镁合金微弧氧化膜的制备、表征及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在AZ91镁合金基体表面制备了微弧氧化陶瓷层,开发出高效、环保的新型镁合金微弧氧化电解液并系统优化了微弧氧化的电源参数;利用SEM、XRD、XPS、FTIR等手段对膜层的微观组织结构进行了分析;测试了膜层的耐腐蚀、耐磨损和硬度、抗拉强度等性能。
     实验发现,控制微弧氧化电源的电源参数,可以改变膜层表面的圆盘状结构及中间微孔的大小,同时疏松层和致密层的比例也发生改变。在微弧氧化过程中施加负脉冲电压,可明显减小疏松层的比例,促进O、P元素向基体内渗透。
     膜厚与氧化时间成抛物线关系。随着氧化时间的延长,致密层所占的比例呈现先升高又下降的趋势,而膜层向基体内生长的比例呈一直升高趋势。氧化时间过长会导致靠近基体的部分致密层中存在较多的气孔、裂纹等缺陷。首次采用Mat lab软件编程计算了微弧氧化膜层表面的孔隙率,为研究膜层特殊的多孔结构提供了新的表征手段。
     通过研究不同工艺条件下制备的镁合金微弧氧化膜层中尖晶石相和方镁石相的比例,首次提出该比例在0.6~1.0范围内时,膜层的耐蚀性明显提高。首次研究了镁合金微弧氧化膜层的润湿性问题。不同工艺条件下制得的微弧氧化膜层与水的接触角差别很大。适当增加膜层的孔隙率,有利于提高接触角。增加微弧氧化膜层表面的微孔数量的同时,减小孔径并使之均匀分布,对提高其表面的疏水性起着决定性的作用。
     无论是在点滴实验、电化学实验还是在盐雾腐蚀实验中,微弧氧化膜层都表现出很好的耐蚀性,和基体相比,微弧氧化膜层的耐蚀性大幅提高。首次研究了中性盐雾腐蚀环境中膜层的典型腐蚀形貌,并建立了丝状腐蚀区形成的机理模型。
     膜层的表面粗糙度、耐磨性、硬度及拉伸性能的测试结果表明铝酸盐体系中制备的微弧氧化膜层具有良好的综合性能。
     本论文所开发的镁合金微弧氧化工艺具有一定的实用价值,在工业应用上取得了初步的成功。
Magnesium alloys, with low density, high special strength and rigidity, good heat conductibility, high damping characteristics, good electromagnetic shielding characteristics and other virtues, have become promising materials for manufacturing light structures and have a bright future in aviation, aerospace, walking machine and 3C etc. However, the poor corrosion resistance of magnesium alloys has been greatly restricting their further application. Various surface treatment method is still the necessary procedure before the practical application of magnesium component. Micro arc oxidation (MAO) processing is an emerging, environmentally friendly and simple surface technique, which gets rid of the disadvantages of the common surface treatment methods and has a wide application future. Although, a lot of research have been made about the formation mechanism, microstructure and performances of the MAO coatings, there is still a great many of important scientific questions to be answered about the above items, which is of great significance theoretically and actually. Based on the above insufficiencies in MAO researching of magnesium alloys, some valuable researches have been done and some innovative results have been obtained in this dissertation.
     Firstly, in the way of the preparation of the MAO coating, a new kind of MAO electrolyte with high efficiency and without pollution has been developed, and the effect of the electronic parameters on the thickness, microstructure and corrosion resistance of the MAO coatings has been systematically investigated.
     The compositions of the MAO electrolyte are: NaAlO2 (~20g/l) as the main component, NaOH(4~8 g/l) as additive, also can be added by KMnO4 (3~8g/l) as accelerant and sodium citrate(3~8g/l) with or without sodium phosphate(3~8g/l) as stabilizator, the pH is adjusted in the range of 13~14 by adding H3PO4 or ammonia into the electrolyte. The optimized electronic parameters are 4.7~5.6A/dm2 current density, 500~900 Hz frequency and 20~30% duty in view of the present MAO equipment and corrosion resistance is given priority.
