油菜秸秆装饰材料的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人民生活水平的提高,工程建筑、装饰装修蓬勃发展,同时对建筑材料提出了适用经济、美观环保的要求。传统木材尽管社会需求量仍然很大,但是由于森林资源的日益匾乏,以及木材自身存在的缺点,使用上受到很大的限制。而利用油菜秸秆等植物秸秆类生物质原料代替木材与塑料复合制备新型生物质塑料复合装饰材料,可充分利用废弃生物质资源,避免焚烧时所造成的环境污染,近年来越来越受到人们的重视。本实验研究证明:将油菜秸秆粉进行一定的物理、化学改性处理之后,可以明显改善油菜秸秆粉和塑料的相容性,提高复合材料的力学性能和加工性能,可为湖北省油菜作物的综合利用,提高油菜产后附加值、增加农民收入,提供一条可靠的途径。
     本课题在综述木材-塑料复合材料(WPC)国内外研究现状及发展趋势的基础上,提出研究开发油菜秸秆-PVC复合装饰材料,并针对油菜秸秆-PVC复合装饰材料中存在的问题,提出了用碱化氨化法和偶联剂法联合改善油菜秸秆粉与PVC相容性的新思路:以油菜秸秆粉为主要原料,采用碱化氨化法对油菜秸秆纤维预处理后再用偶联剂进行疏水化改性,辅以增塑、交联、增强反应,通过模压或挤出工艺制备油菜秸秆装饰材料。
     本研究的主要内容和结论如下:
     1.油菜秸秆的热分解分为4个阶段:第一个阶段从50℃到100℃是物料中的游离水分蒸发阶段;第二个阶段是从100℃到230℃,油菜秸秆发生缓慢解聚;第三个阶段是从230℃到710℃,是纤维素和半纤维素还有木质素的热分解阶段;最后一个阶段是从710℃到900℃,为剩余木质素的热分解和碳化阶段。在热解的主要温度区间230~380℃,不同加热速率下其活化能分别为44.5KJ/mol、53.7 KJ/mol、57.5KJ/mol。
     2.在105℃下干燥2h可有效去除油菜秸秆水分,其失重率控制在0.5%以内。干燥后油菜秸秆粉的回吸试验表明:80目油菜秸秆粉的回潮率最大,48h后可达19.96%,因此油菜秸秆粉干燥后1小时内需装入防水塑料袋中封存,以防止回潮现象发生。
     3.油菜秸秆粉在200℃高温下加热时间超过5min之后,色度增加值(DE)才会出现大幅上升,因此在正常的加工条件下其色度变化完全可以满足产品的要求
     4.经过碱化氨化法联合处理油菜秸秆粉之后,可以大幅降低其结晶度,最佳处理时间为24h。
     5.双氨基硅烷对油菜秸秆粉的疏水化改性效果最好,并采用正交实验得出最佳改性条件为双氨基硅烷用量为油菜秸秆粉重量的2.5%,改性时间2h,改性温度100℃,搅拌速度850r/min。
     6.确定了油菜秸秆粉的最佳粒径为80目;在装饰材料中间的最佳填充量为80份;并确定了增塑剂DOP的最佳用量为7.5份;最佳增韧剂为ACR-401,其最佳用量为12份;填充剂稻谷壳与油菜秸秆粉的最佳用量比为2:3,最佳脱模剂为由液体石蜡和硬脂酸按1:1组成的复合脱模剂,用量为2份,交联剂DCP的最佳用量为1.8份。
     7.双螺杆挤出机对植物性纤维在PVC基体的分散和塑化作用强于单螺杆挤出机,在植物纤维填充量一定的条件下,新料PVC制成产品的性能高于回收料PVC制成产品的性能
     8.采用三因素二次正交旋转组合试验得出机头温度、主机转速和熔体压力对油菜秆薄板的力学性能影响的三元二次回归方程为:Y=-1447.1923+17.8519Z_1-9.3677Z_2+33.6714Z_3+0.1788Z_1Z_2-0.0609Z_1~2-0.67222Z_2~2-4.8102Z_3~2,确定了各因素的最优试验水平为:机头温度169.55℃,主机转速15.58rpm,熔体压力3.5 MPa。在这最佳工艺条件下,最佳产品的力学性能和卫生指标分别为:弯曲强度27.3MPa,弯曲弹性模量1747MPa,抗曲实验19mm。达到部颁标准BB/T0020-2001(参考木塑托盘技术要求),表面耐香烟灼烧性符合GB/T15102-94标准要求,无黄斑、黑斑、裂纹、鼓泡,甲醛含量为0mg/100g。
     9.油菜秆薄板在25℃水中48h后吸水率仅为4.98%,当空气的相对湿度在60到100范围以内,油菜秆薄板样品的最大吸潮率为4.75%,适应环境较好,不易吸潮
     以上的基础研究为农业废弃资源的综合利用以及农业产业化开辟了一条崭新的途径,为解决“三农”问题提供了一定的理论依据和实际参考。因此,本研究项目具有显著的经济、社会和环保三重效益。
In recent years, with the improvement of living standards, building construction anddecoration, the requirement of building materials became economical, aesthetical andenvironmental. Although having great demand, due to the decreasing forest resources andthe shortcomings of wood production, the application of traditional wood production hadbeen restricted. Using plant straw, such as rape straw, instead of lumber, then, with plasticto made the new rapestraw-plastic decoration composite can make full use of abandonedbiomass resource, and avoid the environmental pollution caused by burning. This studyproved that, a certain physical and chemical processing carried on the rape straw stalkpowder, obviously improve the compatibility between rape straw powder and plastic, andenhance the processing and mechanical properties of the composite. This can provides areliable way for the comprehensive utilization of rape crops in Hubei province, enhancingproduct added value, and increasing the farmers' income.
