火积及其在传热优化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界众多的运动都是沿着“用力最小”的途径进行,在物理学上表现为许多物理现象遵循最小作用量原理。本文试图将此原理引入传热学中,传热学目的是研究热量传递的规律及其快慢,本文寻求传热过程中的最小作用量原理,并在其基础上对传热过程进行优化,使热量沿着“用力最小”的途径传递。
    首先对非平衡热力学中最低能量耗散原理和最小熵产原理进行了分析,发现它们所要求的热流与温度之间的关系与傅立叶定律不一致。这是因为熵和熵产是描述热功转换的热力学参数,熵产对应的是可用能的损失,所以基于最低能量耗散原理和最小熵产原理来分析和优化热量传递过程是值得讨论的。
    对于满足傅立叶定律的传热问题,本文提出了一个新的物理量:火积,用它表征物体(系统)传递热量的总能力。在可逆过程中,火积 是守恒的,不发生热量传递能力的耗散。对于不可逆传热过程,热量从高温流向低温处,会产生火积 耗散,使热量传递能力降低。在火积 这个物理量的基础上,采用加权余量法建立了传热学中的火积 极值原理,包括温度表述的最小火积 原理和热流表述的最小火积 原理。火积 极值原理完整描述了满足傅立叶定律的传热问题,它等效于傅立叶定律、能量守恒方程和边界条件等传热过程所需满足的方程和条件。
    针对传热优化过程,根据火积 极值原理提出了火积 耗散极值原理。在给定热流求最小温差时满足温度表述的最小火积 耗散原理,在给定温差求最大热流时满足热流表述的最大火积 耗散原理。采用火积 耗散极值原理对体点问题进行优化的结果优于熵产最小原则,原因在于火积 耗散极值原理的优化目标是提高热量传递的效率,而熵产最小原则的目标是减少可用能的损失。同时,体点问题中导热系数的优化结果证明了导热仿生优化方法中的优化原则:温度梯度均匀性原则。
    最后采用加权余量法,对力表述和流表述的最低能量耗散原理进行了补充和修正,建立了完整描述可用能传递过程的变分原理。同时对最低能量耗散原理和最小熵产原理之间的关系进行了分析,结果表明最小熵产原理不是独立的,它只是最低能量耗散原理在特定条件下的一种表现形式。
Many motions in nature take the easiest or minimum paths, which are described in physics by the principles of least action. The subject of heat transfer is to investigate the nature of heat transport phenomena, especially the heat transfer rate. Therefore, the principle of least action in heat transfer is studied and new principles are developed. Based on the principles, the heat transfer process is optimized to maximize the heat transfer rate, so that the heat flux is controlled to flow along the easiest or quickest path for the given conditions.
    Firstly, two extremum principles in non-equilibrium thermodynamics, the principle of least dissipation of energy and the principle of minimum entropy production, are analyzed. The linear phenomenological law for heat flux and temperature is found to be different from the Fourier Law because entropy and entropy production are the thermodynamic properties to measure the conversion efficiency of heat to work. The entropy production corresponds to the loss of available energy. Therefore, based on the conception of entropy, principle of least dissipation of energy and the principle of minimum entropy production are unavailable for the analysis or the optimization of the heat transfer rate.
    For the heat transfer process following the Fourier Law, a new special word, “entranspy”, is created to define a new physical property, which means the overall capability of heat transport. In reversible process, there is the entranspy conservation, that is, no loss of capability of heat transport. However, in irreversible process where the heat flows from high temperature to low temperature, the entranspy should be dissipated and the heat transport capability should be reduced. Based on the concept of entranspy, the principle of extremum entranspy is developed by the weighted residual method, which includes the principle of minimum entranspy in the temperature representation and the principle of minimum entranspy in the heat flux representation. The principle of extremum entranspy renders the heat transfer process completely, that is, the principle is equivalent to the Fourier Law, energy
    
    
    conservation equation and the boundary conditions.
