地黄、苏合香对大鼠早期肝性脑病的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝性脑病(Hepatic encephalopathy, HE)是由肝脏功能严重障碍引起的以代谢紊乱为基础的中枢神经系统功能失调综合征。患者的主要临床表现包括性格和睡眠-清醒循环改变,认知功能障碍和运动状态的改变等。HE的病因很多,但最终后果是以氨为主的多种毒性物质在血内的聚集、假性神经递质生成、氨基酸比例失衡、γ-氨基丁酸/苯二氮卓(GABA/BZ)受体增多等。目前公认氨中毒仍是HE发病机制的主要因素,高血氨可使脑内一些神经递质浓度发生变化,干扰神经递质间平衡,因而导致中枢神经系统的功能紊乱。血氨可激活外周型苯二氮卓受体PBRs,增加其结合位点,刺激神经激素产生,这些神经激素能扩大GABA的作用。近期一些研究还表明,高血氨和炎症反应共同作用引起HE认知功能障碍。
     目前,HE的发病机制仍不十分明确,对HE的治疗亦缺乏有效手段,虽然有许多西药用于临床治疗肝性脑病,但主要还是仿制国外产品,尚存在着适应不良和副作用,因此,越来越多的研究将重点转移到中草药,原因是中草药来源于天然,比合成药物更安全。而且中草药的成分复杂,对于病理机制复杂的疾病,可能具有更好的疗效。此外,中草药的代谢谱对于药物活性成分筛选具有重要价值,为药物的研发及作用机制阐述提供了线索。在本研究中,我们将地黄、苏合香提取物(Rehmannia&storesin extracts, RS,以下简称地苏合剂)用于治疗四氯化碳(CCl4)诱导的HE大鼠,同时使用乳果糖(Lactulose)作为阳性对照药,观察RS治疗是否能对早期HE大鼠模型起到神经保护作用,在整体水平评价RS的治疗效果,并探讨其作用机制,为开发安全有效的防治HE的新药提供依据。
     1.地苏合剂是一种含有多种成分的混合物。其中具有芳香开窍作用的苏合香,其主要成分由高效液相色谱(high performance liquid chromatography, HPLC)显示。
     2.成年Wistar大鼠随机分为6组(n=10×6):(1)对照组(Control);(2)模型组(Model);(3)阳性药乳果糖组(Lactulose)(6g/kg, i.g);(4)地苏合剂低剂量(RS-L)组(地黄提取物0.5g/kg+苏合香0.008g/kg, i.g.);(5)地苏合剂中剂量组(RS-M)(地黄提取物1g/kg+苏合香0.016g/kg, i.g.);(6)地苏合剂高剂量组(RS-H)(地黄提取物2g/kg+苏合香0.032g/kg, i.g.)。除正常对照组外,其余组采用经典的CCl4诱发肝纤维化模型(50%CCl41ml/kg, i.g.),每周2次,连续12周。
     3.实验过程中大鼠每周测体重一次,实验结束时模型组大鼠体重明显低于对照组(P<0.01),经过阳性药和地苏合剂治疗后,乳果糖组和RS-H组大鼠的体重与模型组相比有明显改善(P<0.05)。
     4.行为学实验结果显示:①模型组大鼠自发运动总距离较对照组显著减少(P<0.01),乳果糖组(P<0.01)和RS-H组(P<0.05)明显改善;模型组大鼠自发运动跨格次数较对照组显著减少(P<0.01),乳果糖组(P<0.05)明显改善,RS组的跨格次数较模型组增加,但并无统计学差异;模型组大鼠在中心场的停留时间较对照组显著缩短(P<0.01),RS-H组大鼠在中心场的停留时间明显延长(P<0.05);模型组大鼠直立次数较对照组显著减少(P<0.01),乳果糖和RS治疗后直立次数增加,但无统计学差异。②Morris水迷宫实验中,在连续训练的几天内,随着训练次数的增加,各组动物的寻台潜伏期缩短。末次实验中,模型组大鼠寻台潜伏期较对照组显著延长(P<0.01),乳果糖治疗组和RS-H组大鼠寻台潜伏期较模型组明显缩短(P<0.05);模型组大鼠游泳速度减慢,但差异没有达到统计学意义。模型组大鼠在十字高架迷宫实验中进入开放臂的次数与对照组相比显著减少(P<0.05),乳果糖和RS治疗后进入开放臂次数增加,但无统计学差异;模型组大鼠进入开放臂的时间与对照组相比减少,但各组间无统计学差异。与对照组相比,模型组大鼠的Y迷宫正确选择率有所下降,但未达到统计学差异标准。以上实验证明RS可以增加HE大鼠自发活动,改善其学习记忆能力。
     5.实验结束后各组大鼠肝脏湿重与对照组相比所得肝指数,模型组大鼠较对照组显著降低(P<0.01),乳果糖治疗组、RS-M组和RS-H组大鼠肝指数较模型组明显升高(P<0.05);模型组大鼠脾指数较对照组显著升高(P<0.01), RS-M组大鼠脾指数较模型组明显降低(P<0.05)。
     6.生化学检测结果显示:模型组大鼠ALT、Amm、NO、TNOS和iNOS水平较对照组均显著升高(P<0.01),乳果糖组和RS组大鼠ALT、Amm、TNOS和iNOS水平较模型组明显降低(P<0.01,P<0.05)。模型组大鼠血清AST水平有所升高,但未达到统计学差异标准。模型组大鼠总蛋白水平较对照组显著降低(P<0.05),其余各组间无统计学差异。模型组大鼠白蛋白水平较对照组显著降低(P<0.01),乳果糖组和RS治疗组大鼠白蛋白水平较模型组有不同程度的升高。
     7. ELISA结果显示:模型组大鼠TNF-α水平较对照组显著升高(P<0.01),乳果糖组(P<0.01)、RS-M组(P<0.05)和RS-H组(P<0.01)大鼠TNF-α水平较模型组明显降低。
     8.受体活性检测结果显示:模型组大鼠PBRs和NMDA受体的结合位点均显著增加,Bmax值较对照组明显升高(P<0.01),乳果糖组和RS-H组大鼠Bmax值较模型组明显降低(P<0.01)。
     9.形态学结果显示:肝脏HE染色提示,模型组大鼠可见肝硬化表现。乳果糖组及RS治疗组大鼠肝细胞变性和坏死程度显著减轻。与对照组相比,模型组大鼠脑海马BrdU、NeuN和GFAP阳性细胞数显著下降(P<0.01),乳果糖组和RS治疗组较模型组有不同程度增加。本研究结果证实,地苏合剂能够在一定程度上提高HE大鼠自发运动次数和学习记忆能力;减轻CCl4诱导的肝损伤,治疗肝硬化;解除脑内氨毒性作用,抑制脑内PBRs和NMDA受体结合位点的增加,促进海马区神经发生,促进神经干细胞增殖和分化,延缓HE的发生和发展,并为开发安全有效的神经保护新药提供了重要的实验依据。
