丝素蛋白溶液的仿生纺丝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文简要介绍了仿生纺蜘蛛丝技术的研究现状,总结了人工纺丝的技术路线和所得纤维的基本性能。同时,我们从以下二个角度进行了思考,即:转基因蜘蛛丝蛋白水溶液或再生蚕丝素蛋白水溶液中丝素蛋白分子的构象结构与蜘蛛或蚕腺体内是否相同?是否需要“仿生制备纺丝液”?为了对以上问题进行解答,本文以家蚕的丝素蛋白质为模型对模仿生物体成丝过程的仿生纺丝技术进行了一些探索性的研究。我们制备了高浓度的再生蚕丝素蛋白水溶液,并首次研究了它的流变性能及剪切作用下的构象变化,同时还对它的存放稳定性进行了研究。为了弄清楚拉伸对再生丝素蛋白水溶液结构变化的影响,我们运用静电纺丝方法对再生丝素蛋白水溶液进行了纺丝试验,以寻找丝素蛋白转化为纤维的条件。结果发现静电纺所得纤维的结构是介于无定型和蚕丝之间的,尽管静电纺丝有非常高的拉伸倍数,但所得纤维还是达不到如蚕丝般的结构。为此,我们对再生丝素蛋白水溶液与蚕腺体内丝素蛋白水溶液进行了对比分析,发现浓再生丝素蛋白水溶液与蚕腺体内丝素蛋白水溶液的性能是有差别的,从而提出了“仿生纺丝”之前,首先要“仿生制备纺丝液”的新观点。
     本文摸索出了制备高浓度再生丝素蛋白水溶液的方法,并研究了浓再生丝素蛋白水溶液的流变性能和在剪切作用下的构象结构变化,结果发现:(1)再生丝素蛋白水溶液的流变性能和常规聚合物浓溶液的流变性能差别很大。首先,它的切力变稀现象随溶液的浓度的增加而变弱;其次,溶液粘度非常小。(2)再生丝素蛋白浓水溶液的零切粘度随浓度的增加而增加,在35%左右达到最大值,浓度再提高粘度下降。但在粘度下降条件下仍然观察不到各向异性现象。(3)高浓度的再生丝素蛋白水溶液经过剪切作用后呈现出各向异性的性质,相同浓度下,剪切作用越大,再生丝素蛋白水溶液越容易实现由各向同性到各向异性的转变;相同剪切作用时,再生丝素蛋白水溶液的浓度越高,经剪切作用后,溶液的各向异性的性质越明显。(4)再生丝素蛋白水溶液经剪切作用后,丝素蛋白分予构象发生了由无规线团/α螺旋结构到β—折叠结构的转变。再生丝素蛋白水溶液的流变性能和常规聚合物浓溶液的流变性能差别很大。
    
    东平大李博士论文
    摘要
     经过对高浓度再生丝素蛋白水溶液流动稳定性的研究发现,丝素蛋白水溶液是
    一种不稳定的体系,存在存放流动稳定性问题。随着溶液浓度和存放温度的升高,
    溶液的流动稳定性迅速下降,最终使体系发生凝胶化。其中当溶液浓度小于27%
    时,浓度对流动稳定性的影响较大,浓度越低流动稳定性越好。而当浓度高于27
    %后,溶液的流动稳定性迅速下降,浓度的影响也大大降低。丝素蛋白水溶液对环
    境温度非常敏感,当温度低于25℃时,溶液的凝胶化速度较慢;而当温度升高
    后,溶液的凝胶化速度迅速加快,在60℃时只需半小时就凝胶化。蚕吐丝时,其
    中部丝腺内丝素蛋白水溶液的浓度在30%左右,温度为25℃左右的春天和秋天,
    这一吐丝条件也是充分利用了丝素蛋白的流动稳定性。在制备丝素蛋白纺丝水溶液
    时,应先把最初的转基因或再生丝素蛋白稀水溶液存放在低温下,然后在纺丝前进
    行浓缩,这样就可以得到稳定的丝素蛋白纺丝用水溶液。
     为了弄清楚拉伸对再生丝素蛋白水溶液结构变化的影响,我们运用静电纺丝方
    法,对再生丝素蛋白水溶液进行了纺丝试验,发现可以从丝素蛋白水溶液中制得念
    珠状的、圆形的或带状的超细丝纤维,纤维的直径在100 nm到900nm之间,平均
    为7O0nm。当纺丝液浓度为28%、电压为ZKV、喷射距离为11 cm时,可制得具
    有光滑表面的圆形丝纤维。拉曼光谱检测的结果发现,所得的静电纺丝纤维中已含
    有p折叠结构。DSC和X光衍射结果表明静电纺丝纤维不是无定型结构,但也不
    是和天然蚕丝一样的p一折叠结构。通过计算发现,静电纺丝时纤维经历了非常高
    的拉伸比,并和蚕吐丝的条件相当,但即使这样也无法得到与蚕丝相同的结构;而
    静电纺丝纤维大的比表面积和蚕以慢的吐丝速度都是起到使溶液中的水分挥发的作
    用。试验表明,只有当溶液的浓度足够高,使丝素蛋白分子之间形成有效的缠结;
    并对丝素蛋白水溶液加以足够高的拉伸力,使丝素蛋白分子拉伸取向;同时保证溶
    液中的水分快速有效地挥发,才有可能形成丝纤维。但要使该纤维结构与蚕丝相同
    尚需其他条件配合。
     通过对再生蚕丝素蛋白水溶液与天然蚕腺体内丝素蛋白水溶液的性能对比分析
    发现,再生蚕丝素蛋白水溶液和天然蚕腺体内丝素蛋白水溶液的性能差别非常大。
    再生蚕丝蛋白分子量与蚕腺体内丝素蛋白分子量相差不大,但蚕腺体内丝素蛋白水
    溶液的零切粘度要比再生丝素蛋白水溶液高得多,尽管它们的浓度相当。这说明蚕
    毯
In this thesis, the development of biomimetic spider and silkworm silk has been briefly introduced. The processes and properties of resultant man-made silk fiber have also been summarized. It is found two key issues are not discussed yet. Whether the conformation of silk fibroin in regenerated solution or in the silkworm gland is the same or not? Whether it is necessary to prepare the spinning solution by a biomimetic process? In our work, silk fibroin of silkworm is selected as a model system because there is still not enough spider silk protein that can be supplied to do spinning and on the other side, the composition of silkworm fibroin is very similar to spider protein. In order to answer the above questions, the concentrated regenerated silk fibroin aqueous solution was prepared first, it's structure and properties of rheology and flow stability were studied. After that, the electrospin process was applied on regenerated concentrated silk fibroin aqueous solution in order to find out the conditions to form silk fiber from silk fibroin aqueous solution. It is found a kind of silk fiber can be got, but the structure of this kind silk fiber is between amorphous