微载荷含油轴承摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术和微型机电设备中,含油轴承的应用日益广泛。由于轴承结构的微小型化,工作载荷也趋向轻微,对轴承在微载荷下摩擦学特性的要求越来越高。微载荷下,结构,表面特性,载荷,速度和润滑剂等引起的微小激励都将使轴承的运转状态出现不稳定。摩擦稳定性已成为评价轴承性能的关键技术指标。通过理论分析和试验研究,探讨微载荷下含油轴承的摩擦学特性,从材料,结构,润滑方面探索提高轴承摩擦性能的途径,将丰富摩擦学的理论知识,并为满足日益增长的含油轴承的工程应用开拓途径。
     本文运用含油轴承润滑理论和微载荷轴承摩擦试验技术,研究了多孔质材料的仿生设计,润滑特性的理论分析,微小摩擦量的检测技术,从理论和试验上全面揭示了微载荷下含油轴承的摩擦学特性和各种因素的影响规律。主要研究内容有:
     1) 含油轴承的润滑机理:通过比较轴承润滑分析的Darcy模型,Slip-Flow模型和Brinkman模型,阐明了含油轴承润滑的物理过程,揭示影响轴承摩擦性能的因素。以毛细管效应,电磁场作用和热效应为重点,阐明了它们在含油轴承中的作用。
     2) 微载荷含油轴承的摩擦特性:由于影响因素众多,微载荷下轴承的摩擦性能呈现明显的不稳定性。轴承的结构,载荷,摩擦,润滑性能都出现强随机性。微载荷下含油轴承的性能特征的追求已从以往的摩擦系数极小化转化为对摩擦参数稳定性的要求。
     3) 多孔质材料的特性:运用SEM技术研究天然材料的多孔结构,通过对天然材料中多孔质的尺寸,几何构型,孔隙密度及其变化梯度的观测,划分均匀多孔质材料,梯度多孔质材料和复合多孔质材料。根据仿生原理,为含油轴承材料提出梯度型多孔质结构优化设计。
     4) 含油轴承润滑的理论分析:基于Brinkman模型,用Elrod算法计算微载荷含油轴承的润滑状态,揭示多孔质材料中润滑油的渗透度对轴承性能的影响。发现大渗透度下,轴承几乎丧失承载能力,而渗透度小于一极限值时,对润滑影响的差别几乎可以忽略不计。一般渗透度条件下,摩擦系数随载荷的下降而上升,当载荷大到一极限值时摩擦系数趋向稳定值,并与试验结果相吻合。但是,试验中惯性引起的系统误差使计算得到的摩擦系数值小于测量值。
     5) 微载荷含油轴承中的混沌研究:研究发现,微载荷含油轴承摩擦学系统为混沌系统。出现混沌现象的原因是与速度有关的摩擦力和与弹性有关的粘弹性共同作用的结果。鉴于微载荷含油轴承性能研究中摩擦稳定性的重要性,对①无摩擦,无驱动,②有摩擦,无驱动和③有摩擦,有驱动三种情况研究了轴承摩擦学混沌系统,得到了判别稳定性的条件。用随机函数作驱动项得到线性化摩擦系统的混沌表现。在线性化混沌方程和随机函数输入条件下,微载荷摩擦混沌现象表现为杂乱无章的速度与加速度关系。随着固体接触和固体摩擦成分的增加,速度与加速度关系表现出有规律的渐进稳定状态。
In appliances of IT and MEMS equipments, the tribological characteristics especially friction stability under micro-loads become key factors for the performances of porous bearings, but the study of these topics has not been carried out in the past. The friction performance under micro-load is defined as instability due to bearing configurations that include clearance, roughness, lubricants and velocity etc. after the load is small to some extent, and the unsteady state is a typical tribology character of bearings under micro-load. The goals of this dissertation are to investigate tribological performance factors, bionic porous design, measurement of friction coefficients and chaos state of friction of porous bearings under micro-load. The detail contents and results are as follows
    1) The lubrication mechanism of porous bearing was discussed. And, Darcy model, Slip-flow model, Brinkman model and other models for lubrication were comparatively analyzed. The tribological factors and the experimental methods of porous bearings were reviewed. The lubricant property and surface topography of bearings under micro-load play largely influences on the tribological performances than those under general conditions. And, tribological performances under micro-load show comprehensive characteristics, and suggest the investigation necessity of the interactions between lubricants and friction surfaces, the lubrication capability etc., of which the requirement of lowest friction coefficient is replaced by friction stability.