Hepatic encephalopathy (HE) is defined as a disturbance in central nervous system function because of hepatic insufficiency. This broad definition reflects the existence of a spectrum of neuropsychiatric manifestations from minimal changes in personality or altered sleep-waking cycle to altered cognitive function and motor activity and coordination.
     The main tenet of all theories of the pathogenesis of HE is firmly accepted: nitrogenous substances derived from the gut adversely affect brain function. These compounds gain access to the systemic circulation as a result of decreased hepatic function. Once in brain tissue, they produce alterations of neurotransmission that affect consciousness and behavior. A large body of work points at ammonia as a key factor in the pathogenesis of HE. Furthermore, the alterations in neurotransmission induced by ammonia also occur after the metabolism of this toxin into astrocytes, resulting in a series of neurochemical events caused by the functioning alteration of this cell. Ammonia activates peripheral-type benzodiazepine receptors with subsequent stimulation of the GABA-ergic system, an effect also induced directly by ammonia. Recent reports support the idea that hyperammonemia and inflammation cooperate in inducing the neurological alterations in HE.
     At present, the mechanisms of HE are still unclear, and there is no definitive treatment or cure for HE. A large segment of the public findings solace in herbs, in part believing that herbs are natural and hence safer than synthetic drugs, and that a complex mixture of herbs can effectively treat complex diseases. In addition, the metabolite profile of herbal medicine is important for screening its active constituents, thus providing a valuable contribution to the drug discovery process and elucidation of the underlying mechanism of action. In the present study, the neuroprotective effect of RS against CCl4-induced impairment was observed in vivo. We used RS to treat the rats i.g. with CCl4, lactulose as the positive conrol. The results suggested RS could be considered as a potential agent for preventing or retarding the development or progression of HE.
     1. There were multiple components in RS. The main components of Storesin were analyzed by HPLC.
     2. The animals were randomly distributed in the following groups:control, model, lactulose (i.g. treated with lactulose6g/kg), RS-L (i.g. treated with R:0.5+S:0.008g/kg), RS-M (i.g. treated with R:1.0+S:0.016g/kg) and RS-H (i.g. treated with R:2.0+S:0.032g/kg). To induce hepatic encephalopathy, all the rats except the ones in control group were treated with a mixture of CCl4and olive oil (1:1vol/vol, at a dose of1ml/kg) by a gavage tube twice a week for12weeks. Control animals were treated with the solvent alone.