    According to the principle of extremum entranspy, the principle of extremum entranspy dissipation is presented for heat transfer enhancement. The principle of extremum entranspy dissipation includes two principles, which correspond to the two goals of heat transfer enhancement respectively. When the enhancement aims to minimize the temperature difference for given heat flux, the optimization follows the principle of minimum entranspy dissipation in temperature representation. Alternatively, when the enhancement maximizes the heat flux for given temperature difference, the optimization follows the principle of maximum entranspy dissipation in heat flux representation.
    Then, the principle of extremum entranspy dissipation is applied to optimize the volume-to-point problem. Both the theoretical and numerical results show higher heat transfer rate than those obtained by the method of entropy generation minimization. The comparison shows that the principle of extremum entranspy dissipation is to maximize the heat transfer rate, while the entropy generation minimization is to minimize the loss of available energy. At the same time, the result of the principle of extremum entranspy dissipation is characterized by the uniform temperature-gradient, which is exactly the principle to optimize the distribution of high conductivity material in bionic optimization method.
    Finally, the weighted residual method is also applied to modify and complete the principle of least dissipation of energy to represent the transport process of available energy. Then the relation between the principle of least dissipation of energy and the principle of minimum entropy production is analyzed. The result shows that the minimum entropy production is not an independent principle but a reformulation of the principle of least dissipation of energy for special cases.
引文
王补宣. 面临新世纪机遇的工程热物理. 世界科技研究与发展, 1998, 20(5): 68-70
    王补宣. 热物理和热工研究开发的进展与机遇. 物理与工程, 2000, 10(6): 1-4
    黎勇, 彭立颖. 从世界可持续发展高峰会议的成果看能源问题的紧迫性与艰巨性. 环境保护, 2002, 10: 5-11
    National Energy Policy, 2001, www.whitehouse.gov/energy
    国民经济和社会发展“九五”计划和2010年远景目标纲要. 八届人大四次会议工作报告, 1996.3
    霍雅勤. 中国能源现状及可持续利用对策. 中国能源, 1999, 2:42-44
    Packan P A. Pushing the limits. Science, 1999, 285: 2079-2081
    Feynman R P. Quantum mechanical computer. Optical News, 1985,11(2):11-20
    Divincenzo D P. Quantum computation. Science, 1995, 270:255-261
    Adleman L M. Molecular computation of solutions to combinatorial problems. Science, 1994, 266: 1021-1024
    过增元. 当前国际传热届的热点—微电子器件的冷却. 中国科学基金, 1988, 2: 20-25
    过增元. 国际传热研究前沿—微细尺度传热. 力学进展, 2000, 30(1):1-6
    刘静. 微米/纳米尺度传热学. 北京: 科学出版社. 2001
    Messerschmid E, Bertrand R. Space station: Systems and Utilization. Berlin: Springer-Verlag, 1999
    过增元, 梁新刚, 张信荣. 空间站热管理. 科学通报, 2001 46(16):1403-1408
    顾维藻, 神家锐, 马重芳,等. 强化传热. 北京: 科学出版社, 1990
    香山会议办公室. 生命科学中的热物理问题. 世界科技研究与发展, 1997, 19(5): 49-54
    Bergles A E. Handbook of heat transfer applications. New York: McGraw-Hill, 1985
    Bergles A E. Heat transfer enhancement—the encouragement and accommodation of high heat fluxes. ASME Journal of Heat Transfer, 1997, 119: 8-19
    Chen G. Heat transfer in micro- and nanoscale photonic devices. Annual Review of Heat Transfer, 1996, 7: 1-57