     In the thesis, it has been reviewed that the research situation at home and abroad anddeveloping trend of wood-plastic composites (WPC), proposed to study and developrapestraw-plastic decorative composites. To the existing problems, an ideal to improve thecompatibility between rape straw powder and PVC with the combined method ofbasified-ammoniated and coupling agents. The idea is: with rape straw powder as mainmaterial, using the combined method of basified and ammoniated as pretreatment method,then using the method of coupling agents as hydrophobic modification method, withplasticization, crosslinking, enhancement reaction, we can crank out the rape strawbiomass composite by the process of compression molding or extrusion.
     The main contents and conclusions are as follows:
     1. There are 4 stage in the process of the thermolysis of rape straw: the first one is from 50℃to 100℃, which is the free Moisture Evaporation Inside the material; thesecond stage is from 100℃to 230℃, and the rape straw has slowly depolymerized; thethird stage, from 230℃to 710℃, is the thermolysis stage of cellulose, hemicellulose,and lignin; the last stage is from 710℃to 900℃, for the thermolysis and carbonized stageof the surplus lignin. The activation energy is 44.5KJ/mol、53.7KJ/mol、57.5 KJ/molunder different heating rate, which is in 230℃~380℃- the main temperature district ofthe thermal decomposition
     2. It was able to effectively remove the rape straw stalk moisture content dring 2hours under 105℃, its weight loss rate was controlled in 0.5%, which meets theindustrialization production requirements. The moisture regain rate of the 80M rapesstraw powder is the biggest, and it can reach 19.96%after 48h. So the dry rape strawpowder must be packed in waterproof plastic bag in 1h to prevent the moisture regain ofthe rape straw powder.
     3. Until 5 minutes' manipulation of heating below the temperature of 200℃, DEvalue of the rape straw powder increased sharply, therefore, the trend of chromaticitychange could can meet the requirements of product under the normal processing condition
     4. After the combined method of basified and ammoniated, the crystalline of the rapestraw would been obviously reduced, and the optimal reaction time is 24h.
     5. The best hydrophobic modification effectiveness was obtained for rape strawpowder with the double aminosilane coupling agents. We obtain the best modifiedcondition through the orthogonal experiment, the condition is: the dosage of doubleaminosilane coupling agents is 2.5%, modified time is 2h, modified temperature is 100℃,and mixing speed is 850r/min.