     3. The weight of rats was monitored every week. The body weight changed since the3rd week. There was a significant weight loss in model animals compared with control group (P<0.01). The RS-H treatment significantly reversed the changes of the body weight (P<0.05).
     4. Total distances, square crossing times, times in inner zone and rearing frequency in open field test revealed a significant decrease (P<0.01) for the model group in comparison to the control group. RS-H-treated rats exhibited longer distance than that of the model (P<0.05). RS treatment inreased the square crossing times and rearing frequeny, but the improvement did not achieve statistical significance. Morris water maze data showed that model animals exhibited obviously longer escape latencies. The lactulose and RS-H significantly shortened escape latenies (P<0.05). The swim speed of model rats slowed down. The model rats exhibited a decreased OE of EPM(P<0.05).
     5. The hepatosomatic index significantly decreased in model rats compared with control group (P<0.01), and the RS-M and RS-H treatment effectively increased the hepatosomatic index (P<0.05); the spleen index significantly increased in model rats compared with control group (P<0.01), and the RS-M treatment effectively decreased the spleen index (P<0.05).
     6. The level of serum ALT、Amm、NO、TNOS and iNOS significantly increased in model rats compared with control group (P<0.01), which could be decreased by RS treatment. The level of serum total protein and albumin decreased compared with control group (P<0.05, P<0.01), RS treatment could improve these indexes without statistical significance.
     7. ELISA results indicated the TNF-a level significantly increased compared with control group (P<0.01), which was decreased by RS-M and RS-H treatment (P<0.05, P<0.01)
     8. Our findings showed that compared with control group, there was a significant increase in the Bmax value of both PBRs and NMDA-R (P<0.01), which was reduced by RS-H treatment (P<0.01).
     9. Immunohistostaining results indicated liver cirrhosis in model group, RS treatment reduced the cell degeneration and necrosis. Compared with control group, the number of BrdU, NeuN and GFAP positive cells in model rats hippocampus decreased (P<0.01), RS treatment could increased the number of positive cells.
     The results of presnet study incicate that RS treatment leads to the increase of spontaneous movement and the improvement of learning and memory ability; mitigates the liver damage induced by CCl4; ablates the toxic effect caused by hyperammonemia, inhibits the increase of both PBRs and NMDA receptors, promotes hippocampal neurogenesis and the proliferation and differentiation of NSC.
引文
[1]Blei AT, Cordoba J. Hepatic Encephalopathy. Am J Gastroenterol.2001.96(7): 1968-76.
    [2]Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification:final report of the working party at the 11th World Congresses of Gastroenterology, Vienna,1998. Hepatology.2002.35(3):716-21.
    [3]Stewart CA, Smith GE. Minimal hepatic encephalopathy. Nat Clin Pract Gastroenterol Hepatol.2007.4(12):677-85.
    [4]Butterworth RF. Neuronal cell death in hepatic encephalopathy. Metab Brain Dis. 2007.22(3-4):309-20.
    [5]Sharma P, Sharma BC, Sarin SK. Predictors of nonresponse to lactulose in patients with cirrhosis and hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2010.22(5):526-31.
    [6]Snyder EY, Yoon C, Flax JD, Macklis JD. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci U S A.1997.94(21): 11663-8.
    [7]Zhang XL, Jiang B, Li ZB, Hao S, An LJ. Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Pharmacol Biochem Behav.2007.88(1):64-72.
    [8]Bi J, Wang XB, Chen L, et al. Catalpol protects mesencephalic neurons against MPTP induced neurotoxicity via attenuation of mitochondrial dysfunction and MAO-B activity. Toxicol In Vitro.2008.22(8):1883-9.
    [9]Jiang B, Du J, Liu JH, Bao YM, An LJ. Catalpol attenuates the neurotoxicity induced by beta-amyloid(1-42) in cortical neuron-glia cultures. Brain Res.2008. 1188:139-47.
    [10]Zhang X, Zhang A, Jiang B, Bao Y, Wang J, An L. Further pharmacological evidence of the neuroprotective effect of catalpol from Rehmannia glutinosa. Phytomedicine.2008.15(6-7):484-90.
    [11]Xu G, Xiong Z, Yong Y, et al. Catalpol attenuates MPTP induced neuronal degeneration of nigral-striatal dopaminergic pathway in mice through elevating glial cell derived neurotrophic factor in striatum. Neuroscience.2010.167(1): 174-84.