     Secondly, in the way of the characterization of the MAO coating, the microstructure and composition of the coating are analyzed by modern surface analysis methods such as SEM, XRD, XPS, TEM and FTIR. The results are as followed:
     The surface morphology of the coating is dense and uniformity. The average diameter of the pancake is about 21μm and the central micro-pore size is in the range of 1~10μm. A lot of 10~40 nano-structure exist in the surface of pancake. The phase composition of the coating is the main MgAl2O4 spinel and litter dissociative MgO periclase.
     By comparing the cross-section morphology and the elements distribution of the MAO coatings prepared with and without negative voltage, it can be seen that the ratio of outer porous layer decreases and the interface between inner dense layer and the substrate gets zigzag, as well as, the penetration of O and P elements into the substrate more equably under the condition of negative voltage. The Mat lab program can meet the need of reflecting the porosity of the MAO coating surface, which provides a new approach to characterize the MAO coating.
     It is found that the micro-arc oxidation process can be divided into three stages according to the spark and voltage variation, the initial passive film stage, the coating rapid growth stage and the coating parcel growth stage. Variation of the surface morphology with the oxidation time reveals that the ceramic coating growth is such a course that ceramic particles form first on the surface of substrate, and then the particles gather into island, at last, the island ripens further in dimension of X-Y. At the same time, the phases with high temperature breaking forth from the discharge channel stack continuously and modify the appearance of the island, as well as seal the surface micro-pores.
     The coating thickness increases according to a formula of parabola with the oxidation time depending on the heat diffusing under the condition of keeping current density constant. The ratio of dense layer thickness to the total thickness increases first and then decrease along with the oxidation time, while the ratio of the coating growing inward into the substrate increases all through. Long oxidation time causes many flaws such as pores and crack in the dense layer near the substrate. The quantitative estimations for the mass percent of MgAl2O4 and MgO and the crystal size of MgAl2O4 are achieved by the XRD results, consequently, the corresponding response of phase composition to the corrosion resistance is proposed. The results show that the corrosion resistance of the MAO coating improves significantly when the mass percent ratio of MgAl2O4 to MgO is in the range of 0.6~1.0. A conclusion can be drawn that the mass percent ratio of MgAl2O4 to MgO in the coating is another main factor besides the thickness and microstructure. The crystal size of MgAl2O4 in the coatings obtained with different oxidation time is in the range of 40~50nm. In addition, the crystal size is decreasing and then increasing with increasing the process time. The lattice constant of MgAl2O4 is less than the standard and increases with the longer processing time.
     Thirdly, the properties of the coating such as surface roughness, wettability, corrosion and wear resistance are measured by various apparatus and test. The results are as follows:
     The surface roughness of the MAO coating increases with increasing current density and decreases with increasing duty. The main frequency has no significant effect on the surface roughness. While the pH value is in the range of 11~12, the coating surface is good.
     The water contact angles of the coating prepared under different parameters have great difference. Increasing the porosity of the coating can improve the water contact angles to some extent and whereas, decreasing the porosity can reduce the angle and improve the wettability. Increasing the number of the micro-pore and synchronously reducing homogenizing its diameter reveals a decisive role to get hydrophobic coating
     The corrosion test results in different corrosion condition show that MAO treatment improves sufficiently the corrosion resistance of AZ91substrate in despite of the corrosion medium. After salt spray test, the coating surface is analyzed by SEM and EDS. The results show that Cl- absorbed firstly in such area that aluminum content is low, the micro-cracks and micro-pore occur. The traits of the corrosion are: the diameter of micro-pore enlarges, the micro-crack broadens and lengthens, the deep corrosion pit or the long filiform corrosion area comes into being.
     The microhardness test result shows that the microhardness from substrate to coating increases gradually. The coating’s microhardness is the higher than 1000HV and much higher than the substrate. The mechanical properties of AZ91 magnesium alloy have slightly decrease after MAO treatment. The rupture of the coating is brought by the pulling crack The wear resistance test results show that MAO treatment can greatly improve the wear resistance of the die cast AZ91 under the condition of dry sliding wear. Under the condition of oil lubrication, the wear resistance can improve further because of the saving-oil speciality of the micro-pore in the coating.
