高速列车非光滑车身气动减阻特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车时速不断提高,列车与空气间的相互作用逐渐剧烈,列车的空气动力学成为不可忽视的问题。列车时速在300km/h时,空气阻力占总阻力的85%左右。因此,列车的空气阻力是列车总阻力的主要组成部分,列车空气阻力与其外形密切相关,且随着运行速度的提高空气阻力所占总阻力的比例也越来越高,所以研究和改善高速列车气动特性、减小高速列车气动阻力、提高能源利用率等受到科学界和工业界的高度重视。
     论文以日趋成熟的高铁技术为背景,以CHR2高速列车为研究对象,在综述非光滑表面减阻研究进展及数值模拟在列车设计中的应用后,将非光滑表面运用于列车表面在具有良好的气动外形基础上求得更好的减阻效果。
     本文在模拟过程中利用UG建好的36种具有非光滑表面的列车模型通过Hypermesh和ICEM CFD划分出非结构网格,应用Fluent采用κ-ε模型对数学模型在稳态运行时的列车外流场流动特性进行数值模拟。将空气阻力系数作为减阻的评定标准,分析了非光滑单元体的形状、间距、直径和深度对减阻性能的影响,为合理设计列车表面的非光滑结构打下基础。
     最后,本文通过分析摩擦阻力和压差阻力构成及影响因素从不同方面描述了不同非光滑结构对列车外流场的影响。通过分析不同模型的湍动能,及列车表面的压力分布来解释摩擦阻力和压差阻力的成因。通过分析非光滑表面对边界层的影响进一步阐述了非光滑列车表面的减阻机理。
As the train speed continuously improves, the interaction between the train and the air is gradually severe. Therefore aerodynamics of train has become a problem that can' t be neglected by us. When the train is at the speed of 300km/h, the air resistance contains about 85% of the total resistance. Thus, train' s air resistance is a major component of the total train resistance. Generally speaking, the air resistance of train is closely related to its shape and the proportion of it in the total resistance is also growing as the running speed increases. For this reason, the scientific community and industry focus on research and improve the aerodynamic characteristics of high-speed trains, reducing the aerodynamic drag of the high-speed trains to improve the energy utilization.
     Takes the maturing high-speed rail technology as research background the CHR2 high-speed train as research object, this paper applies non-smooth surface to the train's surface based on the research progress of non-smooth surface drag reduction and numerical simulation of the train in order to achieve better drag reduction effect.
     The models with 36 different kinds of non-smooth surfaces built using UG are divided into unstructured grids by using Hypermesh and ICEM CFD. Then, numerical simulation of flow characteristics of train' s external flow field is done when the mathematical model is at its steady state through Fluent. Also, this paper considers air drag coefficient as the assessment standard to the drag effects, analyses the impact of the non- smooth unit shape, spacing, diameter and depth of the drag reduction performance on reducing effects so as to smooth unit shape lay the foundation for the rational design of train surface of the non-smooth structure.
     Finally, this paper describes the effects of non-smooth surface on train' s external flowing field from different aspects by analyzing the composition of frictional resistance and pressure resistance. The causes of friction and pressure drag are explained by analyzing turbulent kinetic energy of different models and the pressure distribution of train' s surface. Besides, the drag reduction mechanism of non-smooth surface is further elaborated by studying non-smooth surface' s impact on boundary layer.
引文
[1].田红旗.中国列车空气动力学研究进展.交通运输工程学报,2006,6(1):1-9.
    [2].Zhang Xiagang,Numerical simulation for prediction of wind load son building surface Journal of southwest jiaotong university Vol.5.1997(1).55-61.
    [3].Sehetz J A. Aerodynamics of High-Speed Train.Ann Rev Fluid Mech, 2001,(33):371-414.
    [4].Joseph A Sehetz高速列车空气动力学.力学进展.2003.8(3).
    [5].田红旗,许平,梁习锋,刘堂红.列车交会压力波与运行速度的关系.中国铁道科27(6).2006(11).
    [6].邱英政.高速列车交会压力波数值模拟计算与测试研究[D].北京交通大学,2008.
    [7].陈南翼,张健.高速列车空气阻力试验研究.铁道学报,1998.