    [12]Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature. 1965.207(5000):953-6.
    [13]Brezun JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience.1999.89(4): 999-1002.
    [14]Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol.2001.435(4):406-17.
    [15]Song HJ, Stevens CF, Gage FH. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci.2002.5(5): 438-45.
    [16]Sharma BC, Sharma P, Agrawal A, Sarin SK. Secondary prophylaxis of hepatic encephalopathy:an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology.2009.137(3):885-91,891.e1.
    [17]Sharma P, Sharma BC, Sarin SK. Predictors of nonresponse to lactulose for minimal hepatic encephalopathy in patients with cirrhosis. Liver Int.2009.29(9): 1365-71.
    [18]Sundaram V, Shaikh OS. Hepatic encephalopathy:pathophysiology and emerging therapies. Med Clin North Am.2009.93(4):819-36, vii.
    [19]Bajaj JS, Review article:the modern management of hepatic encephalopathy. Aliment Pharmacol Ther.2010.31(5):537-47.
    [20]Sharma P, Sharma BC, Sarin SK. Predictors of nonresponse to lactulose in patients with cirrhosis and hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2010.22(5):526-31.
    [21]Bajaj JS, Sanyal AJ, Bell D, Gilles H, Heuman DM. Predictors of the recurrence of hepatic encephalopathy in lactulose-treated patients. Aliment Pharmacol Ther. 2010.31(9):1012-7.
    [22]Phongsamran PV, Kim JW, Cupo AJ, Rosenblatt A. Pharmacotherapy for hepatic encephalopathy. Drugs.2010.70(9):1131-48.
    [23]Albrecht J, Zielinska M, Norenberg MD. Glutamine as a mediator of ammonia neurotoxicity:A critical appraisal. Biochem Pharmacol.2010.80(9):1303-8.
    [24]Lemberg A, Fernandez MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol.2009.8(2):95-102.
    [25]Huang HC, Wang SS, Lee FY, et al. Simvastatin for rats with thioacetamide-induced liver failure and encephalopathy. J Gastroenterol Hepatol. 2008.23(7 Pt 2):e236-42.
    [26]Spahr L, Coeytaux A, Giostra E, Hadengue A, Annoni JM. Histamine H1 blocker hydroxyzine improves sleep in patients with cirrhosis and minimal hepatic encephalopathy:a randomized controlled pilot trial. Am J Gastroenterol.2007. 102(4):744-53.
    [27]Chastre A, Jiang W, Desjardins P, Butterworth RF. Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab Brain Dis.2010. 25(1):17-21.
    [28]Tsai PC, Fu TW, Chen YM, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis. Liver Transpl.2009.15(5):484-95.
    [29]Oria M, Raguer N, Chatauret N, et al. Functional abnormalities of the motor tract in the rat after portocaval anastomosis and after carbon tetrachloride induction of cirrhosis. Metab Brain Dis.2006.21(4):297-308.
    [30]Kallis YN, Robson AJ, Fallowfield JA, et al. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut.2011.60(4): 525-33.
    [31]Beaven SW, Wroblewski K, Wang J, et al. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology.2011.140(3):1052-62.
    [32]Amin A, Mahmoud-Ghoneim D. Texture analysis of liver fibrosis microscopic images:a study on the effect of biomarkers. Acta Biochim Biophys Sin (Shanghai).2011.43(3):193-203.
    [33]Wu MF, Hsu YM, Tang MC, et al. Agaricus blazei Murill extract abrogates CC14-induced liver injury in rats. In Vivo.2011.25(1):35-40.
    [34]Onozuka I, Kakinuma S, Kamiya A, et al. Cholestatic liver fibrosis and toxin-induced fibrosis are exacerbated in matrix metalloproteinase-2 deficient mice. Biochem Biophys Res Commun.2011.406(1):134-40.
    [35]Scheuer PJ. Classification of chronic viral hepatitis:a need for reassessment. J Hepatol.1991.13(3):372-4.
    [36]Norte MC, Cosentino RM, Lazarini CA. Effects of methyl-eugenol administration on behavioral models related to depression and anxiety, in rats. Phytomedicine. 2005.12(4):294-8.
    [37]Traub RJ, Tang B, Ji Y, Pandya S, Yfantis H, Sun Y. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology. 2008.135(6):2075-83.
    [38]Ji C, Li Q, Aisa H, et al. Gossypium herbaceam extracts attenuate ibotenic acid-induced excitotoxicity in rat hippocampus. J Alzheimers Dis.2009.16(2): 331-9.