     6. The optimal size of rape straw powder is 80M; and the optimal filler level is 80phr;the optimal level of plasticizer -DOP is 7.5phr; the best flexibilizer is ACR-401, and theoptimal level is 12 phr; the optimal mass proportion of husk powder and rape strawpowder is 2:3; the optimal release agent is compound release agent include 50%liquidparaffin and 50%stearic acid, and the optimal level is 2 phr; the optimal level ofcrosslinking agent DCP is 1.8 phr.
     7. Twin-screw extruder is better than single screw extruder in the disperse and plastication behavior of plant fiber in PVC substrate.When filling amount of plant fiberhas a certain condition, the product property of pure PVC is better than recycled PVC.
     8. The regression equation describing the relation between bending strength andelastic modulus was obtained by using the three-factors quadratic regression orthogonalrotary method: Y=-1447.1923+17.8519Z_1-9.3677Z_2+33.6714Z_3+0.1788Z_1Z_2-0.0609Z_1~2-0.6722Z_2~2-4.8102Z_3~2, The optimal operating conditions were also discussed: The extrusiontemperature 169.55℃, screw speed 15.58r/min, melt pressure 3.5MPa. The optimalmechanical properties and hygienical guide line as follows: The bending strength is27.3Mpa, elastic modulus is 1747MPa, flexure experiment is 19mm,meet the industrystandard of BB/T0020-2001, surface anti-cigarettes-burned has no macular, crack, bubble,met the industry standard of GB/T15102-94 and formaldehyde content is 0 mg/100g,
     9. The water absorption of the rape-straw sheet is only 4.98%in 25℃, 48 hours,When the relative humidity of air is between 60~100, the most moisture absorption ofproduct is 4.75%, and it has a better adaptability to the environment.
     The results of the foundational research open up a reliable path for integratedutilization of abandon resources and agricultural industrialization, therefore, providepractical references for resolving "three-farming". Therefore, the research has aprominent economic, social and environmental benefit.
引文
1.陈耀庭,徐凌秀.天然纤维复合仿木材料的设计与开发[J].塑料助剂,2003,39(3): 16—18
    2.陈玉放,揣成智,谢来苏.植物纤维/热塑性复合材料的开发及有关问题[J].现代塑料加工应用,1998, 10(2): 50-53
    3.揣成智,李树,蔺艳琴.聚丙烯/接枝木纤维复合材料相容性及性能的研究[J].中国塑料,2000, 14(5): 23-28
    4.丁筠,钟鑫.PVC/木粉复合材料研究进展[J].人造板通讯,2003,1:3-5
    5.高洁,汤烈贵.我国纤维素科学发展近况[J].纤维素科学与技术,1993,1(1):1-11
    6.郭佩玉,李道娥,韩鲁佳,夏建平.几种秸秆处理方法的比较研究[J].农业工程学报1995,11(2):149-155
    7.贺永惠.秸秆的碱化、氨化处理[J].饲料广角2000,20:13-16
    8.胡荣祖,史启祯.热分析动力学[M].科学出版社,2001:170-175
    9.李坚.木材波谱学[M].科学出版社,2003:14-18
    10.李思良,刘易凡,陈璞.植物纤维/热塑性树脂复合材料的研究[J].塑料工业,1999. 27(1):14-15
