具有轮轴伸缩功能的高空作业平台转向机构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自行式高空作业平台是一种运用工作平台通过伸展机构运送工作人员、工具、设备和材料等到指定位置进行工作的特种车辆。自行式高空作业平台的最快时速为6.8km/h,速度低,当工作地点距离较远时,驾驶自行式高空作业平台到达目的地耗时较长,而且禁止在公路上行驶,此时需要借助卡车或运输车,而运输车的运输平台的宽度有限,为了方便自行式高空作业平台的运输,应减少整机宽度。因此在自行式高空作业平台的底盘处增加轮轴伸缩技术(即扩桥技术),该技术能够改变底盘轮距,使得高空作业平台的底盘存在两种轮距状态。当处于运输状态时,使用较窄轮距;当处于工作状态时,使用较宽轮距。由于存在两种轮距状态,导致存在两个转向机构,而每个转向转向机构均存在转向误差,如何同时减少两个转向误差是本文研究的重点。具体内容如下:
     (1)描述了轮轴伸缩转向机构在自行式高空作业平台底盘中的应用,建立了轮轴伸缩的转向机构转向误差的数学模型,提出双转向误差的概念。
     (2)针对带轮距伸缩转向机构的双转向误差问题,建立双转向误差的多目标数学模型,以消除轮胎侧滑为目的,选取相对误差平方的均值为目标函数,以转向机构的底角和腰长为设计变量,建立边界约束条件和性能约束条件,利用多目标遗传算法,借助于MATLAB遗传算法工具箱,解决本文的多目标优化的问题。对于多目标优化后的Pareto解集,本文利用基于变异系数法的解集评价方法,根据决策者的喜好从解集中选出感兴趣的解。以某型号自行式高空作业平台为算例,以多目标优化技术对其进行优化改进,证明了优化方法的可行性和合理性。
     (3)运用灰色关联度理论,探讨了结构变量对轮轴伸缩转向机构转向误差的敏感度,找到与转向误差关系密切的结构变量,为后文经验公式选择设计变量提供了参考意见。
     (4)利用优化评价后的解,探索轮轴伸缩转向机构的最优布置规律。布置的原则是消除轮胎侧滑,通过优化技术探索底角和腰长与主销距离之间的规律关系。运用最小二乘法数据处理技术,处理评价的优化数据,得到经验公式,为将来设计同类型自行式高空作业平台的转向机构提供了参考依据。
Self-propelled aerial work platform which is called Self-AWP is a special vehicle, intended to move persons to working positions by extending structure. The fastest speed of the Self-AWP is6.8km/h which is very slow. When the working place is farther, it takes much time to drive the Self-AWP to the destination, and it is banned to drive on the road. So the truck or trailer is need, but the width of the truck or trailer is limited. In order to transport the Self-AWP expediently, the width of the Self-AWP should be as short as possible. So the wheel expansion technology or extendable axle technique which is able to change the width is used in the chassis. There are two states of the tread. One is a narrow width when the Self-AWP is in transportation condition. The other is a wider width when the Self-AWP is in working condition. As there are two states of the tread, there are two steering mechanisms and steering errors. How to reduce the two steering errors at the same time is researched in the paper.
     Firstly, the use of the steering mechanism with extendable axle in Self-AWP is described. Then the model of the steering error of the steering mechanism with extendable axle is established. And the concept of double-error is established at the same time.
     Secondly, according to the double-error of steering mechanism, the model of the double-error is established as a multi-objective problem. In order to eliminate the sideslip of the tyre, the mean relative error square is consider as the objective function, and the base angle and the waist length are consider as the design variables. Then the boundary constraint condition and the performance constraint condition are established. With the MATLAB genetic algorithm toolbox, the multi-objective problem is solved using multi-objective genetic algorithm. The result of the multi-objective optimize problem is a set of Pareto. Based on pseudo-weighted vector method, the interested set is selected form the set of Pareto. And with a certain type of self-propelled aerial work platform as an example, it is improved by the multi-objective optimize technology and proves the feasibility and rationality of the optimization method.
     Thirdly, by the grey relational theory, the sensitivity between the structure of variable and steering error is discussed. And the relation between steering error and structure variables is find out, giving opinions for selection of design variables of the experience formula.
     Last, using the solution after the optimization evaluation, the optimal layout rules of steering mechanism with extendable axle are explored. And the base angle and the waist length are the most important two parameters for steering mechanism. The least square method is used for data processing technology, dealing with the optimization data after evaluation. Then the experience formulas having the two of treads are got, which will guide the future design the same type of steering mechanism with extendable axle in Self-AWP.
引文
[1]张华.纵览中国高空作业机械行业[J].建筑机械,2007(10):18-22.
    [2]GB9465-2008.高空作业车国家标准[S].
    [3]王飞,马林峰.自行式高空作业平台市场的发展[J].交通世界,2009(12):88-90.
    [4]王飞.高空作业平台国内外市场发展概述[J].建筑机械化,2009(12):34-36.
    [5]张华,李守林.国内外高空作业机械的现状及发展趋势[J].建筑机械化,2011(03):19-24.
    [6]夏秀峰.浅谈我国高空作业车发展[J].建筑机械化,2010(09)::33-35.
    [7]柏红专,罗亮平.国内高空作业机械行业现状及发展方向[J].建筑机械,2006(08):54-56.
    [8]江创华,尚海波,王金祥等.履带伸缩底盘液压缸伸缩力的计算[J].工程机械,2010(05):16-18.