    [8].高速列车气动性能与外形技术设计说明书.中南大学,2001,6.
    [9].神州号动车组与609次列车交会冲击气压测试试验报告.铁道部科学研究院机车车辆研究所.2000,8.
    [9].梅元贵.高速铁路隧道压力波数值模拟研究.西南交通人学博士论文,1997.
    [10].梅元贵,赵海恒,刘应清.高速铁路隧道压力波数值分析.西南交通大学学报,1995,(6):667-672.
    [11].李人宪.列车二维紊态外流场的数值模拟研究.西南交通大学博士论文.1998.
    [12].李人宪,翟婉明.磁悬浮列车横风稳定性的数值分析.交通运输工程学报.2001.1(1):99-101.
    [13].张小钢.高速列车湍流绕流三维数值模拟研究.西南交通大学博士学位论文,1995.
    [14].张小钢,刘应清.高速列车湍流绕硫三维数值模拟研究.西南交通大学学报,19%,31(3):262-66.
    [15].张小钢.高速列车优化外形的数值分析.西南交通大学学报,1996,31(3):256-261.
    [16].张小钢,刘应清.具有地面效应的高速列车揣流绕流数值模拟研究.西南交通大学学报(自然科学版),1997,32(2):150-153.
    [17].张小钢,刘应清,赵海恒.高速列车经过路边建筑物时的非定常湍流绕流数值模拟研究铁道学报,1998,20(2):87-92.
    [18].高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响.交通运输工程学报,2004,4(2):45-48.
    [19].Richard M Wood. Aerodynamic Drag and Drag Reduction:Energy and Energy Savings AIAA 41st Aerospace Sciences. Reno:NV,2003:1-21.
    [20].Walsh.M.J.Turbulent boundary layer drags reduction using riblets.AIAA,1982:485-486.
    [21].BacherEV, Smith.C.R.A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications.AIAA,1985:1382-1385.
    [22].Bechert.DW,Bruse.M,Hage.W.Experiment with three-dimensional riblets asan idealized model of shark skin.Experiments in Fluids,2000,28:403-412.
    [23].Kazumi.Tsunoda,Tomohiko.Suzuki,Toshiaki.Asai.Improvement of the performance of a supersonic nozzle by riblets. Journal of Fluids Engineering,2000,122:111-120.
    [24].Viswanath.P.R. Aircraft viscous drag reduction using riblets. Progressin Aerospace Sciences,2002,38:571-600.
    [25]. Vukoslacevic.P,Wallace.M,Balint.J.L. Viscous drag reduction using streamwise-aligened riblets.AIAA,1992,30(4):1119-1122
    [26].Bearman,P.W,Harvey.J.K.Control of Circular Cylinder Flow by the Use of Dimples.AIAA J,1993,31:1753-1756.
    [27].Hee-Chang Lim,Sang-Joon Lee.Flow control of a circular sylinder with O-rings.Fluid Dynamics Research,2004,35:107-122.
    [28].田丽梅,任露泉,刘庆平,赵国如‘仿生非光滑旋成体表面减阻特性数值模拟.吉林大学学报,2006年第06期.
    [29].任露泉,张春成,田丽梅.仿生光滑用于旋成体的试验研究。吉林大学学报报,2005年第04期.
    [30].胡海豹,宋保维,潘光等.回转体表面条纹沟槽减阻水洞实验研究.力学季刊,2006年第02期.
    [31].王晋军,兰世隆,苗福友.沟槽面湍流边界层减阻特性研究.中国造船,2001年第04期.
    [32].宫武旗,李新宏,黄淑娟.沟槽壁面减阻机理实验研究.工程热物理学报,2001年第05期.
    [33].李后强,程光钺.分形与分维[M].成都:四川教育出版社,1990.
    [34].王玲玲,金忠青.分形理论及其在紊流研究中的应用[J].河海大学学报,1997,25(1):1-5.
    [35].黄真理.平面激光诱导荧光(PLIF)技术及其测量射流浓度场的研究.[博士论文]北京:清华大学水电系,1993.
    [36].杨宏,刘勇,等.湍流预混火焰传播速度的分形模型研究[J].工程热物理学报,2001,22(4):507-5.