    11.李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业,2003(31):11-14
    12.梁小波,杨桂成.表面处理对剑麻纤维表面状况及热性能的影响[J].广东化工,2004,1:12-15
    13.廖兵,黄玉惠,陈鸣才.改性木纤维对LDPE力学性能的影响[J].高分子材料科学与工程,1999, 15(3):123-125
    14.廖兵,黄玉惠,赵树录,林果,丛广民.接枝改性木纤维对聚氯乙烯/木纤维材料力学性能的影响[J].应用化学,1996,13(5):64-66
    15.蔺艳琴,揣成智.热塑性塑料/天然植物纤维复合材料的研究[J].塑料科技,1999,8(4): 8-10
    16.刘乃安.生物质材料热解失重动力学及其分析方法研究[D].合肥:中国科技大学博士学位论文,2000
    17.刘瑞庭、江波.木塑复合材料的一步法成型技术与装备研究[J].塑料,2004,(33):11—14
    18.刘英俊,刘伯元.塑料填充改性[M].北京:中国轻工业出版社,2000,123-135
    19.鲁博,张林文.天然纤维复合材料[M].化学工业出版社,2005:17-37
    20.马永.回归旋转设计中的寻优方法及计算机实现[J].西北农业大学学报,1996,24(5):99-102
    21.秦庆戊,崔永岩.PVC/ACR共混合金的研究[J].塑料科技,2000,5: 9-12
    22.沈其荣,徐勇,杨红,周立祥,郁清,周志萍.化学处理水稻秸秆水溶性有机物的光谱特征研究[J].光谱学与光谱分析,2005,25(2):211-215
    23.唐人成、杨旭红.纺织用天然竹纤维的结构和热性能[J].林产化学与工业,2004,24(1):43-47
    24.王建民,李凤岭,常旭升,侯斌,延燕.具有核/壳结构的有机刚性粒子对PVC的改性[J].现代塑料加工应用,1997, 9(2): 1-5
    25.王钦德,杨坚.食品试验设计与统计分析[M].北京:中国农业大学出版社,2003:410~429
    26.王清华,贺永惠,张金洲,韩芬霞.复合碱化处理玉米秸秆的研究[J].河南科技学院学报,2005,33(1):28-31
    27.文丽华、王树荣.木材热解特性和动力学研究[J].消防科学与技术,2004,23(1):2-5
    28.吴韦康、周定国.稻草原料表面特性FTIR和XPS分析[J].木材工业, 2003,17(6):6-8
    29.肖泽芳,赵林波,谢延军,王清文.木材—热塑性塑料复合材料的进展[J].东北林业大学学报,2003,31(1):39-41
    30.谢季坚.农业科学中的模糊数学方法[M].武汉:华中理工大学出版社,1993.
    31.许建和,孙贤达,卢为琴,高鸿锦.红外光谱定量法研究醇在正烷烃中的氢键缔合[J].物理化学学报, 1998,8(3):358-363
    32.薛平,张明珠,何亚,何继敏.木塑复合材料及挤出成型特性的研究[J].中国塑料,2001,(15):8-11
    33.杨庆贤.木塑复合材料性能与相关因素的研究[J].福建林学院学报,1997,17(3):273-277
    34.杨淑蕙.植物纤维化学(第三版)[M].中国轻工业出版社,2001:163-165
    35.杨卫民,杨高品.塑料挤出加工新技术[M].化学工业出版社,2006:185-200
    36.殷小春,任鸿烈.对改善木塑复合材料表面相容性因素的探讨[J].塑料,2002(31):5-9
    37.尹以高,夏成林,钟圣兆.塑木复合材料的研制和性能[J].塑料工业,2002(30):6-10
    38.于娟,章明川,沈轶.生物质热解特性的热重分析[J].上海交通大学学报,2002,36(10):1475-1478
    39.余家林.农业多元试验统计[M].北京农业大学出版社,1993
    40.臧克峰,项素云.MAH-g-PP及偶联剂处理木粉填充PP的研究[J].中国塑料,2001,15(2):71-73
    41.曾汉民.树脂基复合材料界面工程[M].清华大学出版社,1990
    42.张明珠,薛平,周甫萍.木粉/再生热塑性塑料复合材料性能的研究[J].塑料,2002(31):4-8
    43.张明珠.木制纤维素填充热塑性塑料复合材料与挤出成型的研究[D].北京:北京化工大学硕士学位论文,2001
    44.张维虎.CPE改性硬质PVC的探讨[J].现代塑料加工应用,1998,10(4):14-16
    45.赵子,王澜,王佩璋.木塑复合材料的研究开发进展[J].塑料制造,2007,(3):35-39
    46.钟鑫,薛平.木塑复合材料性能研究的关键问题[J].工程塑料应用,2003,31(3):67-70
    47.周兴平、解孝林.剑麻纤维的表面改性及其复合材料的研究进展[J].工程塑料应用,2000, 28(8): 44—47
    48. B Singh, M Gupta and A Varma, Influence of fiber surface treatment on the properties of sisal-polyester composites. Polym.Compos, 1996, 17:910-918
    49. B. V. Kokta D. Maldas C. Daneault, Composites of PVC and wood fibers, Part Ⅱ: effect of chemical treatment Polym. compos. 1990, 11 (2): 81-89
    50. Bledzki AK, Gassan J. Composites reinforced with cellulose with cellulose based fibres. Prog Polym Sci, 1999, 24:221-274
    51. Christopher Wayne Brandt, Masters Thesis, "Load-Duration Behavior of Extruded Wood-Plastic Composites", 2003, Washington State University.
    
