基于改进粒子群算法的仿人机器人步态多目标优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人机器人是当前机器人技术研究领域最为活跃的方向之一,其中,仿人机器人直立行走的步态规划与控制是仿人机器人技术的基础和重点。针对仿人机器人的关节具有较大灵活性等特点,如何实现对仿人机器人步态规划和控制的优化和学习,确保步态行走的稳定、迅速和高效,成为仿人机器人步态规划和控制研究中的新课题。
     本文以仿人机器人的步态行走的多目标优化为研究目标,提出了一种基于改进粒子群多目标优化的方法对仿人机器人的步态进行多目标优化。文中步态规划和控制作为主线,以双足机器人、倒立摆模型和传感信息的反馈控制模型为研究对象进行了如下工作与分析。
     首先,本文以华南理工大学第一代仿人机器人SCUT-I为研究对象,通过对其运动体系结构的分析,建立了仿人机器人简化模型,并在此基础上,通过研究仿人机器人行走理论,对其进行了运动学和动力学分析。通过动量、角动量以及零点力矩点的定义,推导出SCUT-I的ZMP计算方法及稳定方程,为SCUT-I机器人实现稳定、高效和快速行走提供了运动学和动力学基础。
     其次,介绍了三维线性倒立摆的特性以及基于三维线性倒立摆模型的仿人机器人的步态模式生成,引进了双足支撑阶段,得出了影响机器人基于三维倒立摆步行单元的控制参数。同时,在仿人机器人身上安装了加速度传感器、角速度传感器和压力传感器,并对这些传感器的进行了卡尔曼滤波处理,给出了机器人身体姿态和ZMP的计算方法,把这些信息作为机器人反馈控制的信息来源,提出了反馈控制的总体框架及具体控制方法实现。
     最后,提出了改进的粒子群多目标优化方法,研究了改进策略,并对仿人机器人离线步态规划和在线行走反馈控制建立了多目标优化模型,提出目标适度函数及约束条件,并在Matlab和Webots中建立相应的模型,利用Matlab作为机器人的控制器,在Webots进行仿真实现,验证了仿人机器人离线步态规划和在线行走反馈控制有有效性,对多目标优化模型和改进粒子群多目标优化算法的可靠性也进行了验证。
Humanoid robot technology research field is the current direction of one of the most active, in which humanoid robots walk gait planning and control of humanoid robot technology is the foundation and focus. For humanoid robot joints have greater flexibility and other characteristics, if the realization of humanoid robot optimal gait planning and control and learning, to ensure stable walking gait, rapid and efficient, a humanoid robot gait planning and control of the new topics.
     In this paper, a humanoid robot walking gait of multi-objective optimization for target, proposed based on multi-objective particle swarm optimization method for humanoid robot gait multi-objective optimization.Gait planning and control of the text as the main line, the biped robot, inverted pendulum model and sensor information, the feedback control model for the study and analysis of the work carried out as follows.
     First, this paper first generation of South China University of Technology humanoid robot SCUT-I as the research object, its movement through architecture analysis, the simplified model of the humanoid robot, and on this basis, through the study of humanoid robot Walk theory, its kinematics and dynamics analysis. By momentum, angular momentum and the definition of zero moment point derived SCUT-I of the ZMP and stability equation method for SCUT-I robot to achieve stable, efficient and fast walking provides a basis for kinematics and dynamics.
     Secondly, the introduction of the three-dimensional characteristics of the linear inverted pendulum and the linear inverted pendulum based on three-dimensional model of a humanoid robot's gait pattern generation, the introduction of the feet supporting phase, obtained based on three-dimensional inverted pendulum of walking robot unit Control parameters. Meanwhile, in humanoid robots installed accelerometer, angular rate sensors and pressure sensors, these sensors and Kalman filtering were given ZMP of the robot body posture and the method for calculating this information as the robot Sources of information feedback control, feedback control is proposed a general framework and specific control method.