    Aung W. Cooling technology for electronic equipment. New York: Hemisphere, 1988
    Peterson G P, Ortega A. Thermal control of electronic equipment and devices. Advances in Heat Transfer, 1990, 20: 181-314
    
    Chu R C, Simons R E. Cooling technology for high performance computers: IBM Sponsored University research. In: Kakac S, Yüncü H and Hijikata, eds. Cooling of electronic systems, Dordrecht: Kluwer Academic Publishers, 1994. 97-122
    Ageorges C, Ye L, Hou M. Advances in fusion bonding techniques for joining thermoplastic matrix composites. Composites Part A-Applied Science and Manufacturing, 2001, 32(6): 839-857
    Sinnott S B, Andrews R. Carbon nanotubes: Synthesis, properties and applications. Critical Reviews on Solid State and Materials Sciences, 2001, 26(3): 145-249
    Webb R L, Bergles A E. Heat transfer enhancement: second generation technology. Mechanical Engineering, 1983, 115(6): 60-67
    Bergles A E. Some perspectives on enhanced heat transfer second Generation heat transfer technology, ASME Journal of Heat Transfer, 1988, 110: 1082-1096
    O’Connor J P, You S M. A painting technique to enhance pool boiling heat transfer in saturated FC-72, ASME Journal of Heat Transfer, 1995, 117: 387-393
    Ciofalo M, Collins M W. Predictions of heat transfer for turbulent flow in plane and rib-roughened channels using large eddy simulation. Proceedings of the Seventh National Congress on Heat Transfer, Bologna, Italy, 1989: 57-72
    Eckels S J, Doerr T M, Pate M B. Heat transfer and pressure drop of R-134a and Ester Lubricant mixtures in a smooth and a micro-fin tube: part I-evaporation, ASHRAE Transactions, 1994, 100(Part 2): 265-281
    Eckels S J, Doerr T M, Pate M G. Heat transfer and pressure drop of R-134a and Ester Lubricant mixtures in a smooth tube and a micro-fin tube: part II-condensation, ASHRAE Transactions, 1994, 100(Part 2): 283-294
    Fiebig M, Sanchez M A. Enhancement of heat transfer and pressure Loss by winglet vortex generators in a fin-tube element, Compact Heat Exchangers for Power and Process Industries, 1992, HTD-v201, ASME, New York, NY, pp. 7-14
    Bergles A E, Lee R A, Mikic B B. Heat transfer in rough tubes with tape-generated swirl flow, ASME Journal of Heat Transfer, 1969, 91: 443-450
    Eason R M, Bayazitoglu Y, Miade A. Enhancement of heat transfer in square helical ducts. International Journal of Heat and Mass Transfer, 1994, 37(14): 2077-2087
    Fukusako S, Yamada M, Kimoshita K, et al. Boiling heat transfer in liquid-saturated porous bed. Proceedings of the 1991 ASME-JSME Thermal Engineering Joint Conference, Tokyo, JSME, and New York, ASME, 1991: 281-288
    
    McGillis W R, Carey V P. On the role of marangoni effects on the critical heat flux for pool boiling of binary mixtures. ASME Journal of Heat Transfer, 1996, 118: 103-109
    Lee J H, Singh R K. Mathematical models of scraped surface heat exchangers in relation to food sterilization, Chemical Engineering Communications, 1990, 87: 21-52
    Soria J, Norton M P. The effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate. Experimental Thermal and Fluid Science, 1991, 4: 226-238
    Hong J S. The study of ultrasonic enhancement in phase-changer process. ASME paper No. 93-HT-2, 1993