film and nature silk. The difference between the structure and properties of silk fibroin in regenerated aqueous solution and in vivo was further studied. The main conclusions are as follows.Viscous, transparent, homogeneous and spinnable silk fibroin aqueous solutions with high silk fibroin content were first prepared. The rheological behaviors of solutions with different concentration were studied by HAAKE RS150 rheometer. There is a rapid initial shear thinning at low shear rates (<10 s-1) for regenerated silk fibroin aqueous solutions with low concentration. However, the shear-thinning phenomenon becomes not obvious with the increase of the solution concentration, which is different from ordinary polymer solution. With the increase of concentration, the macromolecule chain become more and more compacted, the entanglements in solution increase not very quickly. As a result, the viscosity of solution is not very high.The zero shear viscosity is increasing with the concentration of regenerated silk fibroin aqueous solution and reaches max in 35%, then decreases. But all these solutions are isotropic. Only with shear the solution becomes anisotropic. With the increase of
    
    concentration, the birefringent or anisotropic phenomenon becomes easier under the same shear rate. Similarly, with the same concentration, the anisotropic phenomenon becomes more and more obvious with the increase of shear rate. Raman spectroscopy analysis showed that the structure of silk fibroin has changed from random coil and/or a helix into β-sheet by shear.The study on the flow stability of regenerated silk fibroin aqueous solutions with different concentrations under different temperatures indicates that the flow stability decreases quickly with the increase of solution concentration and temperature. X-ray diffraction, Fourier transform infrared (FTIR) and Raman spectroscopy analysis show that silk fibroin in regenerated aqueous solution is mainly in random coil conformation. However, it turns into a helix and p-sheet conformation after gelation, and both silk I and silk II structure appears accordingly. The key concentration and key temperature for the flow stability of regenerated silk fibroin aqueous solution are about 27wt% and 25°C, respectively. Silkworms in the nature may possibly make full use of this rule. The investigation implies that the original dilute regenerated or recombinant silk fibroin aqueous solution should be stored under low temperature and concentrated just before spinning.By using electrospinning technique, beaded, cylinder shaped or ribbon like ultra-fine silk fibroin fibers are obtained from regenerated concentrated silk fibroin aqueous solution under different processing conditions. These fibers have an average diameter of 700 nm. It is found that the morphology and the secondary structure of the as-spun silk fibroin fibers are strongly influenced by the
引文
1 Anthoula Lazaris, Steven Arcidiacono, Yue Huang, et al. Spider silk fibers spun from soluble recombinant silk produced in mummalian cells. Science, 2002, 295(18):472-476
    2 John P.O'Brien, Stephen R. Fahnestock, Yves Termonia, and KennCorwin H. Gardner. Nylons from nature: synthetic analogs to spider silk. Advanced materials. 1998, 10(15):1185-1195