     Finally, an improved multi-objective particle swarm optimization method to study the improvement strategy, and the humanoid robot off-line walking gait planning and feedback control to establish a multi-objective optimization model, the objective function and constraints appropriate and Created in Matlab and Webots corresponding model, the use of Matlab as a robot controller, in the Webots simulation implementation, verification of the humanoid robot off-line walking gait planning and feedback control with the effectiveness of multi-objective optimization model And improve the multi-objective particle swarm optimization algorithm reliability were verified.
引文
[1] Jung-Yup Kim, Ill-Woo Park, Jun-Ho Oh. Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor[J]. Journal of Intelligent and Robotic Systems: Theory and Applications,2007,48(4):457-484
    [2] Jian Li,Weidong Chen. Modeling and Control for a Biped Robot on Uneven Surfaces[C]. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference,: IEEE,2009:2960-2965.
    [3] http://www.humanoid.waseda.ac.jp/booklet/kato_4.html
    [4] Yamaguchi Jin-ichi,Takanishi Atsuo,Kato Ichiro. Development of a biped walking Robot compensating for three-axis moment by trunk motion.1993 International Conference on Intelligent Robots and Systems,1993:561-566
    [5] Yamaguchi Jin-ichi,Takanishi Atsuo,Kato Ichiro. Development of biped walking Robot adapting to a horizontally uneven surface. IEEE International Conference on Intelligent Robots and Systems,vol.2,1994:1156-1163
    [6] Yamaguchi Jin-ichi,Takanishi Atsuo. Development of a biped walking robot having antagonistic driven joints using nonlinear spring mechanism. IEEE International Conference on Robotics and Automation,1997,vol.l:18-192
    [7] Zheng Y F,Fred R S.Design and motion control of practical biped robots[J]. International Journal of Robotics and Automation,1988,3(2):70-78.
    [8] Zheng Y F,Shen J.Gait Synthesis for the SD-2 Biped Robot to Climb Sloping Surface[J].IEEE Transactions on Robotics and Automation,1990,6(1):86-96
    [9] Kajita S,Yamaura T,Kobayashi A.Dynamic walking control of a biped robot along a potential energy conserving orbit[J].IEEE Transactions on Robotics and Automation, 1992,8(4):431-438.
    [10] Kajita S,Tani K,Kobayashi A.Dynamic walk control of a biped robot along the potential energy conserving orbit[A].IEEE International Workshop on Intelligent Robots and Systems[C].1990.789-794.
    [11] Kajita S,Tani K.Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode[A].IEEE International Conference on Robotics and Automation[C].1991.1405-1411.
    [12] Kajita S,Tani K.Adaptive gait control of a biped robot based on realtime sensing of the ground profile[A].IEEE International Conference on Robotics and Automation[C].1996.570-577.
    [13] Pratt J.Virtual Model Control of a Biped Walking Robot[D].Department of Electrical Engineering and Computer Science,Massachusetts Institute of Technology, Cambridge,Massachusetts,1995.
    [14] Kaneko Kenji, Kanehiro Fumio, Kajita Shuuji, et al. Design of prototype humanoid robotics platform for HRP[C]// IEEE International Conference on Intelligent Robots and Systems. Lausanne,Switzerland : 2002 : 2431-2436
    [15] Kaneko Kenji , Kanehiro Fumio, Kajita Shuuji, et al. Humanoid robot HRP-2[C]// IEEE International Conference on Robotics and Automation. New Orleans, USA : 2004 :1083-1090
    [16] Akachi K, Kaneko K, Kanehira N, et al. Development of humanoid robot HRP-3P[C]// Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots. Tsukuba : 2005 : 50-55.
    [17] Hirai,K.;Hirose,M.;Haikawa,Y.;Takenaka,T. The development of Honda robot[C]// Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven ,Belgium: 1998 : 1321-1326.
    [18] Honda Asimo-the Honda humanoid robot Asimo [EB/OL].http://world. honda. com /ASIMO/.