    Ohadi M M, Nelson D A, Zia S. Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. International Journal of Heat and Mass Transfer, 1991, 34: 1175-1187
    Inagaki T, Komori K. Experimental study of heat transfer enhancement in turbulent natural convection along a vertical flow plate-part I: the effect of injection or suction. Heat Transfer Japanese Research, 1993, 22: 387-397
    Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-I: unconfined circular jets. International Journal of Heat and Mass Transfer, 1997, 40(6): 1481-1490
    Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-II: initially laminar confined slot jets. International Journal of Heat and Mass Transfer, 1997, 40(6): 1491-1500
    Gau C, Lee C C. Implingement cooling flow structure and heat transfer along rib-roughened walls. International Journal of Heat and Mass Transfer, 1992, 35(12): 3009-3020
    陈庚, 罗棣庵. 用大空隙率多孔体强化管内换热的研究. 工程热物理学报, 1995, 16(3): 245-248
    周定伟, 马重芳. 圆形液体浸没射流冲击核沸腾传热的实验研究. 自然科学进展, 2002, 2: 182-186
    陈听宽, 田永生, 陈宣政等. 顺排翅片管束加扰流件强化传热和阻力特性的试验研究. 化工机械, 1994, 21(3): 125-131
    胡振军, 神家锐. 离散倾斜肋的传热强化及流动特性. 工程热物理学报, 1995, 16(3): 327-332
    张寅平, 胡先旭. 等热流圆管内潜热型功能热流体层流换热的内热源模型及应用. 中国科学:E辑. 2003, 33(3): 237-244
    
    田茂诚, 周强泰. 汽-水换热器内流体诱导振动强化传热试验. 化工学报, 2001, 52(3): 257-261
    顾维藻, 涂建平, 刘文艳等. 燃气轮机涡轮叶片冷却通道内的流动与传热研究. 工程热物理学报, 1996, (17)3: 323-327
    姚志彪. 环形管内涡旋流动特性及传热机理研究. 化学工程, 1997, 25(1): 17-19
    高文元, 孙以苓, 盛展武. 固流体波面板换热器振动强化传热的研究. 石油化工设备, 1997, 26(4):7-10
    张正国, 王世平, 林培森. 花瓣形翅片管的强化传热研究概况. 石油化工设备, 1997, 26(4): 1-14
    姜培学, 李勐, 马永昶等. 微型换热器的实验研究. 压力容器, 2003, 20(2): 8-12
    姚寿广, 周根明, 朱德书. 内插螺旋线圈管的强化传热试验及结构优化研究. 动力工程, 1998, 18(5): 29-31
    杜建通, 邹同华. 电场强化对流换热及其应用. 低温工程, 1999, (1): 27-30
    沈文生, 陈烈强, 马晓茜等. 强制对流开槽翅片的传热性能研究. 流体机械, 1999, (7): 51-55
    李瑞阳, 施伯红, 郁鸿凌等. EHD强化水平管外沸腾传热的试验研究. 工程热物理学报, 2000, 21(1): 97-100
    解旭斌, 王维城, 王栋. 高效传热管内凝结换热性能及阻力性能的实验研究. 工程热物理学报, 2000, 21(6): 742-745
    崔海亭, 姚仲鹏, 杨英俊. 单头“W”形螺旋槽管传热与流体力学特性研究. 热能动力工程, 2001, 16(2): 151-152
    赵晓曦, 邓先和, 陆恩锡. 菱形翅片管的强化传热特性. 化工科技, 2002, 5: 1-3
    钱颂文, 马小明,方江敏等. 三维整体对翅强化传热管的传热和压降性能研究与比较. 化工学报, 2002, 53(7): 700-704
    周定伟, 刘登瀛. 声空化场强化单相对流传热的实验研究. 自然科学进展, 2002, 12(5): 553-556
    王崧. 纤毛状肋和插入物的传热强化研究: [博士学位论文]. 北京:清华大学力学系, 1999
    王崧, 李志信, 过增元. 纤毛肋强化管内对流换热. 清华大学学报(自然科学版), 2000, 40(4): 55-57
    Xia Z Z, Li Z X, Guo Z Y. A simplified model for analysis on flow and heat transfer in fiber-finned channels. In: Wang B. X. ed. Heat Transfer Science and Technology 2000, Beijing: Higher Education Press, 2000: 247-252
    
    程林, 田茂诚, 林颐清等. 弹性管束汽-水换热器强化传热试验研究. 工程热物理学报, 2001, 22(2):199-202
    Chen Y C, Ma C F, Yuan Z X, et al. Heat transfer enhancement with impinging free surface liquid jets flowing over heated wall coated by a ferrolluid. Int. J. Heat and Mass Transfer, 2001, 44: 499-502
    Cheng L, Qiu Y. The research of complex heat transfer enhancement by fluid induced vibration, J. Hydrodynamics, Ser. B, 2003, 1: 84-89
    杨立军,任建勋,宋耀祖等.磁致空气自然对流的数学模型.清华大学学报, 2003, 43(5): 662-665
    孟继安, 李志信, 过增元等. 螺旋扭曲椭圆管层流换热与流阻特性模拟分析. 工程热物理学报.2003, 23:117-120
    孟继安, 陈泽敬, 李志信等. 管内对流换热的场协同分析及换热强化. 工程热物理学报. 2003, 24(4): 652-654