    [39]Tan WF, Cao XZ, Wang JK, Lv HW, Wu BY, Ma H. Protective effects of lithium treatment for spatial memory deficits induced by tau hyperphosphorylation in splenectomized rats. Clin Exp Pharmacol Physiol.2010.37(10):1010-5.
    [40]Tan W, Cao X, Wang J, Lv H, Wu B, Ma H. Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5% isoflurane without temperature maintenance in rats. Eur J Anaesthesiol.2010.27(9):835-41.
    [41]DuBois S, Eng S, Bhartacharya R, et al. Breath ammonia testing for diagnosis of hepatic encephalopathy. Dig Dis Sci.2005.50(10):1780-4.
    [42]Stefoni S, Coli L, Bolondi L, et al. Molecular adsorbent recirculating system (MARS) application in liver failure:clinical and hemodepurative results in 22 patients. Int J Artif Organs.2006.29(2):207-18.
    [43]Bak LK, Iversen P, Sorensen M, et al. Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metab Brain Dis.2009.24(1):135-45.
    [44]Jayakumar AR, Norenberg MD. The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis.2010.25(1):31-8.
    [45]Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis:a role for nitric oxide. Lancet.1991.337(8744):776-8.
    [46]Chu CJ, Chang CC, Wang TF, et al. Detrimental effects of nitric oxide inhibition on hepatic encephalopathy in rats with thioacetamide-induced fulminant hepatic failure:role of nitric oxide synthase isoforms. J Gastroenterol Hepatol.2006. 21(7):1194-9.
    [47]Suarez I, Bodega G, Rubio M, Fernandez B. Induction of NOS and nitrotyrosine expression in the rat striatum following experimental hepatic encephalopathy. Metab Brain Dis.2009.24(3):395-408.
    [48]Suarez I, Bodega G, Rubio M, Fernandez B. Induction of NOS and nitrotyrosine expression in the rat striatum following experimental hepatic encephalopathy. Metab Brain Dis.2009.24(3):395-408.
    [49]Neary JT, Whittemore SR, Zhu Q, Norenberg MD. Destabilization of glial fibrillary acidic protein mRNA in astrocytes by ammonia and protection by extracellular ATP. J Neurochem.1994.63(6):2021-7.
    [50]Belanger M, Desjardins P, Chatauret N, Butterworth RF. Loss of expression of glial fibrillary acidic protein in acute hyperammonemia. Neurochem Int.2002. 41(2-3):155-60.
    [51]Haussinger D, Schliess F, Kircheis G. Pathogenesis of hepatic encephalopathy. J Gastroenterol Hepatol.2002.17 Suppl 3:S256-9.
    [52]Eddleston M, de la Torre JC, Oldstone MB, Loskutoff DJ, Edgington TS, Mackman N. Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J Clin Invest. 1993.92(1):349-58.
    [53]Bodega G, Suarez I, Lopez-Fernandez LA, Almonacid L, Zaballos A, Fernandez B. Possible implication of ciliary neurotrophic factor (CNTF) and beta-synuclein in the ammonia effect on cultured rat astroglial cells:a study using DNA and protein microarrays. Neurochem Int.2006.48(8):729-38.
    [54]Butterworth RF. Altered glial-neuronal crosstalk:cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem Int.2010.57(4):383-8.
    [55]Butterworth RF. Portal-systemic encephalopathy:a disorder of neuron-astrocytic metabolic trafficking. Dev Neurosci.1993.15(3-5):313-9.
    [56]Syapin PJ, Skolnick P. Characterization of benzodiazepine binding sites in cultured cells of neural origin. J Neurochem.1979.32(3):1047-51.
    [57]Da SF, Simorini F, Taliani S, et al. Anxiolytic-like effects of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis. J Med Chem.2008.51(18): 5798-806.
    [58]Taliani S, Da SF, Da PE, Chelli B, Martini C. Translocator protein ligands as promising therapeutic tools for anxiety disorders. Curr Med Chem.2009.16(26): 3359-80.
    [59]Do-Rego JL, Mensah-Nyagan AG, Feuilloley M, Ferrara P, Pelletier G, Vaudry H. The endozepine triakontatetraneuropeptide diazepam-binding inhibitor [17-50] stimulates neurosteroid biosynthesis in the frog hypothalamus. Neuroscience. 1998.83(2):555-70.
    [60]Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience.2006.138(3):749-56.
    [61]Lacapere JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor:structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids.2003.68(7-8):569-85.