    2) The porous capillarity, magnetism distribution and/or its thermal effects are fundamental problems. The capillarity effects of porous bearings were analyzed and summarized, because the capillarity carries a part of hydrodynamic pressure in lubrication film. The electromagnetic effects on bearing functions should not be neglected under some cases. Thus, the distribution characters of magnetic field in journal bearings are obtained by FEM. And, the results show that an edge effect emerges at axial ends of bearings, and an aggregation effect appears at radial eccentricity. Hence, the above influences on bearings are not structural uniform. The eddy thermal effect in the rotating shaft can be neglected at low speeds but brings a temperature rise beyond 20℃ at high speeds, and the rise range of temperature ascends with the increase of speed.
    3) Micro-pores structures of some natural materials were studied with SEM. The results show that the micro structures can be classified into three types, namely uniform pores, gradient pores and multi-pores in terms of the distribution variation of porous density, size and geometry. An optimal design of porous bearings was proposed based on the gradient configuration. For the structure design requiring coordination of strength, mass and vibration, bionic design has superiority to conventional methods.
    4) Based on the Brinkman model, Elrod algorithm was used to compute the lubrication performances. The results show that permeability significantly influences friction coefficient for large permeability, and computed load is very trivial; the above influence difference can be neglected as permeability is smaller than a certain value. Under general permeability and mi-
引文
1 渡边侊尚.烧结含油轴承.粉末冶金技术,2002,20(3):121-128.
    2 韩凤麟.美国MPIF标准35粉末冶金自润滑轴承材料标准1998年修订简介.粉末冶金工业,2000,6:36-48.
    3 www.mpif.org. Metal Powder Industries Federation.
    4 Neale MJ.摩擦学手册.北京:机械工业出版社,1984.
    5 Rouleau WT, Steiner LI. Hydrodynamic porous journal bearings emdash finite full bearings. American Society of Mechanical Engineers, 1974, 74: 8.
    6 Murti PRK. Lubrication of finite porous journal bearings. Wear, 1973, 26 (1) : 95-104.
    7 Murti PRK. Lubrication of narrow porous bearing with arbitrary wall thickness. American Society of Mechanical Engineers, 1973, 73: 7.
    8 Avakov AM, Popov EN, Pustovoit YI, Krivonosov VK. Method of prolonging the Useful Life of Sintered Self-lubricating Bearings. Soviet Powder Metallurgy and Metal Ceramics, 1976, 15 (2) : 154-156.
    9 Murti PRK. Effect of slip flow in narrow porous bearings. Journal of Lubrication Technology, 1973, 95 (4) : 518-523.
    10 Murti PRK. Effect of veloctiy slip in an externally pressurized porous thrust bearing working with an incompressible fluid. American Society of Mechanical Engineers, 1976, 76: 5.
    11 Kumar V. Elastic and damping properties of partial porous journal bearings of finite length and arbitrary wall thickness taking film curvature and slip flow in account. Wear, 1976, 40 (3) : 293-308.
    12 Kumar V. Hydrodynamic Load Capacity of a Full Porous Journal Bearing of Finite Length in the Turbulent Regime Considering Slip Flow and Curvature. Wear, 1981, 67 (2) : 167-176.
    13 Kaneko S, Doi Y. Static and dynamic characteristics of porous journal bearings with nonuniform permeability. JSME International Journal (Series 3), 1989, 32 (2) : 294-302.
    14 Chattopadhyay AK, Majumdar BC. Dynamic characteristics of finite porous journal bearings considering tangential velocity slip. Trans ASME Journal of Tribology, 1984, 106: 534-536.