     Finally, the new developed MAO electrolyte and the optimized electronic parameters have been applied successfully to automobile die-casting of magnesium alloy. The coating on the surface of the casting is uniform in thickness and color. Therefore, the MAO process was of some practical value to the industry application.
引文
[1] 黎文献,镁及镁合金,中南大学出版社,长沙,(2005) 1-7.
    [2] Inho Han, Jai Hyuk Choi, Bao Hong Zhao et al., Micro-arc oxidation in various concentration of KOH and structural change by different cut off potential. Current Applied Physics, 7S1 (2007) 23-27.
    [3] H.F. Guo, M.Z, An, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance. Applied Surface Science, 246 (2005) 229-238.
    [4] F. Chen, H. Zhou, B. Yao et al., Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surf. & Coat. Techno., 201 (2007) 4905-4908.
    [5] 张津,章宗和,镁合金及应用,化学工业出版社,北京,(2004) 39-57.
    [6] D.S. Mehta, S.H. Masood, W.Q. Song, Investigation of wear properties of magnesium and aluminum alloys for automotive applications. J. Mater. Processing. Technol., 155–156 (2004) 1526-1531.
    [7] 文博,日本镁合金的研发与应用,世界有色金属,11 (2004)33-36.
    [8] Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai et al., Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27 (2006) 1728-1734.
    [9] 黄建中,左禹,材料的耐蚀性和腐蚀数据,化学工业出版社,北京,(2003) 302-304.
    [10] O. Lunder, J. E. Lein, S. M. Hesjevik et al., Corrosion morphologies on magnesium alloy AZ91. Weerkst Korros, 45(1994) 331-340.
    [11] A. Froats, T. K. Aune, D. Hawke et al., In: Metals Handbook, Metals Park, Ohio: ASM, 9(1987) 740.
    [12] 黎前虎,刘祖明,镁合金的表面处理,汽车工艺与材料,3(2003) 5-9.
    [13] O. Lunder, K. Nisancioglu, In: J.M. Costa, A.D. Mercer (Eds.) Progress in the understanding and prevention of corrosion. The Institute of Materials, London, (1993) 1249-1257.
    [14] J.H. Nordlien, K. Nisancioglu, S. Ono et al., Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water. J. Electrochem. Soc., 143 (1996) 2564-2568.
    [15] F. Rosalbino, E. Angelini, S.D. Negri et al., Effect of erbium addition on thecorrosion behaviour of Mg–Al alloys. Intermetallics 13 (2005) 55-60.
    [16] 宋雨来,稀土改性AZ91镁合金组织及腐蚀性能,吉林大学博士学位论文,(2006) 138-140.
    [17] 王喜峰,齐公台,蔡启舟,混合稀土对AZ91镁合金在NaCl溶液中的腐蚀行为,材料开发与应用,5 (2002) 34-36.
    [18] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review. Journal of Alloys and Compounds 336 (2002) 88-113.
    [19] Y. K. Wang, L. Sheng, R. Z. Xiong et al., Effects of additives in electrolyte on characteristics of ceramic coatings formed by microarc oxidation. Surf Eng, 2(1999) 109-111.
    [20] V. S. Rudnev, Boguta, T. P. Yarvaya et al., Microplasma oxidation of aluminum alloy in aqueous electrolytes with polyphosphate-Mg2+co complex anions. Protection of Metals, 5(1999) 473-476.
    [21] 张欣宇,石玉龙,等离子体微弧氧化技术及其应用,青岛化工学院报,1(2002) 69-73.
    [22] A. L.Yerokhin, X. Nie, A. Leyland, Plasma electrolysis for surface engineering. Surf. & Coat. Techno., 122(1999)73-93.
    [23] A. A.Voevodin, A. L. Yerokhin, V. V. Lyubimov, Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment.Surf. & Coat. Techno., 86-87(1996) 516-521.