    3 于同隐,李光宪,丝蛋白纤维机理的模型-应力作用下丝蛋白构象的转变。高分子学报,1993,4:415—422
    4 Eiaku Iizuka. Silk: an overview. Journal of applied polymer science: applied polymer symposium. 1985, 41,163-171.
    5 Willcox, P.J., Gido. S. P., Muller, W, Kaplan, D. L., Evidence of a cholestedc liquid crystalline phase in natural silk spinning processes. Macromolecules, 1996,29:5106-5110.
    6 Viney, C, Keven Kerkam, et al. Molecular order in silk secretions, Complex fluid, Mat.Res.Soc.Proc.Vol.248,1992
    7 Keven kerkam, David Kaplan, Stephen Lombardi and C. Viney, liquid crystalline characteristics of natural silk secretions, Mat.Res.Soc.Symp.Proc, 1991,218:239-244.
    
    8 Viney, C. Chapter 10 silk fibers: origins,nature and consequences of structure. Materials, Elesevier Science, Oxford,295-330,2000
    9 Termonia,Y. Molecular modeling of spider silk elasticity. Macromolecules, 1994, 27:7378-7381.
    10 Stefan Winkler, Sandra Szela, Peter Avtges,et al. Designing recombinant spider silk proteins to control assembly, International J. of biological macromolecules, 1999, 24:265-270
    11 Steven Arcidiacono, Charlene M. Mello, Michelle Butler, et al. Aqueous Processing and Fiber Spinning of Recombinant Spider Silks, Macromolecules, 2002, 35:1262-1266.
    12 C. Viney. From natural to silks to new polymer fibres. J. text. Inst. 2000, part 3, 2-23.
    13 Fritz Vollrath and Davis P.Knight. Liquid Crystalline Spinning of Spider Silk, Nature, 2001,410:567-571
    14 Vollrath,F. Knight,D.P. Structure and function of the silk production pathway in the spider Nephila edulis. Int. J. Biol. Macromol. 1998, 24:243-249
    15 F. Vollrath and D.P.Knight, Structure and function of the silk production pathway in the spider Nephila edulis, International Journal of biological macromolecules, 1999,24:243-249
    16 33.D.L.Kaplan, silk, biomaterials novel materials from biological sources, 1994, 1-54.
    17 Chen X; Knight Dp; Shao Zz; Vollrath F. Conformation transition in silk protein films monitored by time-resolved fouruer transform infrared spectroscopy: effect of potassium ions on nephila spidroin Biochemistry, V6141, Pgl4944~14950
    18 Jun Magoshi. Studies on physical properties and structure of silk. Glass transition and crystallization of silk fibroin. Journal of applied polymer science. 1975, 19: 1013-1015.
    19 Eisaku Iizuka. Silk thread: mechanism of spinning and its mechanical properties. Journal of applied polymer science: applied polymer symposium41,173-185,1985
    
    20 Jun Magoshi. Physical properties and structure of silk: 4. spherulites grown from aqueous solution of silk fibroin. Polymer, 1977, 18,643-645.