    Hua B, Guo Z Y, Ma, C F eds. Proceedings of the 3rd international symposium on heat transfer enhancement and energy conservation. Guangzhou: South China University of Technology Press, 2003
    Webb R L. Principles of enhanced heat transfer. New York: John Wiley & Sons, 1994
    苏铭德, 黄素逸. 计算流体力学基础. 北京: 清华大学出版社, 1997
    陶文铨. 数值传热学. 西安: 西安交通大学出版社, 2001
    Kern D Q, Kraus A D. Extended Surfaces Heat Transfer. New York: McGraw-Hill, 1972
    Aziz A. Optimum dimensions of extended surfaces operating in a convective environment. Appl. mech. rev., 1992, 45(5): 155-173
    Kraus A D. Sixty-five years of extended surface technology (1992-1987). Appl. mech. rev., 1988, 41(7): 321-364
    凯斯W M,伦敦A L. 紧凑式热交换器,宣益民, 张后雷译. 北京:科学出版社,1997
    Webb R L, Eckert E R G. Application of rough surfaces to heat exchanger design, International Journal of Heat and Mass Transfer,15,1972:1674-1658
    Webb R L Scott M J. A parametric analysis of the performance of internally finned tubes for heat exchanger application, J. Heat transfer,102,1978:234-238
    Webb R L. Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design, Int. J. Heat and Mass Transfer ,24,715(1981)
    
    Bergles A E, Bllumenkrantz A R, Taborek J, Performance evaluation criteria for enhanced heat transfer surfaces, Heat Transfer 1974, V-II, The Japan Soc. mech. Engrs., 1973: 234-238
    Bergles A E, Bunn R L, Junkhan G H. Extended performance evaluation criteria for enhanced heat transfer surfaces, Letters heat mass transfer, 1974:113-120.
    朱文坚 梁丽, 机械设计方法学, 广州:华南理工大学出版社, 1997
    潘云鹤. 智能CAD方法与模型. 北京:科学出版社, 1997
    帕尔G,拜茨W. 工程设计学,张直明等译.北京:机械工业出版社, 1992
    Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225
    Guo Z Y, Wang S. Novel concept and approaches of heat transfer enhancement. In: Cheng P ed. Proceeding of Symposium on Energy and Engineering, New York: Begel House, 2000, 118-123
    Guo Z Y. Mechanism and control of convective heat transfer - Coordination of velocity and heat flow fields. Chinese Science Bulletin, 2001, 46(7): 596-599
    Bejan A. Entropy generation through heat and fluid flow. New York : Wiley, 1982
    Bejan A. Entropy generation minimization. New York: Wiley, 1996
    Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Applied physics reviews. 1996, 79(3): 1191-1218
    Zhao T S, Song Y J. Forced convection in a porous medium heated by a permeable wall perpendicular to flow direction: analyses and measurements. International Journal of Heat and Mass Transfer, 2001, 44: 1031-1037
    Wang S, Guo Z Y, Li Z X. Heat transfer enhancement by using metallic filament insert in channel flow. International Journal of Heat and Mass Transfer, 2001, 44(7):1373-1378
    Pascual C C, Stromberger J H, Jeter S M, et al. An empirical correlation for electro hydrodynamic enhancement of natural convection. International Journal of Heat and Mass Transfer, 2000, 43:1965-1974
    Kalman H, Sher E. Enhancement of heat transfer by means of a corona wind created by a wire electrode and confined wings assembly. Applied thermal engineering, 2001, 21:265-282
    Allen P H G, Karayiannis T G. Electrohydrodynamic enhancement of heat transfer and fluid flow. Heat Recovery system and CHP, 1995, 15(5):389-423
    
    Wakayama N I. Behavior of gas flow under gradient magnetic fields. Journal of Applied Phys., 1991, 69(4):2734-2736