    [24] V. S. Rudnev, M. S. Vasil’eva, I. V. Lukiyanchuk, On the surface structure of coatings formed by anodic spark method. Protection of Metal, 4(2004) 352-357.
    [25] Florian Patcas, Waldemar Krysmann, Efficient catalysts with controlled porous structure obtained by anodic oxidation under spark-discharge. Applied Catalysis A, 316 (2007) 240-249.
    [26] A. Guntershulze, H. Betz, Elektroliticheskie Kondensatory (Electrolytic Capacitors), Moscow, Obornizidat, (1938) 46-48.
    [27] 朱士尧,等离子体物理基础,科学出版社,北京,(1980) 1-7.
    [28] K. H. Dittrich, W. Krysmann, P. Kurze et al., Structure and properties of ANOF layers. J. Crystal Res. Technol., 1(1984) 93-99.
    [29] Patel, L. Jerry, Saka et al., Method for forming ceramic coatings by micro-arc oxidation of reactive metals. U.S.Pat., 6197178, (2001)
    [30] 吴汉华,铝、钛合金微弧氧化陶瓷膜的制备表征及其特性研究,吉林大学博士学位论文,(2004)55-57.
    [31] 来永春,陈如意,微弧氧化镀覆金属表面的方法及装置,中国专利CN 1311354A,(2001)
    [32] Alex J. Zozulin, Duane E. Bartak, Anodized coatings for magnesium alloys. Metal Finishing, 3(1994) 39-44.
    [33] 郝建民,陈宏,张荣军等,微弧氧化和阳极氧化处理镁合金的耐蚀性对比,材料保护,1(2003) 20-21.
    [34] 刘元刚,张巍,李久青等,镁合金微弧氧化膜结构及耐蚀性的初步研究,材料保护,1(2004)17-18.
    [35] 薛文斌,邓志威,来永春等,有色金属表面微弧氧化技术评述,金属热处理,1(2000) 1-3.
    [36] 薛文斌,邓志威,陈如意等,微弧氧化表面处理对铝合金拉伸性能的影响,金属热处理学报,4(1999)1-5.
    [37] 蒋百灵,白力静,蒋永锋等,铝合金微弧氧化技术,西安理工大学学报,2(2000)138-142.
    [38] 刘元刚,张巍,李久青等,AZ91D铸造镁合金交流脉冲双极微弧电沉积陶瓷膜,北京科技大学学报,1(2004)73-77.
    [39] 邓志威,薛文彬,汪新福等,铝合金微弧氧化陶瓷膜的形貌及相组成分析,北京师范大学学报(自然科学版),1(1996) 67-70.
    [40] R.C. Barik, J.A. Wharton, R.J.K. Wood et al., Corrosion, erosion and erosion–corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings. Surf. & Coat. Techno., 199 (2005) 158-167.
    [41] X. Nie, A. Wilson, A. Leyland et al., Deposition of duplex Al2O3/DLC coatings on Al alloys for tribological applications using a combined micro-arc oxidation and plasma-immersion ion implantation technique. Surf. & Coat. Techno., 121(2000) 506-513.
    [42] H. M. Nykyforchyn, M. D. Klapkiv, V. M. Posuvailo, Properties of synthesised oxide-ceramic coatings in electrolyte plasma on aluminium alloys. Surf. & Coat. Techno.,100-101(1998) 219-221.
    [43] L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation. Surf. & Coat. Techno., 163 –164 (2003) 484-490.
    [44] Y.M. Wang, B.L. Jiang, T.Q. Lei et al., Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties. Surf. & Coat. Techno.,201 (2006) 82-89.
    [45] 薛文斌,王超,马辉等,TA2纯钛表面微弧氧化膜的成分和相结构分析,稀有金属材料与工程,5 (2002) 345-348.
    [46] M. Dwain, A global review of magnesium parts in automobile. Light Metal Age, 8 (1996) 60-67.
    [47] K. Wu, Y.Q. Wang, M.Y. Zheng, Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites. Materials Science and Engineering A, 447 (2007) 227-232.