    15 Neale G, Nader W. Formulation of boundary conditions at the surface of a porous medium. Society of Petroleum Engineers of AIME Journal, 1974, 14 (5) : 434-436.
    16 Neale G, Nader W. Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium. Can J Chem Eng, 1974, 52: 475-478.
    17 Lin JR, Hwang CC. Lubrication of short porous journal bearings-use of the Brinkman-extended Darcy model. Wear, 1993, 161 (1-2) : 93-104.
    18 Lin JR, Hwang CC. Linear stability analysis of short porous journal bearings use of the brinkman model. Journal of Tribology (Transactions of ASME),1995,117(1):199-202.
    19 Lin JR, Hwang CC, Yang RF. Hydrodynamic lubrication of long, flexible, porous journal bearings using the Brinkman model. Wear, 1996,198:156-164.
    20 Lin JR. Squeeze film behavior in a hemispherical porous bearing using the Brinkman model. Tribology Transactions, 1996,39:769-778.
    21 Lin JR. Optimal design of one-dimensional porous slider bearings using the Brinkman model. Tribology International,2001,34:57-64.
    22 Lin JR, Hwang CC. Hopf bifurcation to a short porous journal-bearing system using the Brinkman model: Weakly nonlinear stability. Tribology Intemational,2002,35(2):75-84.
    23 Elsharkawy AA, Guedouar LH. Hydrodynamic lubrication of porous journal bearings using a modified Brinkman-extended Darcy model. Tribology International,2001,34:767-777.
    24 Chen MD, Chang KM, Lin JW, Li WL. Lubrication of journal bearings-influence of stress jump condition at the porous-media/fluid film interface. Tribology Interna-tional,2002,35:287-295.
    25 Morgan VT, Cameron A. Mechanism of lubrication in porous metal bearings. London: Proceedings of The Conference on Lubrication and Wear, 1957: 151-157.
    26 Kumar V. Porous metal bearing-A critical review. Wear, 1980,63:271 -287.
    27 Agrawal VK. Magnetic-fluid-based porous inclined slider bearing. Wear, 1986,107:133-139.
    28 Braun JT, Groenhof ED. Silicone lubrication of porous bronze bearings. Lubrication Engineering,! 975,31 (4): 176-182.
    29 Naduvinamani NB, Hiremath PS, Gurubasavaraj G. Surface roughness effects in a short porous journal bearing with a couple stress fluid. Fluid Dynamics Research, 2002,31:333-354.
    30 Gururajana K, Prakash J. Roughness effects in a narrow porous journal bearing with arbitrary porous wall thickness. International Journal of Mechanical Sciences, 2002,44:1003-1016.
    31 Pinkus O, Sternlicht B. Theory of hydrodynamic lubricatrion. landon: Mcgraw-Hill book company, inc, 1961.
    32 Beavers GS, Joseph DD. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 1967,30(1): 197-207.
    33 Taylor GI. A model for the boundary condition of a porous material. Journal of Fluid Mechanics,1971,49:319-326.
    34 Prakash J, Vij SK. Analysis of narrow porous journal bearing using Beavers-Joseph criterion of velocity slip. Trans ASME Journal of Applied Mechanics, 1974,41:348-353.
    35 Kaneko S, Obara S. Experimental investigation of mechanism of lubrication in porous journal bearings: part 1 observation of oil flow in porous matrix. Journal of Tribology (Transactions of ASME),1990,112(10):618-623.
    36 Meurisse MH, Giudicelli B. A 3D conservative model for self-lubricated porous journal bearings in a hydrodynamic steady state. Journal of Tribology (Transactions of ASME), 1999,121:529-537.
    37 Kumar A. Turbulent hybrid journal bearings with porous bush. A steady state performance. Wear,1992,154(1):23-35.
    38 Kumar A. Conical whirl instability of turbulent flow hybrid porous journal bearings. Tri-bology International,1998,31(5):23 5-243.
    39 Guha SK. Study of conical whirl instability of hydrodynamic porous oil journal bearings with tangential velocity slip. Tribology International,1986,19(2):72-78.