    21 Jun Magoshi, Yoshiko Magoshi and Shi geo Nakamura, Mechanism of fiber formation of silkworm, Silk polymer: Materials Science and Biotechnology, 1994,293-310
    22 于同隐 张胜 邵正中,丝素蛋白的构象转变。高等学校化学学报,1996,17(2):323-325
    23 刘永成 邵正中 孙玉宇,于同隐,蚕丝蛋白的结构与功能。高分子通报,1998,3:17-23
    24 Siding Zheng, Guanxian Li, Wenhuo Yao, and Tongyin Yu, Raman spectroscopicinvestigation of the danaturation process of silk fibroin, Applied spectroscopy, 1989,43(7): 1269-1272,
    25 Christopher Viney, Natural silks:archetypal supramolecular assembly of polymer fibres. Supramolecular Science, 1997, 4(1-2):75-81
    26 David L. Kaplan, Stephen fossey, C. Viney, Wayne. Self-organization(assembly) in biosynthesis of silk fibers-a hierarchical problem, Hierarchically structured materials, Mat.Res. Soc. Symp.Proc., 1992,255:19-29.
    27 Tsutomu Yamane, kosuke Umemura, and Tetsuo Asakura, The structural characteristics of bombyx mori silk fibroin before spinning as studied with molecular dynamics simulation, Macromolecules, 2002,35:8831-8838.
    28 John gatesy, Cheryl Hayashi, Dagmara Motriuk, Justin Woods, Randolph Lewis. Extreme diversity conservation, and convergence of spider silk fibroin sequences. Science, 2002, 291 (5513):2603-2614
    29 Cheyl Y. Hayashi and Randolph V. Lewis. Molecular architechture and evolution of a modular spider silk protein gene. Science, 2002,287(5457): 1477-1456
    30 Andreas Seidel, Oskar Liivak, Sarah Calve, Jason Adaska, Gending Ji. Regeneratd spider silk: processing, properties and structure. Macromolecules, 2000. 33,775-780
    31 Zhengzhong Shao, Fritz Vollrath, Yong Yang and Hans, C. Thogersen, Structure and behavior of regenerated spider silk, Macromolecules, 2002,36:1157-1161.
    32 Shao Zz; Vollrath F. Suprising strength of silkworm silk. Nature, 2002, 418:741-743
    
    33 Tetsuo Asakura, Akio Kuzuhara, Ryoko Tabeta, and Hazime Saito. Conformation characterization of Bomyx mori silk fibroin in the solid state by high-frequency C~(13) cross polarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules, 1985, 18:1841-1845.
    34 C. Riekel F. Vollrath. Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. International Journal of Biological Macromolecules. 2001, 29:203-210.
    35 D. P. Knight, M. M. Kninght, F. Vollrath. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. International Journal of Biological Macromolecules, 2000, 27:205-210
    36 吴徽宇,金宗明,徐力群,丝素的结晶度和结构变化的研究,蚕业科学,1993,19(2),105-110
    37 黄君霆,朱良均。蚕丝的纤维化机理研究,蚕桑通报,1998,29:5-7
    38 胡国良,朱良均,陈国定,闵思佳。丝素蛋白的胶凝和凝胶稳定性的研究。浙江工程学院学报,1999,16(3),172-176。
    39 Andreas Seidel, Oskar Liivak, and Lynn W. Jelinski. Artificial spinning of spider silk. Macromolecules, 1998, 31:6733-6736
    40 李栋高,蒋蕙钧。丝绸材料学,中国纺织出版社,1994
    41 Kiyoichi Matsumoto, Hiroyuki Uejima, Regenerated protein fibers. I. research and development of a novel solvent for silk fibroin, Journal of applied polymer science, 1997,61:1949-1954
    42 Liu Y.; Yu, T.; Yao, H.; Yang, F. Journal of Applied Polymer Science 1997, 66, 405-408
    43 Tsukada, M.; Freddi, G.; Gotoh, Y.; Kasai, N. Journal of Polymer Science part B-Polymer Physics 1994, 32, 1407-1412
    44 H. Akai. The structure and ultrastructure of the silk gland. Experientia, 1983, 39(5): 443-472.
    45 Craig, C. L., Hsu, M., Kaplan, D., Pierce, N. E. A comparision of the composition of silk proteins produced by spiders and insects. Int. J. Biol. Macromol. 1991,24:109-118
    
    46 N.D.Lazo and Donald T. Downing. Crystalline regions of Bomyx mori silk fibroin may exhibit β-turn and p-helix conformation. Macromolecules 1999, 32,4700-4705.
    47 F.VoUrath and D.P.Knight, Structure and function of the silk production pathway in the spider Nephila edulis, International J.of biological macromolecules, 1999,24:243-249.
    48 Christian Jackson and John P.Obrien, Molecular weight distribution of Nephila clavipes dragline silk, Macromolecules, 1995,28:5975-5977.