    [48] F. Chen, H. Zhou, B. Yao et al., Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surf. & Coat. Techno., 201 (2007) 4905-4908.
    [49] J. Liang, B. G. Guo, J. Tian et al., Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte. Surf. & Coat. Techno., 199 (2005) 121-126.
    [50] Y.Q. Wang, M.Y. Zheng, K.Wu, Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance. Materials Letters, 59 (2005) 1727-1731.
    [51] 顾伟超,沈德久,王玉林等,电弧喷涂铝层的微弧氧化,材料保护,12(2002) 37-38.
    [52] 高殿奎,沈德久,王玉林,低碳钢热浸镀铝微弧氧化陶瓷层厚度研究,材料保护,5 (2001) 26-28.
    [53] 王亚明,Ti6Al4V合金微弧氧化涂层的形成机制与摩擦学行为,哈尔滨工业大学博士论文,(2006) 40-42.
    [54] 王立世,两种电解液中镁合金等离子体电解氧化过程及膜层特性研究,华中科技大学博士论文,(2005) 42-45.
    [55] A. L. Yerokhin, V. V. Lyubimov, R. V. Ashitkov, Phase Formation in Ceramic Coatings During Plasma Electrolytic Oxidation of Aluminium Alloys. Ceramic International, 24(1998) 1-6.
    [56] W. B. Xue, Z. W. Deng, R. Y. Chen, Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy. Thin Solid Films, 372(2000) 114-118.
    [57] W. B. Xue, Z. W. Deng, Y. C. Lai, Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy. J. Am. Ceram. Soc, 5(1998)1365-1368.
    [58] 徐勇,国内铝和铝合金微弧氧化技术研究动态,腐蚀与防护,4(2003) 154-157.
    [59] V. S. Rudnev, M. S. Vasil’eva, I. V. Lukiyanchuk, On the surface structure of coatings formed by anodic spark method. Prote. Met., 4(2004) 352-357.
    [60] 郝建民,陈宏,张荣军,电参数对镁合金微弧氧化陶瓷层致密性和电化学阻抗的影响,腐蚀与防护,6(2003) 249-251.
    [61] 胡宗纯,谢发勤,吴向清,不同控制方式下占空比对钛合金微弧氧化膜的影响,电镀与环保,5(2006) 23-25.
    [62] Yong Han, Seong-Hyeon Hong, Kewei Xu, Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf. & Coat. Techno., 168 (2003) 249-258.
    [63] 董玉英,沈丽如,铁军等,铝及其合金微弧氧化过程中工艺条件对氧化膜性能的影响,核工业西南物理研究院年报,1(2001) 109-110.
    [64] 来永春,宋红卫,陈如意等,微弧氧化技术在纺杯中的应用,北京师范大学学报(自然科学版),1(1997) 59-61.
    [65] 邓志威,来永春,薛文彬等,微弧氧化材料表面陶瓷化机理的探讨,原子核物理评论,3(1997) 193-193.
    [66] 旷亚非,周海晖,唐浩等,铸铝合金微弧氧化工艺研究,电镀与精饰,5(2001)5-8.
    [67] 王玉林,沈德久,铝材微弧氧化陶瓷膜的电绝缘性,轻合金加工技术,10(2001)34-35.
    [68] 贺子凯,唐培松,溶液体系对微弧氧化陶瓷膜的影响,材料保护,11(2001) 12-13.
    [69] 薛文斌,邓志威,来永春等,铝合金微弧氧化陶瓷膜的相分布及其形成,材料研究学报,2(1997) 169-172.
    [70] 蒋百灵,张先锋,朱静,铝、镁合金微弧氧化技术研究现状和产业化前景,金属热处理,1(2004) 23-29.
    [71] P. Kurze, Application fields of ANOF layers and composites. Journal of Crystal Research Technology, 12(1986)1603-1609.
    [72] W. H. Song, Y. K. Jun, Y. Han et al., Biometic apatite coatings on micro-arc oxidized titania. Biomaterials, 25(2004)3341-3349.