    40 Capone E, Niola V, Bocchini GF, Capone A. The four step porous bearing. Tribology international, 1978,12:330-336.
    41 Quan YX, Wang PM. Theoretical analysis and experimental investigation of a porous metal bearing. Tribology International, 1985, 18(2):67-73.
    42 Wada S. Hydrodynamic lubrication of porous journal bearings with grease. Bulletin, JSME, 1986,29(249):943-949.
    43 Rajesh CS, Bhat MV. Squeeze film based on magnetic fluid in curved porous rotating circular plates. Journal of Magnetism and Magnetic Materials,2000,208:115-119.
    44 Prashad H. Investigations of corrugated pattern on the surfaces of roller bearings operated under the influence of electrical fields. Lubrication Engineering,1988,44(8):710 -718.
    45 Prashad H. Behavior of greases in statically-bounded conditions and when used in nonin-sulated anti-friction bearings under the influence of electrical fields. Lubrication Engineering,1988,44(3):239-246.
    46 Prashad H. Diagnosis of rolling-element bearings failure by localized electrical current between track surfaces of races and rolling-elements. Journal of Tribology (Transactions of ASME),2002,124:468-474.
    47 Boyd J, Kaufman HN. The causes and control of electrical currents in bearings. Lubrication Engineerning,1959,15(1):25-35.
    48 Chiou YC, Lee RT, Lin CM. Formation criterion and mechanism of electrical pitting on the lubricated surface under AC electric Field. Wear, 1999,236:62 - 72.
    49 Zaidi H, Pan L, Paulmier D. Influence of a magnetic field on the wear and friction behaviour of a nickel/XC 48 steel couple. Wear,1995,181-183:799-804.
    50 Mansori ME, Paulmier D, Ginsztler J. Lubrication mechanisms of a sliding contact by simultaneous action of electric current and magnetic field. Wear,1999,225-229:1011-1016.
    51 Bi HY, Wang ZJ. Wear of medium carbon steel in the presence of Nd-Fe-B permanent magnetic field. Materials Letters,2003,57:1752-1755.
    52 Blau PJ. Friction science and technology. New York: Marcel Dekker Inc, 2001.
    53 Truhan JJ, Qu J, Blau PJ. A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants. Tribology Interna-tional,2005,38:211-218.
    54 孙晓军,翁立军,孙嘉奕. 模拟原子氧环境的真空摩擦试验装置.摩擦学学报,2002,22(6):462-468.
    55 Raman R, Chennabasavan TS. Experimental investigations of porous bearings under vertical sinusoidally fluctuating loads. Tribology International, 1998,31(6): 325-330.
    56 胡乔木,华罗庚,于光远,沈鸿.中国大百科全书.北京:中国大百科全书出版社,2003.
    57 Howard AS, Abraham DS, Armand A. Engineering flows in small devices: Microfluidics towards a lab-on-a-chip. Harvard University report, 2003.
    58 Yan JH, Laker TS, Ghiaasiaan SM. Linear stability of inverted annular gas-liquid two-phase flow in capillaries. International Journal of Heat and Fluid Flow, 2004, 24: 122-129.
    59 Funada T, Joseph DD. Viscoelastic potential flow analysis of capillary instability. Non-Newtonian Fluid Mech, 2003, 111: 87-105.
    60 Schonberg JA, Gupta SD, Wayner PC. An augment Young-Laplace model of an evaporating meniscus in a microchannel with high heat flux. Experimental Thermal and Fluid Science, 1995, 10: 163-170.
    61 Knudsen JK, Palmquist KE. The Effect of Porosity on the Head-Media Interface. Journal of Tribology (Transactions of ASME), 2001, 123 (7) : 555-560.
    62 Kuang J, Maxworthy T, Petitjeans P. Miscible displacements between silicone oils in capillary tubes. European Journal of Mechanics B/Fluids, 2003, 22: 271-277.