    [19] Nagasaka KeN'Ichiro, KurokiYoshihiro, Suzuki ShiN'Ya, et al. Integrated motion Control for walking, jumping and running on a small bipedal entertainment robot[A].IEEE International Conference on Robotics and Automation[C], 2004,n 4,pp:3189-3194
    [20] http://www.sony.net/Sonylnfo/QRIO/top_nf.html
    [21] Kim J Y, Park I W, Oh J H. Experimental Realization of Dynamic Walking of Biped Humanoid Robot KHR-2 using ZMP Feedback and Inertial Measurement[J]. Advanced Robotics, 2006, 20(6): 707~736.
    [22] JUNG-YUP K I, JUNGHO L E, JUN-HO O H. Experimental Realization of Dynamic Walking for a Human-Riding Biped Robot, HUBO FX-1[J]. Advanced Robotics, 2007, vol.21(no.3-4):.
    [23] Kim J Y, Park I W, Oh J H. Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor[J]. Journal of Intelligent and Robotic Systems, 2007, 48(4): 457~484.
    [24] Friedmann M, Petersen K, Petters S, et al. Darmstadt Dribblers: Team Description for Humanoid KidSize League of RoboCup 2009[R]. German: Technic University Darmstadt, 2009.
    [25] Hemker T, Sakamoto H, Stelzer M, et al. Efficient walking speed optimization of a humanoid robot [J]. International Journal of Robotics Research, 2009, 28(2): 303-314.
    [26] Friedmann M, Petersen K, Petters S, et al. Darmstadt Dribblers: Team Description for Humanoid KidSize League of RoboCup 2008[R]. German: Technic University Darmstadt, 2008.
    [27] Friedmann M, Kiener J, Petters S, et al. Versatile, high-quality motions and behavior control of humanoid soccer robots[C]// Proceedings of the Workshop on Humanoid Soccer Robots of the 2006 IEEE-RAS International Conference on Humanoid Robots. Genoa, Italy: 2006: 9-16
    [28]张永学,麻亮,强文义,付佩深.基于地面反力的双足机器人期望步态轨迹规划[J].哈尔滨工业大学学报,2001,Vol.33(1),pp:4-6
    [29]王强,纪军红,强文义,傅佩琢.基于自适应模糊逻辑和神经网络的双足机器人控制研究.高技术通讯.2001.7 pp:76-78
    [30] Jian Wang,Tao Sheng,Hongxu Ma.Design and Dynamic Walking Control of Humanoid Robot Blackmann.Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian:IEEE,2006:8848-8852
    [31]赵建东.仿人机器人行走误差自调整模糊控制研究[D].清华大学博士论文.2004
    [32]刘莉,汪劲松,陈恳,杨东超,赵建东.基于六维力/力矩传感器的拟人机器人实际ZMP检测[J].机器人.2001.Vol23,No.5:459-466
    [33] Li Zhaohui, Huang Qiang, Li Kejie, Duan Xingguang. Stability criterion and pattern planning for humanoid running[A]. IEEE International Conference on Roboticsand Automation[C]. 2004,n2,pp:1059-1064
    [34] Huang Qiang, Zhang Weming, Li Kejie. Sensory reflex for biped humanoid Walking[A]. 2004 International Conference on Intelligent Mechatronics and Automation[C]. pp:83-88
    [35]杨庆.仿人机器人实时运动规划方法研究[D].湖南:国防科技大学,2005
    [36] Nao Academics Data Sheet [EB/OL]. http://www.aldebaran-robotics.com/en/node/1166
    [37]韵律助步机[EB/OL]. http://www.honda.com.cn/technology/hct/rhythm.html
    [38]石宗英,徐文立,冯元琨,方海军.仿人型机器人动态步行控制方法.[J].机器人,2001,23(6): 569-574
    [39] A Dasguptal, Y Nakamura. Making feasible walking motion of humanoid Robots from humman motion capture data[A]. International Conference On Robotics and Automation[C]. Detroit, MI, USA: IEEE Press 1999:1044-1049
    [40]赵晓军,黄强,彭朝琴,张利格,李科杰.基于人体运动的仿人型机器人动作的运动学匹配[J].机器人, 2005, 27(4): 358-361
    [41] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, et al. The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation [C].Proceedings of IEEE/RSJ, International Conference on Intelligent Robots and Systems:IEEE, 2001(1):239-246.