    [73] L. H. Li, Y. M. Kong, H. W. Kim et al., Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 25(2004)2867-2875.
    [74] V.M. Frauchiger, F. Schlottig, B. Gasser et al., Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials, 25(2004) 593-606.
    [75] GB/T10125-1997 人造气氛腐蚀试验盐雾试验.
    [76] 刘永辉,张佩芬,金属腐蚀学原理,航空工业出版社,北京,(1993)8-9.
    [77] S. I. Bulyshev, V. A. Fedorov, The kinetic of coating formation in microarc oxidation process. J. Fiz Khim obrob Mater., 6(1993) 93-95.
    [78] R. H. Radcorsky, Located valve metal article formed by spark anodizing. US, Pat., 3956080, (1976).
    [79] R. H. Radcorsky, Method of locating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electrolytic solutions. US, Pat., 5275713, (1991).
    [80] S. D. Brown, T. B. Van, Analysis of phase distribution for ceramic coating formed by microarc oxidation on aluminum alloy. J. Am. Ceram. Soc., 3(1997) 384-387.
    [81]V. Malyschev, Mikrolichtbogen-oxidation-ein neuartiges verfahren zur aluminium-oberflaechen-verfestigung. Oberflachentechnik,8(1995) 606-609.
    [82] E.F. Emley, Principles of magnesium technology, Pergamon Press, New York, (1966) 670-735.
    [83] J. Fanya, K. Paul, G. Xua et al., Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes. Mater. Sci. & Eng. A, 435–436 (2006) 123-126.
    [84] W. Xue, Z.Deng, R.Chen et al., Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation.J. Mater. Sci., 36 (2001) 2615-2619.
    [85] Lu, F-H, H. Y. Chen, Phase changes of CrN films annealed at high temperature under controlled atmosphere, Thin Solid Films, 398-399, ( 2001) 368-373.
    [86] J.Tian, Z.Luo, S.Qi, X. Sun, Structure and antiwear behavior of micro-arcoxidized coatings on aluminum alloy. Surf. Coat.Technol.154 (2002) 1-7.
    [87] 陈宏,郝建民,王利捷,添加Ni及Al元素改善热镀锌件表面质量及耐蚀性的研究,表面技术,3(2004)38-42.-
    [88] D. Wei, Y. Zhou, D. Jia et al., Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions. Surf. & Coat. Technol., (2006) In Press.
    [89] 姚美意,周邦新,王均安,电压对镁合金微弧氧化膜组织及耐蚀性的影响,材料保护,6(2005) 7-10.
    [90] A.L. Yerokhin, A. Leyland, A. Matthews, Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation. Appl. Surf. Sci., 200 (2002) 172-184.
    [91] 蒋百灵,张淑芬,吴国建等,镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性,中国有色金属学报,3(2002) 454-457.
    [92] Patel, Jerry L. Saka, Nannaji, Oxidizing electrolytic method for obtaining a ceramic coating at the surface of a metal. US Pat.,6197178, (2001).
    [93] 祝晓文,ZL205微弧氧化耐蚀性研究,北京交通大学硕士论文,(2005) 51-54.
    [94] 孔中华,脉冲等离子体电解氧化机理及工艺研究,中南民族大学硕士论文,(2003) 28-30.
    [95] A.L. Yerkhin, L.O. Snizhko, N.L. Gurevina, Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surf. Coat. Technol., 177 (2004) 779-783.
    [96] I.V. Lukiyanchuk, V.S. Rudnev, V.G. Kuryavyi, Surface morphology, composition and thermal behavior of tungsten-containing anodic spark coatings on aluminium alloy. Thin Solid Films, 446 (2004) 54-60.
    [97] W. B. Xue, C. Wang, R. Y. Chen, Z. W. Deng, Structure and properties characterization of ceramic coatings produced on Ti–6Al–4V alloy by microarc oxidation in aluminate solution. Mater. Lett., 52 (2002) 435-441.