    52. Cordero T., Garcia F, Rodriguez J. J. A kinetic study of holm oak wood pyrolysis from dynamic and isothermal TG experiments, Thermochimica Acta 1994, 244: 1-20.
    
    53. David Paul Harper, Doctors Thesis, "A Thermodynamic, SpecUoscopic and Mechanical Characterization of The Wood-Polypropylene Inteiphase", 2003, Washington State University.
    
    54. Debesh Maldas, Bohuslav V. Kokta, Performance of Hubrid Reinforcements in PVC Composites: Part I-Use of Surface-Modified Mica and Wood Pulp as Reinforcements, J. Testing&Evaluation, 1993,21(1): 68-76
    
    55. Fatih Mengeloglu, Laurent M Matuana. Mechanical properties of extrusion-foamed rigid PVC/wood-flour composites. J. Vinyl. Addit. Technol. 2003(9), 1:26-31
    
    56. Jayamol George, Sreekala M S, Sabu Thomas. A review on interface modification and characterization of natural fiber reinforced plastic composite. Polym. Eng. Sci, 2001,41, (9): 1471-1485
    
    57. John Patterson. New Opportunities With Wood-Flour-Foamed PVC. J.Vinyl&Additive Technology, 2001, 7(3): 138
    
    58. Kachlakev, Damian L, Lundy, James R. Performance of Hollow Glass Fiber-reinforced Polymer Rebars. Journal of Composites for Construction, 1999, 3(2): 87-91
    
    59. Kevin Jerome Haiar, Masters Thesis,"Performance and Design of Prototype Wood-PlasticComposite sections", 2003, Washington State University.
    
    60. Kristiina O, lindberg. The natural and Location of SEBE-MA compatibilizer in polyethylene- wood flour composite. Appl Polym Sci, 1998,69: 201-209
    
    61. L.Matuana-Malanda, Faith Mengeloglu. Microcellular Foaming of Impact-Modified Rigid PVC/Wood-Flour Composites, J. Vinyl&Addi. Tech, 2001, 7(2): 67-77
    
    62. Laurent M. Matuana, Chul B Park, John J Balatinecz. Processing and cell morphology relationships for microcellular foamed PVC/wood-flour composites. Polym. Eng, Sci, 1997(37), 7: 1137-1147
    
    63. Laurent M. Matuana, Fatih Mengelolu. Microcellular foaming of impact-modified rigid PVC/wood-flour composites. J. Vinyl. Addit. Technol. 2001(7), 2: 67-75
    64. M. Kazayawoko, J. J. Balatinecz, R. T. Woodhams, Diffuse reflectance flourier transform infrared spectra of wood fibers treated with maleated polypropylenes, Journal of applied polymer science, 1997(66), 1163-1173
    
    65. Marcu, V, Segal, E. Non-isothermal kinetics with non-linear temperature-programme, Thermochimica Acta, 1978,24: 178-181
    
    66. MARY L. NELSON, ROBERT T. O CONNOR. Rclation of certain infrared hands to cellulose crystallinity and crystal lattice type. Part I Spectra of latticc types I II and III of amorphons cellulose. Jounrnal of Applied Polymer Science ,1964, 8(3): 1311-1324
    
    67. Qingxiu Li, Laurent M. Matuana, Foam extrusion of high density polyethylene/ PVC/wood-flour composites using chemical foaming agents. J. Appl. Polym. Eng, Sci, 2003(88), 14:3139-3150
    
    68. Rizvi G M, Park C B, Lin W S, Guo G R. Pop-Iliev Expansion mechanisms of plastic/wood-flour composite foams with moisture, dissolved gaseous volatiles, and undissolved gas bubbles. Polym. Eng, Sci, 2003(43), 7: 1347-1360
    
    69. Tomashevitch, K. V, Kalinin, S. V, Vertegel, A. A., Oleinikov, N. N., Ketsko, V A.,Tretyakov, Yu. D. Application of non-linear heating regime for the determinationof activation energy and kinetic parameters of solid-state reactions, Thermochimica Acta, 1998,323: 101-107.
    
    70. Vachuska, J., Voboril, M. Kinetic data computation from non-isothermal thermogravimetric curves of non-uniform heating rate, Thermochimica Acta. 1971,2: 379-392
    
    71. Wu,H.F., Dwight,D.W., Huff, N.T. Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Composites Science and Technology, 1997, 57(8): 975-983
    
    72. Zadorecki P, Flodin P. Surface modification of cellulose fibers. Journal of Applied Polymer Science, 1986, 31(6): 1699-1707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700