    [42]梶天秀司. Humanoid Robots [M].管贻生,译.北京:清华大学出版社,2006:1-227.
    [43]毛勇,王家廞,贾培发,韩灼.双足被动步行研究综述[J].机器人, 2007, 29(3): 274-280
    [44] Collin S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005, 307:1082-1085
    [45] miomir vukobratovic and branislav borovac,“zero-moment point-thirty five years of its life”, International Journal of Humanoid Robotics,2004, Vol. 1, pp.157-173
    [46]刘志远,戴绍安,等.零力矩点与两足机器人动态行走稳定性的关系[J].哈尔滨工业大学学报,1994,26(1): 38-41
    [47] De Michieli, L.Study on humanoid robot systems: An energy approach.2008 8th IEEE-RAS International Conference on Humanoid Robots:IEEE,2008:219-226
    [48]陈恳,杨向东,刘莉,等.机器人技术与应用[M].北京:清华大学出版社,2006:1-228
    [49]蔡自兴.机器人学[M].北京.清华大学出版社,2002: 1-410
    [50]宋伟刚.机器人学-运动学、动力学与控制[M].北京.科学出版社,2007: 1-307
    [51]陈恳,付成龙.仿人机器人理论与技术[M].北京:清华大学出版社,2010:1-274
    [52] Zitzler E, ThieleL. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [ R ] . Technique Report: 103, Swiss Federal Institute of Technology ( ETH ) Zurich: Computer Engineering and Networks Laboratory ( TIK) , 2001
    [53] Kennedy J, Eberhart R.Particle swarm optimization[C].In: IEEE International Conference on Neural Networks, Perth, Australia, 1995: 1942~1948
    [54] Shi Y,Eberhart R.A modified Particle Swarm Optimizer[J].IEEE International Conference on Evolutionary Computation.Washington:IEEE,1998:69-73.
    [55]韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2972.
    [56]张利彪,周春光,马铭, et al.基于粒子群算法求解多目标优化问题[J].计算机研究与发展, 2004, (07):.
    [57]胡德峰,张步涵,姚建光,基于改进粒子群算法的多目标最优潮流计算.电力系统及其自动化学报2007, .
    [58]裴胜玉,周永权.基于Pareto最优解集的多目标粒子群优化算法[J].计算机工程与科学, 2010, (11):.
    [59]孙小强,张求明.一种基于粒子群优化的多目标优化算法[J].计算机工程与应用, 2006, (18):.
    [60]文瑛,廖伟志,闭应洲.求解多目标优化问题的自适应粒子群算法[J].计算机工程与应用, 2010, (23):.
    [61]杨智,陈志堂,范正平, .基于改进粒子群优化算法的PID控制器整定[J].控制理论与应用, 2010, (10):.
    [62]张家骏.基于粒子群算法的PID控制器参数优化研究[J].计算机仿真, 2010, (10):.
    [63]陈俊风,范新南,苏丽媛.基于粒子群优化算法的PID控制器参数整定[J].计算机仿真, 2006, (08):.
    [64]郑喜景.基于多目标寻优的双足机器人爬楼梯步态规划[D].华南理工大学硕士论文. 2008
    [65]刘奇锋.基于倒立摆模型的仿人机器人走斜坡步态规[D].华南理工大学硕士论文. 2009
    [66]毕盛.非平地环境下仿人机器人步态控制研究与实现[D].华南理工大学博士论文. 2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700