    [98] 姜兆华,辛世刚,王福平,吴晓宏,钛的微等离子体氧化,稀有金属,3(2000) 178-181.
    [99] Wei-Chao Gu, Guo-Hua Lv, Huan Chen et al., PEO protective coatings on inner surface of tubes. Surf.& Coat. Techno., 201( 2007) 6619-6622.
    [100] L.O. Snizhko, A.L. Yerokhin, A. Pilkington, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochem. Acta, 49(2004) 2085-2095.
    [101] X. T. Sun, Z. H. Jiang, Z. P. Yao et al., The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. Appl. Surf. Sci., 252 (2005) 441-447.
    [102] 来永春,陈如意,微弧氧化镀覆金属表面的方法及装置,中国专利01102262.0,(2001).
    [103] Y. Han , S.-H. Hong, K.W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation. Surf. and Coat. Techno., 154 (2002) 314-318.
    [104] 邓志威,薛文彬,汪新福等,铝合金表面微弧氧化技术,材料保护,2(1996) 15-16.
    [105] G.L.Yang, X. Y. Liu, Y. C. Bai et al., The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. Chin. Phys. Lett., 8(2001)1141-1145.
    [106] 裴晋昌,低温等离子体对高分子材料表面的改性,化学通报,10(1980) 36-38.
    [107] M. Agop, Ioana Rusu, El Naschie’s self-organization of the patterns in a plasma discharge: Experimental and theoretical results. Chaos, Solitons and Fractals 34 (2007) 172-186.
    [108] J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, London, Butterworths & Co. Ltd.,(1975) 125-127.
    [109] 彭文世,刘高魁,矿物红外光谱图集,科学出版社,北京(1982) 149-151.
    [110] 余成波,数字图像处理及MATLAB实现,重庆大学出版社,重庆,(2003) 14-16.
    [111] 陈桂明,张明照,戚红雨,应用MATLAB语言处理数字信号与数字图像,科学出版社,北京,(2000) 56-58.
    [112]A.K.Vijh, Mechanism of anodic spark deposition. Corros.Sci., 11(1971) 411-417.
    [113] J.Yahalom, Proc shmp oxic-Electrolyte Interfaces (Edited by R.S.Alnitt), The journal of Electrochem, Inc. 10(1973) 503-506.
    [114] T. B. Van, S. D. Brown, G. P. Wirtz, Anode spark reaction products in aluminate, tungstate and silicate. J. Bulletins American Ceramic Society, 6(1977) 563-566.
    [115] S.Ikonopisov, Process characteristics and parameters of anodic oxidation byspark discharge. Electrochem Acta, 22 (1977) 1077-1086.
    [116] A. K. Vijh, Electrical properties of non-metallic deposits Surf. Coat. Technol., 1(1976) 7-30.
    [117] J. M. Albella, I. Montero, J. M. Martinez-Duart, Theory of avalanche breakdown during anodic oxidation. J. Electrochim. Acta, 32(1987)255-258.
    [118] L. H. Li, H. W. Kim, S.H. Lee et al., Biocompatibility of tianium implants modified by microarc oxidation and hydroxyapatite coating. J. Bio.Mater. Res. A, 1(2005) 48-54.
    [119] W. Krymann, P. Kurze, K. H. Dittrich et al., Process characteristics and parameters of anode oxidation by spark discharge (ANOF). Corros. Sci., 11(1971)411-417.
    [120] 朱立群,功能膜层的电沉积理论与技术,北京航空航天大学出版社,北京,(2005)247-253.
    [121] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina et al., Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phys. D: Appl. Phys., 36(2003)2110-2120.
    [122] 刘述临,金佑民等译,等离子体技术在冶金中的应用,北京工业大学出版社,北京,(1989) 49-50.
    [123] 程诚,大气压射流冷等离子体的产生和特性研究,中国科学技术大学博士学位论文, (2006) 2-5.
    [124] 都健,潘石,吴世法等,生长温度对 Ge2Sb2Te5 薄膜的相变行为以及微观结构的影响,电子显微学报,4(2006)328-332.
    [125] http://202.118.70.130.