    49 E.K.Tillinghast,S.F.Chase and M.A.Townley, Water extraction by the major ampullate duct during silk formation in the spider,Argiope Aurantia lucas, J. Insect. Physiol., 1994,30(7):591 -596
    50 Kerkam, K., Viney, C, Kaplan, D, Lombardi, S. Liquid crystallininity of natural silk secretions. Nature,1991, 349:596-598.
    51 B.L.Thiel and C.Viney, Spider major ampullate silk(drag line):smart composite processing based on imperfect crystals, J. of Microscopy, 1997,185(2): 179-187.
    52 J.Perez-Rigueiro, m. Elices, J.llorca, C.Viney, Tensile properties of silkworm silk obtained by forced silking, J. of applied polymer science, 2001,82:1928-1935.
    53 N.D.Lazo and Donald T. Downing. Crystalline regions of Bomyx mori silk fibroin may exhibit p-turn and P-helix conformation. Macromolecules 1999, 32, 4700-4705.
    54 Hayashi,C.Y. and Lewis,R.V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. Science,2000,287:1477-1479
    55 N.D.Lazo and Donald T.Downing, Crystalline regions of Bombyx mori silk fibrion may exhibit p-turn and Phelix conformations, Macromolecules, 1999,32:4700-4705.
    56 Jun Magoshi, Yoshiko Magoshi, Shigeo Nakamura. Crystallization, liquid crystal, and fiber formation of silk fibroin., Journal of applied polymer science: applied polymer symposium41,187-204,1985
    57 Magoshi J, Magoshi Y, Mary A. Becker, et al. Thermochimica Acta 2000;352-353:165-169.
    
    58 李光宪,于同隐。丝蛋白纤维化机理(Ⅰ)-中部丝腺内丝蛋白大分子的有序态。科学通报,1989,21:1656-1659
    59 于同隐,邵正中,桑蚕丝蛋白的结构、形态及其化学该性,高分子通报,1995.(3):154-160
    60 邵正中 吴冬 李光宪等,用拉曼光谱研究蚕丝蛋白的结构与功能的关系。光散射学报,1995,7(1):2-7
    61 李贵阳,周平,孙尧俊等。金属离子导致的丝素蛋白的构象转变,高等学校化学学报,2001,22(5):860-862。
    62 孙玉书,刘永成,马明华,邵正中,陈新,于同隐。由分子间氢键导致的丝素构象转变的FT-IR研究。高等学校化学学报。1993,19(1),135-138
    63 Viney, C. Chapter 10 silk fibers: origins, nature and consequences of structure. Materials, Elesevier Science, Oxford, 2000, 295-330
    64 Christopher Viney, Smart assembly of polymer fibres: lessons from major ampullate spider silk, Smart materials technologies and biomimetics, Processing of SPIE, 1996, V2716, 292-295
    65 Viney, C, Anne E, et al. optical characterization of silk secretions and fibers, Silk polymer: Materials Science and Biotechnology,1994, 121-136
    66 C. Viney, liquid crystalline phase behavior of proteins and polypeptides, Protein-based materials, Birkhauser Boston, 1997, 281-311.
    67 Viney, C. Light-microscopy of self-assembling biological macromolecules, ACS polymer preprints, 1992, 33(1):757
    68 Flory PJ. Statistical thermodynamics of mixtures of rodlike particles. 3. The most probable distribution. Macromolecules, 1978, 11, 1126-1133.
    69 Emily Renuart and Christopher Viney, Biological fibrous materials:self-assembled structures and optimized properties. In structural biological materials(edited by M. Elices), Elsevier Science, Oxford, 2000, 223-267
    70 Khandker S. Hossain, Eiji Ohyama, Akie Ochi, Jun Magoshi, and Norio Nemoto. Dillute-solution properties of regenerated silk fibroin. J. Phys. Chem. B 2003, 107, 8066-8073
    71 Khandker S. Hossain, Akie Ochi, Eiji Ooyama, Jun Magoshi, and Norio Nemoto. Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm. Biomacromolecules, 2003, 4- 350-359.
