J.Conversion of lactic acid to acrylic acid in near—critical water.Ind Eng Chem Res,1993,32:2608~2613
    [144]Collins P,Ferrier R.Monosaccharides:Their chemistry and their roles in natural products.New York:John Wiley & Sons Publishers,1995,11~14
    [145]Kong L Z,Li G M,Wang H.Hydrothermal catalytic conversion of biomass for lactic acid production.Journal of Chemical Technology & Biotechnology,2008,83:383~388
    [146]Coats A W,Redfem J P.Kinetic parameters from thermogravimetric data.Nature,1964,201:68~69
    [147]宋春财.农作物秸秆的热解及住水中的液化研究:[博士学位论文].大连理工大学,2003.
    [148]王树荣,刘倩,骆仲泱.基于热重红外联用分析的纤维素热裂解机理研究.浙江大学学报(工学版),2006,Vol.40(7):1154~1158
    [149]Sakanishi K,Ikeyama N,Sakak T.Comparison of the hydrothermal decomposition reactivities of chitin and cellulose.Ind Eng Chem Res,1999,38:2177~2181
    [150]Biagini E,Barontini F,Tognotti L.Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique.Ind Eng Chem Res,2006,45:4486~4493
    [151]Qian Y J,Zuo C J,Tan J.Structural analysis of bio—oils from sub-and supercritical water liquefaction of woody biomass.Energy,2007,Vol.32(3):196~202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700