    [126] 张思宇,MgAl2O4 陶瓷材料的烧结研究,西安建筑科技大学硕士论文,(2004)18-20.
    [127] R. J. Bratton, Sintering and grain-growth kinetics of MgAl2O4, J. Am. Ceram. Soc., 3(1971)141-143.
    [128] K. P. R. Reddy, A. R. Cooper. Oxygen diffusion in magnesium aluminate spinel. J. Am. Ceram. Soc.,6(1981)368-371.
    [129] 张立德,牟季美,纳米材料和纳米结构,科学出版社,北京,(2001)62-64.
    [130] 材料耐磨抗蚀及其表面技术丛书编委会,材料耐磨抗蚀及其表面技术概论,机械工业出版社,北京,(1986)179-182.
    [131] 薛文斌,邓志威,来永春等,ZM5镁合金微弧氧化膜的生长规律,金属热处理学报,3 (1998) 42-45.
    [132] Q. Z. Cai, L. S. Wang, B. K. Wei et al., Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. Surf. & Coat. Tech., 200 (2006) 3727-3733.
    [133] H.F. Guo, M.Z. An, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Applied Surface Science, 246 (2005) 229-238.
    [134] H.F. Guo, M.Z. An, H.B. Huo et al., Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Applied Surface Science, 252 (2006) 7911-7916.
    [135] 刘粤惠,刘平安,X射线衍射分析原理与应用,化学工业出版社,北京,(2003) 19,122-140.
    [136] G. L. Yang, X.Y. Lü, Y.Z. Bai et al., The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. J. Alloys and Compounds, 345(2002) 196-200.
    [137] Y. Y. Ma, An Investigation of the Electrolytic Plasma Oxidation Process for Corrosion Protection of Pure Mg and Mg Alloy AM50, Thesis of Master Degree, University of Windsor, Ontario, Canada, (2005) 111-119.
    [138] 李华彬,伍登学,林理彬,MgAl2O4 晶体 γ 辐射效应的研究,四川大学学报(自然科学版),1(1994)40-45.
    [139] 李树棠,金属X射线衍射与电子显微分析技术,冶金工业出版社,北京,(1980) 127-129.
    [140] 王维邦,耐火材料工艺学,冶金工业出版社,北京,(1994)163-164.
    [141] 韩兵强,李楠,氧化镁含量对 MgAl2O4/ W 复合材料组成和结构的影响,中国有色金属学报, 2004, 14(1):79-83.
    [142] 刘家浚,材料磨损原理及其耐磨性,清华大学出版社,北京,(1993)2-3.
    [143] 江雷,从自然到仿生的超疏水纳米界面材料,科技导报,23(2005)4-8.
    [144] 高雪峰,江雷,天然超疏水生物表面研究的新进展,物理,7(2006)559-564.
    [145] L. Feng, L. Jiang, Preparation and investigation of super-hydrophobic nano scale interfacial mater. Journal of the Graduate School of the Chinese Academy of Sciences, 1 (2005)106-108.
    [146] 宋明玉、黄新堂,制备超疏水性铝表面的实验研究,长江大学学报(自然版)4(2006)28-30.
    [147] Jr. Harrigan, C. William, Commercial processing of metal matrix composites. Mater. Sci. and Eng. A, 244(1998)75-79.
    [148] Y.B. Liu, S.C. Lim,L. Lu et al., Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques. Journal of Materials Science, 29(1994)1999-2007.
    [149] P.A. Dearnley, J. Gummersbach, H. Weiss et al., The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure. Wear, 225–229(1999)127-134.
    [150] 曹翠玲,阎逢元,PTFE基复合材料摩擦磨损特性研究,材料科学与工程学报,1(2006)139-144.
    [151] 李均明,蒋百灵,孙俊图等,铝合金铸件微弧氧化处理电解溶液,中国专利 200310122201.0,(2003).
    [152] 张后全,唐春安,宋力等,布孔方式对孔洞材料宏观力学性能影响的研究,应用力学学报,1(2006)62-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700