    63 Chen CY, Hong CY, Chang LM. Displacements of miscible magnetic uids in a capillary tube. Fluid Dynamics Research, 2003, 32: 85-98.
    64 Long D, Howard AS, Armand A. Electroosmotic flows created by surface defects in capillary electrophoresis. Journal of Colloid and Interface Science, 1999, 212: 338-349.
    65 Ulman A. Formatoin and structure of self-assembled monolayers. Chem. Rev. , 1996, 96: 1533-1554.
    66 Srinivasan U, Liepmann D, Howe RT. Microstructure to substrate self-assembly using capillary forces. Journal of Microelectromechanical Systems, 2001, 10 (1) : 17-24.
    67 Jakobsen J, Sanborn DM, Winer WO. Simulation of severe shear conditions in lubrication. SAE Special Publications, 1973: 59-67.
    68 李新元,宋宝玉,朱宝库,齐毓霖.NY-1型高压毛细管式粘度计的工作原理与测试结果的数据处理.摩擦学学报,1992,12(1):88-93.
    69 徐向东,洪义麟,付绍军,张允武.X射线毛细管及其应用.物理,1999,28(4):236-240.
    70 曲伟,范春利,马同泽.脉动热管的接触角滞后和毛细滞后阻力.工程热物理学报,2003,24(2):301-303.
    71 刘克富,夏胜国,潘垣.毛细管等离子体射流技术研究现状及应用前景.强激光与粒子束,2003,15(7):659-663.
    72 Prins MWJ, Welters WJJ, Weekamp JW. Fluid control in multichannel structures by electrocapillary. Science, 2001, 291 (12) : 277-280.
    73 Zabow G, Assi F, Jenks R, Prentiss M. Guided microfluidics by electromagnetic capillary focusing. Applied Physics Letters, 2002, 80 (8) : 1483-1485.
    74 盛剑霓.工程电磁场数值分析.西安:西安交通大学出版社,1991.
    75 Kaye GWC, Laby TH. Tables of physical and chemical constants. BeiJing: World Book Publishers Ltd, 1999.
    76 Schweitzer G, Traxler A, Bleuler H. Magnetlager. Berlin Heidelberg: Springer-Verlag, 1993.
    77 Zeisberger M, Gawalek W. Losses in magnetic bearings. Materials Science and Engineering B, 1998, 53: 193-197.
    78 Kubo Y, Ohsaki H. Rotation losses in the superconducting bearing based on magnetic gradient levitation concept. Physica C, 2001, 357-360: 886-888.
    79 Shiraishi R, Demachi K, Uesala M. Numerical simulation of coupled problem of electromagnetic field and heat conduction in superconducting magnetic bearing. Physica C, 2003, 392-396: 734-738.
    80 Bouty O. Eddy current losses in passive magnetic bearings. Journal of Applied Physics, 2002, 92 (11) : 6851-6856.
    81 Stratton J. Electromagnetic theory: Beijing aerospace university press, 1986.
    82 杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    83 Kaye G, Laby T. Tables of physical and chemical constants. Beijing: World Book Press, 2002.
    84 Davis C, Reves R. High value opportunities from the chicken egg. 2002.
    85 Hincke MY, Gautron J, Pinhole M. Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biology, 2000, 19: 443-453.
    86 Zelenitsky DK, Modesto SP. Bird-like characteristics of troodontid theropod eggshell. Cretaceous Research, 2002, 23: 297-305.
    87 Meloni S, Mazzini M. Egg envelope organization in the icefish chionodraco hamatus. Polar Biol, 2004, 27: 586-594.
    88 Guglielmino A, Tadde AR. Fine structure of the eggshell of ommatissus binotatus fieber (homoptera, auchenorrhyncha, tropiduchidae). Insect Morphol and Embryol, 1997, 26 (2) : 85-89.
    89 Kom S, Kabkaew L. Ultrastructure of eggshell of Chrysomya nigripes Aubertin (Dipera: Calliphoridae). Parasitol Res, 2004, 93: 151-154.