    Yang L J, Ren J X, Song Y Z, et al. Free convection of a gas induced by a magnetic quadrupole field. Journal of Magnetism and Magnetic Materials 2003, 261(3): 377-384
    Yang L J, Ren J X, Song Y Z, et al. Convection heat transfer enhancement of air in a rectangular duct by application of a magnetic quadrupole field. International Journal of Engineering Science, 2004, 42:491-507
    Bejan A, Pfister P A. Evaluation of heat transfer augmentation techniques based on their impact on entropy generation, Letters of Heat and Mass Transfer, 1980:97-106.
    Bejan A. The First NATO Advanced Study Institute on Thermodynamic Optimization. Energy, 1999, 24: 753-759
    Bejan A. Second-law analysis in heat transfer and thermal design, Advaced. Heat Transfer, 1982, 15: 1-58.
    Zimparov V D. Performance evaluation criteria for enhanced heat transfer surfaces, International Journal of heat and mass transfer, 1994, 37(12):1807-1816
    Lee D J, Lin W W. Second-law analysis on a fractal-like fin under crossflow. AIChE Journal, 1995, 41(10): 2314-2317
    Sahin A Z. A second law comparison for optimum shape of duct subjected to constant wall temperature and laminar flow. Heat and Mass Transfer 1998, 33: 425-430
    Sahin A Z. Irreversibilities in various duct geometries with constant wall heat flux and laminar flow. Energy, 1998, 23(6): 465-473
    Sahin A Z. Entropy generation in turbulent liquid flow through a smooth duct subjected to constant wall temperature, International Journal of Heat and Mass Transfer, 2000, 43:1469-1478.
    Narusawa U. The second-law analysis of mixed convection in rectangular ducts. Heat Mass Transfer, 2001, 37: 197-203.
    
    Zimparov V D. Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant wall temperature, International Journal of heat and mass transfer, 2000, 43: 3137-3155
    Zimparov V D. Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux, International Journal of heat and mass transfer, 2000, 44:169-180
    Mahmud S, Fraser R A. The second law analysis in fundamental convective heat transfer problems. International Journal of Thermal Sciences, 2003, 42: 177-186
    Haddad O M, Alkam M K, Khasawneh M T. Entropy generation due to laminar forced convection in the entrance region of a concentric annulus, Energy, 2004,29: 35-55
    Sarangi, S, and Chowdhury, K., On the generation of entropy in counterflow heat exchangers. Cryogenics, 1982, 22: 63-65
    Ogulataa R T, Doba F, Yilmaz T. Irreversibility analysis of cross flow heat exchangers. Energy Conversion & Management, 2000, 41: 1585-1599
    Van Den Bulck E. Optimal design of crossflow heat exchangers, Journal of Heat Transfer, 1991, 113: 341-347
    Tondeur D. Equipartition of entropy production: a design and optimization criterion in chemical engineering. In: Sieniutyc S., Salamon P. Eds. Finite-Time Thermodynamics and Thermoeconomics. New York: Taylor& Francis, 1990: 175-208
    Sauar E, Kjelstrup S, Lien K M. Equipartition of forces: A new principle for process design and optimization–Rebuttal. Industrial & Engineering Chemistry Research 1997, 36(11): 5045-5046