    
    72 Jun Magoshi, Shi geo Nakamura, and Shigeo Nakamura. Physical properties and structure of silk: 10. The mechanism of fibre formation from liquid silk of silkworm Bomyx mori. Polymer communication. 1985, 26, 309-311
    73 Eiaku Iizuka. Silk: an overview. Journal of applied polymer science: applied polymer symposium. 1985, 41,163-171
    74 杨新菊,张胜,陈虞峰,华中一。桑蚕丝蛋白结构的STM研究。真空科学与技术,1994,14(5):336—340
    75 Christian Riekel and Martin Muller, In situ X-ray diffraction during forced silking of spider silk, macromolecules, 1999, 32:4464-4466.
    76 E. K.Tillinghast,S.F.Chase and M.A.Townley, Water extraction by the major ampullate duct during silk formation in the spider, Argiope Aurantia lucas, J. Insect. Physiol., 1994, 30(7):591-596
    77 董纪震,罗鸿烈,王庆瑞,曹振林等编,合成纤维生产工艺学,纺织工业出版社,1993,85—87
    78 In Chun Um, Hae Yong Kweon, Young Hwan Park, Sam Hudson. Structure characteristics and properties of the regenerated silk fibroin prepared from formic acid.International Journal of biological macromolecules, 2001, 29, 91-97.
    79 Alexandra Simmons, Ed Ray, and Lynn W. Jellinski, Solid-state ~(13)C NMR of nephila clavipes dragline silk establishes structure and identity of crystalline regions, Macromolecules, 1994,27:5235-5237
    80 J. Zeng, X. S. Chen, X. Y. Xue, Generation of synthetic elastin-mimetic small diameter fibers and fiber networks, J. Appl. Polym. Sci. 2003, 89:1085
    81 R. V. N. Krishnappa, K. Desai and Ch. M. Sung, processing and microsturctural characterization of porous biocompatible protein polymer thin film. J. Mater. Sci. 2003, 38:2375
    
    82 姚永毅,朱谱新,叶海,吴大诚,用静电纺丝法制备聚砜纳米纤维,21世纪高技术、高性能、高附加值新型化纤发展论坛,2003,27—29
    83 王新威,胡祖明,潘婉莲,刘兆峰,吴宗铨,电纺丝过程中射流成纤方式及纤维毡的收集,21世纪高技术、高性能、高附加值新型化纤发展论坛,2003,212—217
    84 D. A. Saville, Stability of electrically charged viscous cylinders, Phys. Fluids 1971, 14:1095-1099
    85 Shahrzad Zarkoob, Darrell H. Reneker, R. K. Eby, et al. Structure and morphology of nano electrospun silk fibers, polymer preprints, 1998,39(2):244-245.
    86 J. S. Kim and D. H. Reneker, Mechanical properties of composites using ultrafine electrospun fibers, Polym. Compos., 1999, 20:124-129
    87 J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrost., 1995, 35:151-160
    88 M. Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids, 2001, 13(8):2201-2220
    88 X. Fang and D. H. Reneker, DNA fibers by electrospinning, J. Macromol. Sci.-Phys., 1997, B36(2): 169-173
    89 K. H. Lee, H. Y. Kim, H.J. Bong, Y.H. Jung, et al. The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 2003, 44:4029-4034
    90 Jean D. Stephens, D. Bruce Chase and John F. Rabolt, Effect of the electrospinning process on polymer crystallization chain conformation in Nylon-6 and Nylon-12, Macromolecules, 2004, 37:877-881
    91 M.Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner, Electrospinning and electrically forced jets. I. Applications. Phys. Fluids, 2001, 13(8):2221-2236
    92 A. J. Mestel, Electrohydrodynamic stability of a highly viscous jet, J. Fluid Mech., 1996, 312:311-318
    93 L. Huang, R. A. McMillan, R. P.Apkarian, Generation of synthetic elastin-mimetic small diameter fibers and fiber networks, Macromolecules, 2000, 33:2899-2903
    94 Matthew G. McKee, Garth L. Wilkes, Ralph. H. Colby, and Timothy E. Long, Correlations of solution rheology with electrospun fiber formation of linear of branched polyester, Macromolecules, 2004 37:1760-1767
    
    95 S. Zarkoob, D. H. Reneker and R. K. Eby, Electrospun silk fiber from hexafluoro-2-propanol solution. Polym. Preprints 1998, 39:244
    96 EP 1277857
    97 US 6110590
    98 WO 2004001103
    99 WO 2004000915
    100 S. H. Kim, Y. S. Nam, T. S. Lee and W. H. Park, Eelectrospun silk nanofibres formic acid as solvent. Polym. J. 2003, 35:185-189
    101 胡国梁,朱良均。再生丝素溶液的粘弹特性,丝绸技术,1997,5(3):1-3
    102 Mingying Yang, Juming Yao, Masashi Sonoyama, and Tetsuo Asakura. Spectroscopic characterization of heterogeneous structure of Sami Cynthia ricini silk fibroin induced by stretching and molecular dynamics simulation.