    [37].刘代俊,钟本和,张允湘,等.颗粒与液相间的湍流涡旋裂变传质模型[J].化工学报,2004,55(1):25-31.
    [38].Cao N, Chen S, She Z S. Scaling and relative scalings in the Navier-Stokes turbulence.Phys Rev Lett,1996,76(20):3711-3714.
    [39].Hentschel H G E, Procaccia I. Intermittency exponent in fractally homogeneous turbulent.Phys Rev Lett,1982,49(16):1158-1161.
    [40].Gaudin E et al. Spatial properties of velocity structure functions in turbulent wake flows. Phys Rev E,1998,57(1):R9-R12.
    [33].W Barthlott,C Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces.Planta,1997,202:1-8.
    [34].C. Neinhuis and W. Barthlott. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of botany.1997,79: 667-677.
    [35].任露泉,丛茜,佟金.界面黏附中非光滑表面基本特性的研究.农业工程学报,1992,8(1):16-22.
    [36].任露泉,李建桥,陈秉聪.非光滑表面的仿生降阻研究.科学通报,1995,40(19)1812-1814.
    [37].陈秉聪.任露泉,徐晓波等.典型土壤动物体表形态减黏脱土的初步研究.农业工程学报,1990,6(2):1-6.
    [38].Walsh M J.Drag reduction of V-groove and transverse curvature riblets.In:Hough GR(ed)Viscous flow drag reduction.Progress in astronautics and aeronautics, AIAA,New York,1980,72:168-184.
    [39].Reif W.E.,Dinkelacher A. Hydrodynamics of the Summation in Fast Swimming Sharks. Neuse Jahrbuch f u r Geologieund Palaeontologie Abhandlungen,1982,164:184-187.
    [40].Bechert D W,Bartenwerfer M,Hoppe G,Reif W-E.Drag Reduction Mechanisms Derived from Shark Skin. Presented at the 15th ICAS Congress,London,86-1.8.3,distributed as AIAA J,1986,1044-1068.
    [41 J.Anderson E J,Mac Gillivray P S,and DeMont M E.Scallop shells exhibit optimization of riblet dimensions for drag reduction.Biological Bulletin,192:341-344.
    [42].周长海,田丽梅,任露泉等.信鸽羽毛非光滑表面形态学及仿生技术的研 究.农业机械学报,2006,37(11):180-183.
    [43].王东屏,兆文忠.数值仿真在高速列车中的应用及验证[C].2005Fluent中国用户大会论文集.
    [44].伊藤顺一,等(日).改善空气动力学性能,实现新干线的高速[J].国外铁道车辆.2002,39(3).
    [45].Joseph A Schetz.高速列车空气动力学[J].力学进展.2003,33(3).
    [46].武青海,周虹伟,朱勇更.高速列车湍流流场数值仿真计算探讨[J].铁道学报.2002,24(3).
    [47].刘俊,刘伟.高速列车气动外形的CFD计算与优化数字化设计[J].CAD/CAM与制造业信息化.2009,(04).
    [48].宋小文,胡树根,张伟.圆顶车厢载货车外流场数值模拟及附加装置优化设计[J].汽车工程.2007,(9).
    [49].谭深根.侧风下高速列车气动性能分析[D].西南交通大学,2008.
    [50].姚征,陈康民.CFD通用软件综述[J].上海理工大学学报.24(2).
    [51].严隽髦,车辆工程,北京:中国铁道出版社,1999.
    [52].田红旗,列车空动力学,北京:中国铁道出版社,2007.
    [53].Zhang Chengchun, Ren Luquan, Han Zhiwu, Li Jianqiao, and Zhao Guoru. Numerical Simulation of External Flow over a Dimpled Axisymmetric Bluff Body for Drag Reduction. In:1st CMESM. Changchun:Jilin University,2006. Published on Journal of Jilin University (Engineering and Technology Edition). 2006, (suppl.1):148-152.
    [54].张兆顺 崔桂香 许春晓.湍流理论与模拟,北京:清华大学出版社,2007.
    [55].Richard L F.1922. Weather prediction by numerical process.Cambridge University Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700