    Kjelstrup S, Bedeaux D, Sauar E. Minimum entropy production by equipartition of forces in irreversible thermodynamics. Industrial & Engineering Chemistry Research, 2000, 39 (11): 4434-4436
    Nummedal L, Kjelstrup S. Equipartition of forces as a lower bound on the entropy production in heat exchange. International Journal of heat and mass transfer, 2001, 44 (15): 2827-2833
    
    Johannessen E, Nummedal L, Kjelstrup S. Minimizing the entropy production in heat exchange. International Journal of Heat and Mass Transfer, 2002, 45: 2649-2654
    蔡聪明. 蜜蜂与数学, http://episte.math.ntu.edu.tw/articles/sm/sm_27_07_2
    Ball P. The self-made tapestry: pattern formation in nature, Oxford: Oxford University Press, Oxford. 1999
    费曼. 费曼物理学讲义(第一卷), 费曼物理学讲义翻译组译,上海 上海科学技术出版社, 1983
    许良. 最小作用量原理与物理学的发展. 成都: 四川教育出版社. 2001
    周筑宝. 最小耗能原理及其应用 材料的破坏理论、本构关系理论及变分原理. 北京: 科学出版社. 2001
    曾丹苓. 工程非平衡热动力学. 北京: 科学出版社. 1991
    霍尔曼J P. 传热学,第1版. 北京:人民教育出版社,1979
    德格鲁脱S R,梅休尔 P. 非平衡性热力学. 上海:上海科学技术出版社,1981
    Onsager L. Reciprocal relations in irreversible process I. Physical Review, 1931, 37: 405-426,
    Onsager L. Reciprocal relations in irreversible process II. Physical Review, 1931, 38:2265-2279,
    Casimir H. B. G. On Onsager's principle of microscopic reversibility. Review of Modern Physics.1945,17: 343-350
    Prigogine, I. Introduction to thermodynamics of irreversible processes, 3rd edition. New York : Interscience Publishers, 1967
    Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability and fluctuations. London : Wiley-Interscience, 1971.
    Sieniutycz S., Salamon P. Nonequilibrium theory and extremum principles. New York : Taylor & Francis, 1990
    Truesdell C. Rational thermodynamics, New York : Springer-Verlag, 1984.
    Serrin J. New perspectives in thermodynamics Berlin: Springer-Verlag, 1986
    
    Muller I., Ruggeri T. Extended thermodynamics, New York: Springer-Verlag, 1993.
    Gyarmati I. Non-equilibrium thermodynamics, Field theory and variational principles. Berlin: Springer, 1970
    鹫津久一郎. 弹性和塑性力学中的变分法, 老亮, 郝松林译. 北京: 科学出版社, 1984
    Guo Z Y, Cheng X G, Xia Z Z. Least Dissipation Principle of Heat Transport Potential Capacity and its Application in Heat Conduction Optimization, Chinese Science Bulletin, 2003, 48(4): 406-411
    Qiu T Q, Tien C L. Short-pulse laser heating on metals. International Journal of Heat and Mass Transfer. 1992 35:719~726
    张浙,刘登瀛.非傅立叶热传导研究进展. 力学进展.2000,30(3):446-456
    埃克特E R G, 德雷克R M. 传热与传质分析, 航青译. 北京: 科学出版社, 1983
    Pleshanov A S. Extremum principles in the theory of thermal conductivity of a solid. High Temperature, 2002, 40(2): 295–299
    Jaynes E T. The minimum entropy production principle. Annual review physical chemistry, 1980, 31: 579-601
    李如生. 非平衡态热力学和耗散结构. 北京: 清华大学出版社, 1986
    Barbera1 E. On the principle of minimal entropy production for Navier-Stokes-Fourier fluids. Continuum mechanics and thermodynamics, 1999, 11: 327–330
    程新广, 李志信, 过增元. 热传导中的变分原理. 工程热物理学报, 2004, 25(1)
    Finlayson B A. The method of weighted residuals and variational principles, with application in fluid mechanics, heat and mass transfer. New York: Academic Press, 1972
    钱伟长. 广义变分原理. 上海: 知识出版社 1985
    钱伟长. 粘性流体力学的变分原理和广义变分原理. 应用数学和力学, 1984, 5(3):305-322
    刘高联. 流体力学变分原理的建立与变换的系统性途径. 工程热物理学报, 1990, 11(2): 136-142