    [62]Kassiou M, Meikle SR, Banati RB. Ligands for peripheral benzodiazepine binding sites in glial cells. Brain Res Brain Res Rev.2005.48(2):207-10.
    [63]Galiegue S, Tinel N, Casellas P. The peripheral benzodiazepine receptor:a promising therapeutic drug target. Curr Med Chem.2003.10(16):1563-72.
    [64]Weisinger G, Kelly-Hershkovitz E, Veenman L, Spanier I, Leschiner S, Gavish M. Peripheral benzodiazepine receptor antisense knockout increases tumorigenicity of MA-10 Leydig cells in vivo and in vitro. Biochemistry.2004.43(38): 12315-21.
    [65]Butterworth RF. Neurotransmitter dysfunction in hepatic encephalopathy:new approaches and new findings. Metab Brain Dis.2001.16(1-2):55-65.
    [66]Butterworth RF. The astrocytic ("peripheral-type") benzodiazepine receptor:role in the pathogenesis of portal-systemic encephalopathy. Neurochem Int.2000. 36(4-5):411-6.
    [67]Butterworth RF. Alterations of neurotransmitter-related gene expression in human and experimental portal-systemic encephalopathy. Metab Brain Dis.1998.13(4): 337-49.
    [68]Itzhak Y, Roig-Cantisano A, Dombro RS, Norenberg MD. Acute liver failure and hyperammonemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res.1995.705(1-2):345-8.
    [69]Hazell AS. Astrocytes and manganese neurotoxicity. Neurochem Int.2002.41(4): 271-7.
    [70]Normandin L, Hazell AS. Manganese neurotoxicity:an update of pathophysiologic mechanisms. Metab Brain Dis.2002.17(4):375-87.
    [71]Belanger M, Desjardins P, Chatauret N, Rose C, Butterworth RF. Mild hypothermia prevents brain edema and attenuates up-regulation of the astrocytic benzodiazepine receptor in experimental acute liver failure. J Hepatol.2005. 42(5):694-9.
    [72]Rao VL, Bowen KK, Rao AM, Dempsey RJ. Up-regulation of the peripheral-type benzodiazepine receptor expression and [(3)H]PK11195 binding in gerbil hippocampus after transient forebrain ischemia. J Neurosci Res.2001.64(5): 493-500.
    [73]Itzhak Y, Norenberg MD. Attenuation of ammonia toxicity in mice by PK 11195 and pregnenolone sulfate. Neurosci Lett.1994.182(2):251-4.
    [74]Galiegue S, Tinel N, Casellas P. The peripheral benzodiazepine receptor:a promising therapeutic drug target. Curr Med Chem.2003.10(16):1563-72.
    [75]Iversen P, Hansen DA, Bender D, et al. Peripheral benzodiazepine receptors in the brain of cirrhosis patients with manifest hepatic encephalopathy. Eur J Nucl Med Mol Imaging.2006.33(7):810-6.
    [76]Ishii T, Moriyoshi K, Sugihara H, et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem.1993.268(4): 2836-43.
    [77]Szatkowski M, Attwell D. Triggering and execution of neuronal death in brain ischaemia:two phases of glutamate release by different mechanisms. Trends Neurosci.1994.17(9):359-65.
    [78]Cisse M, Halabisky B, Harris J, et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature.2011.469(7328):47-52.
    [79]Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR. Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron.2010.68(5):948-63.
    [80]Ando K, Uemura K, Kuzuya A, et al. N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein:implications for neurodegeneration in Alzheimer disease. J Biol Chem.2011.286(9):7619-28.
    [81]Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMD A receptors and apoptotic neurodegeneration in the developing brain. Science.1999.283(5398): 70-4.
    [82]Andre JM, Leach PT, Gould TJ. Nicotine ameliorates NMDA receptor antagonist-induced deficits in contextual fear conditioning through high-affinity nicotinic acetylcholine receptors in the hippocampus. Neuropharmacology.2011. 60(4):617-25.
    [83]Yu SP, Yeh C, Strasser U, Tian M, Choi DW. NMDA receptor-mediated K+efflux and neuronal apoptosis. Science.1999.284(5412):336-9.
    [84]Liu HT, Akita T, Shimizu T, Sabirov RZ, Okada Y. Bradykinin-induced astrocyte-neuron signalling:glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J Physiol.2009.587(Pt 10): 2197-209.
    [85]Kosenko E, Kaminsky Y, Grau E, et al. Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+,K(+)-ATPase. J Neurochem.1994.63(6):2172-8.
    [86]Kosenko E, Kaminsky Y, Grau E, Minana MD, Grisolia S, Felipo V. Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem Res.1995.20(4): 451-6.