    90 Hinton HE. Insect eggshells. Scientific American, 1970, 232 (2) : 84-91.
    91 朱旋,蒲刚,冯庆玲.鸵鸟蛋壳的微结构研究.材料导报,2000,14:302-304.
    92 Fernandez MS, Araya M, Arias JL. Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biology, 1997, 16: 13-20.
    93 Wang J, Jiang RS, Yu Y. Relationship between dynamic resonance frequency and egg physical properties. Food Research international, 2004, 37 (1) : 45-50.
    94 Ketelaere BD, Vanhoutte H, Baerdemaeker JD. Parameter estimation and multivariable model builfing for the non-destructive on-line determination of eggshell strength. Journal of Sound and Vibration, 2003, 266: 699-709.
    95 Scheidegger AE.多孔介质中的渗流物理.北京:石油工业出版社,1982.
    96 Pugh JW, Rose RM, Paul IL, Radin EL. Mechanical resonance spectra in human cancellous bone. Science, 1973, 181: 271-272.
    97 Koizumi T, Tsujiuchi N, Fujita K. Performance improvement of sound-absorbing materials using natural bamboo fibers and their application. Second International Conference on High Performance Structures and Materials, 2004: 461-470.
    98 Galland MA, Mazeaud B, Sellen N. Hybrid passive/active absorbers for flow ducts. Applied Acoustics, 2005, 66 (6) : 691-708.
    99 Kemps B, Ketelaere B, Bamelis F. Development of a methodology for the calculation of young's modulus of eggshell using vibration measurements. Biosystems engineering, 2005, 89 (2) : 215-221.
    100 Lin J, Puri VM, Anantheswaran RC. Measurement of eggshell thermal-mechanical properties. Transactions of the ASAE, 1995, 38 (6) : 1769-1776.
    101 Heredia A, Lozano L, Martinez-Matias CA, Pena-Rico MA, Rodriguez-Hernandez A, Villareal E, Martinez A, Garcia-Garduno MV, Basiuk VA, Bucio L and others. Microstructure and thermal expansion properties of ostrich eggshell. Materials Research Society Symposium, 2002: 117-122.
    102 Davis ME. Ordered porous materials for emerging applications. Nature, 2003, 417: 813-822.
    103 Kitimasak W, Thirakhupf K, Moll DL. Eggshell structure of the Siamese Narrow-headed softshell turtle Chitra chitra Nutphand. Science Asia, 2003, 29: 95-98.
    104 Garcia-Ruiz JM, Navarro AR, Kalin O. Textural analysis of eggshells. Materials Science and Engineering C, 1995, 3: 95-100.
    105 朱震刚.金属泡沫材料研究.物理,1999,28(2):84-88.
    106 Maine EMA, Ashby MF. Applying the investment methodology for materials (IMM) to aluminum foams. Materials and Design, 2002, 23: 307-319.
    107 Danielsson M, LGrenestedt J. Gradient foam core materials for sandwich structures: preparation and characterization. Composites(A), 1998, 29: 981-988.
    108 Tichy JA. A porous medis model for thin film lubrication. Journal of Tribology, 1995, 117: 16-21.
    109 li WL. Derivation of modified Reynolds equation-a porous media model. Journal of Tribology, 1999, 121: 823-829.
    110 Aaron AJ, Ramagopal P. The impact of Brinkman's extension of Darcy's law in the neighborhood of a circular preferential flow pathway. Environmental Modeling & Software, 1999, 14: 427-435.
    111 孙大成.润滑力学讲义.北京:中国友谊出版社,1991.
    112 郑林庆.摩擦学原理.北京:高等教育出版社,1994.
    113 Elrod HG. A cavitation al gorithm. Journal of lubrication technology, 1981, 103 (3) : 350-354.
    114 Elrod HG, Adams ML. A computer program for cavitation and starvation problems. New York: cavitation and related phenomena in lubrication, 1974: 37-41.
    115 Jakobsson B, Floberg L. The finite journal bearing considering vaporization. Chalmers Tekniska Hoegskolas Handlingar, 1957, 190: 111-116.