    103 Xin chen, David P. knight and Fritz Vollrath, Rheological characterization of Nephila spidroin solution, Biomacromolecules, 2002,3:644-648.
    104 Xin Chen, David P.Knight, Zhengzhong Shao, et al, Regenerated Bombyx silk solutions studied with rheometry and FTIR, Polymer, 2001,42:9969-9974.
    105 Tetsuo Asakura, Akira Aoki, Makoto Demura, et al, Structure of Bombyx mori silk fibroin studied by redor NMR spectroscopy, Polymer J. 1994, 26(12): 1405-1408.
    106 US 1934413
    107 GB 385516
    108 US 1936753
    109 JP 2002363861
    110 US 5252285
    111 WO 02081793
    112 Ishizaka H, Watanabe Y, Ishida K, Regenerated silk fiber from a new solution. Fukumoto O. J Seric. Jpn, 1989, 58(2):87-95
    113 Furuhata Ki, Okada A, Chen Y, Xu YY, Sakamoto M. J. Seric. Sci. Jpn 1994, 63(4):315-322
    114 hazime Saito, Ryoko Tabeta, Tetsuo Asakura, et al, High-resolution ~(13)C NMR study of silk fibroin in the solid state by the cross-polarization-magic anlge spinning method. Conformational characterization of silk I and silk II type forms of bombyx mori fibroin by the conformation-dependent 13C chemical shifts, Macromolecules, 1984,17:1405-1412.
    
    115 Chen X; Shao Zz; Knight Dp; Vollrath FConformation transition of silk protein membranes monitored by time-resolved ftir spectroscopy: effect of alkali metal ions on nephila spidroin membrane Acta Chimica Sinica, 2002,160(12): 2203-2208
    116 Tetsuo Asakura, Mitsuo Iwadate, Makoto Demura, Michael P. Williamson. Structure analysis of silk with C NMR chemical shift contour plots. Internal journal of biological macromolecular, 1999,24,167-171.
    117 J.Perez-Rigueiro, m. Elices, J.llorca, C.Viney, Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web, J. of applied polymer science, 2001,82:2245-2251.
    118 J.Perez-Rigueiro, m. Elices, J.llorca, C.Viney, Silkworm silk as an engineering material, J. of applied polymer science, 1998,70:2439-2447.
    119 J.perez-Rigueiro, C.Viney, J.Llroca, M. Elices. Mechanical properties of silkworm silk in liquid media, Polymer, 2000,41:8433-8439.
    120 J Perez-Rigueiro, M.Elices, J.Llorca, C.Viney, Tensile properties of Attacus atlas silk submerged in liquid media, J. of applied polymer science, 2001,82:53-62.
    121 Anne M.F. Moore, Kimly Tran, Material properties of cobweb silk from the black widow spider Latrodectus Hesperus, Int. J. ofbiological macromolecules, 1999,24:277-282.
    122 Dwayne L.Dunaway, Brad L. Thiel, and C.Viney, tensile mechanical property evaluation of natural and epoxide-treated silk fibers, J. of applied polymer science, 1995,58:675-683.
    123 K. Shimura. The physiology and biology of spinning in Bombyx mori. Experientia. 1983, 39(5), 441-442.
    124 David H. Hijirida, Kinh Gian Do, Carl Michal, Shan Wong, Lynn W. Jelinski. C13 NMR of Nephila clavipes major ampullate silk gland. Biophysical Journal, 1996, 71, 3442-3447.
    
    125 Oskar Liivak, Amy Blye,Neeral Shah,et al.A microfabricatd wet-spinning apparatus to spin fibers of silk proteins.Structure-property correlations, Macromolecules, 1998,31:2947-2951.
    126 Z.Shao, F.Vollrath, J.Sirichaisit, R.J. Young, Analysis of spider silk in native and supercontracted states using raman spectroscopy, Polymer,1999,40:2493-2500.
    127 Zhengzhong Shao, Fritz Vollrath, The effect of solvents on the contraction and mechanical properties of spider silk, polymer, 1999,40:1799-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700