    [87]Kosenko E, Felipo V, Montoliu C, Grisolia S, Kaminsky Y. Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria. Metab Brain Dis.1997.12(1):69-82.
    [88]Kosenko E, Kaminsky Y, Kaminsky A, et al. Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res.1997.27(6): 637-44.
    [89]Kosenko E, Kaminsky Y, Lopata O, et al. Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication. Metab Brain Dis.1998.13(1):29-41.
    [90]Kosenko E, Kaminski Y, Lopata O, Muravyov N, Felipo V. Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic Biol Med.1999.26(11-12):1369-74.
    [91]Kosenko E, Kaminsky Y, Stavroskaya IG, Felipo V. Alteration of mitochondrial calcium homeostasis by ammonia-induced activation of NMDA receptors in rat brain in vivo. Brain Res.2000.880(1-2):139-46.
    [92]Kosenko E, Llansola M, Montoliu C, et al. Glutamine synthetase activity and glutamine content in brain:modulation by NMDA receptors and nitric oxide. Neurochem Int.2003.43(4-5):493-9.
    [93]Hermenegildo C, Monfort P, Felipo V. Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology.2000.31(3):709-15.
    [94]Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol.2004.40(2):247-54.
    [95]Rodrigo R, Cauli O, Gomez-Pinedo U, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology.2010.139(2):675-84.
    [96]Bruck J, Gorg B, Bidmon HJ, et al. Locomotor impairment and cerebrocortical oxidative stress in portal vein ligated rats in vivo. J Hepatol.2011.54(2):251-7.
    [97]Monfort P, Cauli O, Montoliu C, et al. Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy:therapeutical implications. Neurochem Int.2009.55(1-3):106-12.
    [98]Cauli O, Rodrigo R, Piedrafita B, Llansola M, Mansouri MT, Felipo V. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy:ibuprofen restores its motor activity. J Neurosci Res.2009.87(6): 1369-74.
    [99]Montoliu C, Piedrafita B, Serra MA, et al. IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol.2009.43(3):272-9.
    [100]Armstrong A, Ryu YK, Chieco D, Kuruvilla R. Frizzled3 is required for neurogenesis and target innervation during sympathetic nervous system development. J Neurosci.2011.31(7):2371-81.
    [101]Thiriet N, Agasse F, Nicoleau C, et al. NPY promotes chemokinesis and neurogenesis in the rat subventricular zone. J Neurochem.2011.116(6):1018-27.
    [1]Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification:final report of the working party at the 11th World Congresses of Gastroenterology, Vienna,1998. Hepatology.2002.35(3):716-21.
    [2]Rao KV, Panickar KS, Jayakumar AR, Norenberg MD. Astrocytes protect neurons from ammonia toxicity. Neurochem Res.2005.30(10):1311-8.
    [3]Konopacka A, Konopacki FA, Albrecht J. Protein kinase G is involved in ammonia-induced swelling of astrocytes. J Neurochem.2009.109 Suppl 1: 246-51.
    [4]Norenberg MD, Jayakumar AR, Rama RKV, Panickar KS. New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis.2007. 22(3-4):219-34.
    [5]Norenberg MD, Rama RKV, Jayakumar AR. Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis.2009.24(1):103-17.
    [6]Rao KV, Norenberg MD. Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis.2001.16(1-2):67-78.
    [7]Rodrigo R, Cauli O, Boix J, ElMlili N, Agusti A, Felipo V. Role of NMDA receptors in acute liver failure and ammonia toxicity:therapeutical implications. Neurochem Int.2009.55(1-3):113-8.
    [8]Bismuth M, Funakoshi N, Cadranel JF, Blanc P. Hepatic encephalopathy:from pathophysiology to therapeutic management. Eur J Gastroenterol Hepatol.2011. 23(1):8-22.
    [9]Bosoi CR, Rose CF. Identifying the direct effects of ammonia on the brain. Metab Brain Dis.2009.24(1):95-102.
    [10]Vaquero J, Burterworth RF. Mechanisms of brain edema in acute liver failure and impact of novel therapeutic interventions. Neurol Res.2007.29(7):683-90.
    [11]Rama RKV, Jayakumar AR, Norenberg DM. Ammonia neurotoxicity:role of the mitochondrial permeability transition. Metab Brain Dis.2003.18(2):113-27.
    [12]Butterworth RF. Alterations of neurotransmitter-related gene expression in human and experimental portal-systemic encephalopathy. Metab Brain Dis.1998.13(4): 337-49.