    116 Olsson KO. Cavitation in dynamically loaded bearing. Goteborg: Chalmers University of Technology, 1965.
    117 Ochoa-Tapis JA, Whitaker A. Momentum tranfer at the boundary between a porous medium and a homogeneous fluid-Theoretical development. International Journal of Heat and Mass Transfer, 1995, 38: 2635-2646.
    118 Vijayaraghavan D, Keith TG. Development and evaluation of a cavitation algorithm. STLE, Tribology Transactions, 1989, 31 (2) : 225-33.
    119 Lorenz EN. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
    120 黄润生.混沌及其应用.武汉:武汉大学出版社,2000.
    121 Brown RD, Drummond G, Addison PS. Chaotic response of a short journal bearing. Journal of Engineering Tribology, 2000, 214 (4) : 387-400.
    122 Wojewoda J, Kapitaniak T, Barton R, Brindley J. Complex behaviour of a quasiperiodically forced experimental system with dry friction. Chaos, Solitons and Fractals, 1993, 3 (1) : 35-46.
    123 Cheng G, Zu JW. Dynamics of a dry friction oscillator under two-frequency excitations. Journal of Sound and Vibration, 2004, 275: 591-603.
    124 Bharathia MS, Ananthakrishnaa G. Possibility of chaos in internal friction experiments of martensites. Physica A, 1999, 270: 159-164.
    125 Awrejcewicz J, Sendkowski D. How to predict stick-slip chaos in R4. Physics Letters A, 2004, 330: 371-376.
    126 Fitsum AT, Robert JR. Improved dynamic friction models for simulation of one-dimensional and two-dimensional stick-slip motion. Journal of Tribology, 2001, 123: 661-670.
    127 Ibrahim RA. Friction-induced vibration, chatter, squeal, and chaos: Part Ⅱ-Dynamics and modeling. American Society of Mechanical Engineers, Design Engineering Division, 1992, 49: 123-138.
    128 Michael U, Joseph K, Delphine G, Jacob I. The nonlinear nature of friction. Nature, 2004, 430: 525-528.
    129 温诗铸,黄平.摩擦学原理(第二版).北京:清华大学出版社,2002.
    130 Timoshenko SP, Goodier JN. Theory of elasticity(third edition). 北京:清华大学出版社,2004.
    131 Yasuhisa A. Lowering friction coefficient under low loads by minimizing effects of adhesion force and viscous resistance. Wear, 2003, 254: 965-973.
    132 Liu XJ, Hidetaka N, Li TS, Shigeyuki M. A study on the friction properties of PAAc hydrogel under low loads in air and water, wear, 2004, 257: 665-670.
    133 Carlos HS, K TD, Sinatora A. The effect of load and relative humidity on friction coefficient between high density polyethylene on galvanized steel—preliminary results. Wear, 1999, 225-229: 339-342.
    134 Straffelini G, Pellizzari M, Molinari A. Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material. Wear, 2004, 256: 754-763.
    135 Flack RD, Kostrzewsky GJ, Taylor DV. Hydrodynamic journal bearing test rig with dynamic measurement capabilities. STLE Tribology Transactions, 1993, 36 (4) : 497-512.
    136 Rymuza Z. Tribology of miniature systems. New York: Elsevier Scientific Publishing Company, 1989.
    137 程正兴.小波分析算法与应用.西安:西安交通大学出版社,2002.
    138 Mori S, Iwata H. Relationship between tribological performance of liquid crystals and their molecular structure. Tribology international, 1996, 29 (1) : 35-39.
    139 卢颂峰,郑杰,王良御,温诗铸.液晶润滑添加剂5CB的减摩性能研究.摩擦学学报,1995,15(3):257-262.
    140 Hoffmann N, Fischer M, Allgaier R, Gaul L. A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mechanics Research Communications, 2002, 29: 197-205.
    141 Nguyen QS. Instability and friction. C. R. Mecanique, 2003, 331: 99-112.
    142 Sinou JJ, Thouverez F, Jezequel L. Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model. Journal of Sound and Vibration, 2003, 265: 527-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700