    陆明万, 罗学富. 弹性理论基础. 北京: 清华大学出版社, 2001
    
    Ván P, Nyíri B. Hamilton formalism and variational principle construction. Annalen der Physik (Leipzig), 1999, 8(4): 331-354
    Muschik W, Trostel R. Variational Principles in Thermodynamics (survey), Journal of applied mathematics & mechanics, 1983, 63:190
    Ichiyanagi, M. Variational principles of irreversible processes, Physics Reports 1994, 243(3): 125-182
    Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. Journal of Applied physics, 1955, 23(11): 1385-1391
    Biot M A. Variational principles in irreversible thermodynamics with application to viscoelasticity. Physics Review, 1955, 97(6): 1463-1469
    Biot M A. Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics, 1956, 27(3): 240-253
    Biot M A. Variational principles in heat transfer. London: Oxford university press, 1970
    Lardner T J. Biot’s variational principle in heat conduction. AIAA Journal, 1963, 1(1): 196-206
    Finlayson B A, Scriven L E. On the search for variational principles. International Journal of Heat and Mass Transfer, 1967, 10: 799-821
    Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 1997, 40(4): 799-816
    夏再忠, 过增元. 用生命演化过程模拟导热优化. 自然科学进展, 2001, 11(8): 845-852
    夏再忠. 导热和对流换热过程的强化与优化:[博士学位论文]. 北京: 清华大学力学系,2001
    Kramer P J. Water relations of plants. Academic Press, 1983
    Lange O L, Kappen L. Water and plant life: problem and modern approaches. Springer-Verlag, Berlin Heidelberg, 1976
    Khumoetsile M. Root zone solute dynamics under drip irrigation: A review. Plant and Soil, 2000, 222: 163-190
    
    Scott R.,Plant root systems: their function and interaction with the soil, McGraw-Hill, New York, 1982
    Bejan A. From heat transfer principles to shape and structure in nature: constructal theory. ASME Journal of heat transfer, 2000, 122(3): 430-449
    Bejan A. Shape and structure, from engineering to nature. London: Cambridge University Press, 2000
    Coulson J M, et al. Chemical engineering. 3d Ed. New York: Pergamon Press, 1994
    Ketteringham L, James S. The use of high thermal conductivity inserts to improve the cooling of cooked foods. Journal of food engineering , 2000, 45: 49-53
    Fukai J, Kanou M, Kodama Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy conversion &management. 2000, 41: 1543-1556
    过增元. 热流体学. 北京: 清华大学出版社, 1992
    Daniel. I. Meiron. Selection of steady states in the two-dimensional symmetric model of dendrite growth. Physical review A, 1986 33(4):2704~2715
    Cheng X G, Li Z X, Guo Z Y. Further study on the Further study on the heat conduction augmentation based on bionic optimization. In: Hua B, Guo Z Y, Ma, C F eds. Proceedings of the 3rd international symposium on heat transfer enhancement and energy conservation. Guangzhou: South China University of Technology Press, 2003: 1206-1211
    Ben-Jacob E, Levine H. The artistry of microorganisms. Scientific American, 1998, 279: 82-87
    Ben-Jacob E, Schochet O, Tenenbaum A, et al. Generic modeling of cooperative growth patterns in bacterial colonies. Nature 1994, 368: 46-49
    Keller J B. Extremum Principals for Irreversible Processes. Journal of mathematical physics, 1970, 11: 2919-2931

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700