    [13]Itzhak Y, Roig-Cantisano A, Dombro RS, Norenberg MD. Acute liver failure and hyperammonemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res.1995.705(1-2):345-8.
    [14]Hazell AS. Astrocytes and manganese neurotoxicity. Neurochem Int.2002.41(4): 271-7.
    [15]Jayakumar AR, Panickar KS, Norenberg MD. Effects on free radical generation by ligands of the peripheral benzodiazepine receptor in cultured neural cells. J Neurochem.2002.83(5):1226-34.
    [16]Norenberg MD, Jayakumar AR, Rama RKV. Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis.2004.19(3-4):313-29.
    [17]Haussinger D, Gorg B. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity. Curr Opin Clin Nutr Metab Care.2010.13(1):87-92.
    [18]Harris MK, Elliott D, Schwendimann RN, Minagar A, Jaffe SL. Neurologic presentations of hepatic disease. Neurol Clin.2010.28(1):89-105.
    [19]Lemberg A, Fernandez MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol.2009.8(2):95-102.
    [20]Ohara K, Aoyama M, Fujita M, Sobue K, Asai K. Prolonged exposure to ammonia increases extracellular glutamate in cultured rat astrocytes. Neurosci Lett.2009.462(2):109-12.
    [21]Bemeur C, Desjardins P, Butterworth RF. Evidence for oxidative/nitrosative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis.2010.25(1):3-9.
    [22]Seyan AS, Hughes RD, Shawcross DL. Changing face of hepatic encephalopathy: role of inflammation and oxidative stress. World J Gastroenterol.2010.16(27): 3347-57.
    [23]Haussinger D, Gorg B. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity. Curr Opin Clin Nutr Metab Care.2010.13(1):87-92.
    [24]Palomero-Gallagher N, Bidmon HJ, Cremer M, et al. Neurotransmitter receptor imbalances in motor cortex and basal ganglia in hepatic encephalopathy. Cell Physiol Biochem.2009.24(3-4):291-306.
    [25]Jones EA. Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab Brain Dis.2002.17(4):275-81.
    [26]Bender AS, Norenberg MD. Effect of ammonia on GABA uptake and release in cultured astrocytes. Neurochem Int.2000.36(4-5):389-95.
    [27]Monfort P, Munoz MD, ElAyadi A, Kosenko E, Felipo V. Effects of hyperammonemia and liver failure on glutamatergic neurotransmission. Metab Brain Dis.2002.17(4):237-50.
    [28]Albrecht J, Zielinska M, Norenberg MD. Glutamine as a mediator of ammonia neurotoxicity:A critical appraisal. Biochem Pharmacol.2010.80(9):1303-8.
    [29]Ishii T, Moriyoshi K, Sugihara H, et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem.1993.268(4): 2836-43.
    [30]Chu CJ, Chang CC, Wang TF, et al. Detrimental effects of nitric oxide inhibition on hepatic encephalopathy in rats with thioacetamide-induced fulminant hepatic failure:role of nitric oxide synthase isoforms. J Gastroenterol Hepatol.2006. 21(7):1194-9.
    [31]Suarez I, Bodega G, Rubio M, Fernandez B. Induction of NOS and nitrotyrosine expression in the rat striatum following experimental hepatic encephalopathy. Metab Brain Dis.2009.24(3):395-408.
    [32]Jayakumar AR, Panickar KS, ChR M, Norenberg MD. Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci.2006. 26(18):4774-84.
    [33]Sinke AP, Jayakumar AR, Panickar KS, Moriyama M, Reddy PV, Norenberg MD. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture. J Neurochem.2008.106(6):2302-11.
    [34]Kleinert H, Pautz A, Linker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol.2004.500(1-3):255-66.
    [35]Sinke AP, Jayakumar AR, Panickar KS, Moriyama M, Reddy PV, Norenberg MD. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture. J Neurochem.2008.106(6):2302-11.
    [36]Rose C, Kresse W, Kettenmann H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J Biol Chem.2005.280(22):20937-44.
    [37]Rama RKV, Chen M, Simard JM, Norenberg MD. Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport.2003.14(18): 2379-82.
    [38]Rama RKV, Chen M, Simard JM, Norenberg MD. Suppression of ammonia-induced astrocyte swelling by cyclosporin A. J Neurosci Res.2003. 74(6):891-7.
    [39]Chastre A, Jiang W, Desjardins P, Butterworth RF. Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab Brain Dis.2010. 25(1):17-21.
    [40]Rama RKV, Norenberg MD. Aquaporin-4 in hepatic encephalopathy. Metab Brain Dis.2007.22(3-4):265-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700