    [9]Zarak CE, Townsend M A. Optimal design of rack-and-pinion steering linkages. Journal of Mechanisms Transmissions and Automation in Design. Trans of the ASME 1983: 220-226.
    [10]Gerald Miller, Robert Reed, Fred Wheeler. Optimum Ackerman for Improved Steering Axle Tire Wear on Trucks. SAE912693:572-578.
    [11]Gerald R. Miller. The Effect of Ackerman Steering Correction Upon Front Tire Wear of Medium Duty Trucks. SAE861975.
    [12]P. A. Simionescu, D. Beale. Optimum synthesis of the four-bar function generator in its symmetric embodiment:the Ackermann steering linkage [J].Mechanism and Machine Theory,2002(37):1487-1504.
    [13]A. Rahmani Hanzaki, P. V. M. Rao, S. K. Saha. Kinematic and sensitivity analysis and optimization of planar rack-and-pinion steering linkages [J]. Mechanism and Machine Theory,2009(44):42-56.
    [14]P.A. Simionescu, D. Beale, I. Talpasanu. Dynamic effects of the bump steer in a wheeled tractor [J]. Mechanism and Machine Theory,2007(42):1352-1361.
    [15]Antonio Carcaterra, Walter D'Ambrogio. A Function generating differential mechanism for an exact solution of the steering problem [J]. Mechanism and Machine Theory,1998,5(33):535-549.
    [16]P.A. Simionescu, llie Talpasanu. Synthesis and analysis of the steering system of an adjustable tread-width four-wheel tractor [J]. Mechanism and Machine Theory, 2007(42):526-540.
    [17]廖林清,王金龙,谢明等.汽车转向梯形机构在不同目标函数下的优化[J].机械与电子,2010,02:03-06.
    [18]师帅兵,陈军.汽车拖拉机转向梯形优化设计[J].西北农业大学学报,2000,02:66-69.
    [19]石启龙,杨建伟.基于MATLAB的断开式转向梯形机构的优化设计[J].机械设计与制造,2011,02:08-10.
    [20]席平原,张圣文等.汽车起重机转向梯形机构遗传算法优化[J].起重运输机械,2007,08:37-39.
    [21]韦家义,吕超.自行式高空作业平台的转向系统设计[J].建筑机械化,2010,10:57-59.
    [22]周祥基.汽车转向传动机构的类型分析与优化设计[D]:(硕士学位论文).南京:东南大学机械学院,2005.
    [23]许宝彬,孟俊焕,赵鲜花.拖拉机转向梯形机构的优化设计研究[J].机械研究与应用,2006,19(3):66-69.
    [24]王国安,郝子军.轮式推土机转向梯形优化设计[J].西安公路学院学报,1986,4(3):89-112.
    [25]姜明国,陆波.阿克曼原理与矩形化转向梯形设计[J].汽车技术,1994(5):16-19.
    [26]William B. The papers of Benjamin Franklin [D]. Yale University Press, New Haven.1975,19.299-300.
    [27]肖晓伟,肖迪,林锦国等.多目标优化问题的研究概述[J].计算机应用研究,2011,28(3):805-808.
    [28]Holland J H. Adaptation in naturation in natural and artificial systems [J]. The University of Michigan Press,1975(1):21-24.
    [29]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [30]郑丽君.基于遗传算法的多目标优化与决策方法研究[D]:(硕士学位论文).长沙:国防科学技术大学研究生院,2003.
    [31]王跃进.机械原理[M].北京:北京大学出版社,2009.
    [32]P. Lukin, G. Gasparyants, V. Rodionov, Automobile Chassis, Design and Calculation, Mir, Moscow,1989.
    [33]姚明龙,王福林.车辆转向梯形优化设计及其求解方法的研究[J].机械设计与制造,2007,05:24-26.
    [34]孙松林,吴运强,任述光.变型拖拉机转向梯形机构参数最佳值的确定[J].湖南农业大学学报(自然科学版),2003,29(2):161-162.
    [35]陆植.双梯形转向机构的优化设计[J].太原重型机械学院学报,1981(2):39-46.
    [36]王小刚,李明杰,王福利等.一种适于多目标稳态优化决策的伪权向量方法[J].系统仿真学报,2008,20(7):1849-1918.
    [37]时光新,王其吕,刘建强.变异系数法在小流域治理效益评价中的应用[J].水土保持通报,2000,20(6),47.
    [38]门宝辉,梁川.基于变异系数权重的水质评价属性识别模型[J].哈尔滨工业大学学报,2005,37(10):1373-1:375.
    [39]李健萍,马咸尧,林化夷.影响石膏强度因素的灰色关联分析[J].系统工程,1990,8(5):66-70.
    [40]邓聚龙.灰色系统基本方法[M].湖北:华中理工大学出版社,1988.
    [41]邓聚龙.多维灰色规划[M].湖北:华中理工大学出版社,1989.
    [42]唐焕文,秦学志.实用最优化方法(第三版)[M].大连:大连理工大学出版社,2004.
    [43]顾迪民.工程起重机(第二版)[M].北京:中国建筑工业出版社,1988.
    [44]褚树德.转向梯形设计参数的优化设计及其确定[J].工程机械,1981(09),14-19.
    [45]周效信.用最小二乘法研究强激光场与原子的相互作用[D]:(博士学位论文).武汉:中国科学院武汉物理与数学研究所,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700