风力机叶片阻尼减振动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能作为一种清洁的可再生能源,其蕴藏量巨大。随着世界经济的发展,推动风力发电行业的进步,风电机组朝着大型化、高效率的方向向前发展。
     叶片作为风力机上捕捉风能的关键部件,其性能的好坏直接影响着风力机的风能利用效率和风力机组整机所承受的载荷,在很大程度上也决定了机组的整体性能、使用寿命和开发风能的经济性。叶片在朝大型化发展过程中,其自重增加,展长增大,同时承载复杂—主要有重力载荷、惯性载荷和不定常变化的气动载荷,使其振动情况异常复杂,这给大型风力机叶片的设计提出更大的挑战。本文主要做了以下工作:
     1)对风力机的历史、现状、前景及叶片的技术发展趋势,风力机的基本理论,基本概念进行了介绍,明确了叶片的构型特点、形成规律,为风力机叶片的三维建模提供理论基础。
     2)通过翼型数据库获得二维翼型数据,导入到Profili软件内来计算翼型的升力系数、阻力系数、升阻比及俯仰力矩比与攻角的变化曲线。并结合三维坐标变换理论,利用Matlab软件实现三维翼型数据的采集,为三维建模提供基础。
     3)运用Pro/E针对1.5MW的风力机叶片进行三维建模,为后续的有限元分析提供基础模型。
     4)叶片动力学分析:模态分析及瞬态动力学分析,通过动力学分析,了解叶片的振动特性,为提升叶片的抗振性能作出参考。
     5)分析阻尼减振结构叶片振动性能,与普通叶片的减振性能进行对比,分析加强阻尼减振叶片的优越性。
As a clean and renewable energy, wind energy’s reserve is huge. Withthe development of world economy, the wind power industry has achieved rapiddevelopment, and wind turbine is developing in the direction of large scale andhigh efficiency.
     As a key component capturing wind energy, wind turbine blade’sperformance has a direct impact on efficiency of wind turbine and load that windturbine machine bears. To a large extent it determines the overall performance ofthe unit and economy of developing wind energy. In the large scale developmentprocess of blade, its weight and length increase, while carrying complex loadsinclude gravity loads, inertia loads and unsteady aerodynamic loads, whichmake the blade vibrate complexly. These provide a greater challenge to thedesign of large wind turbine blade. This paper mainly accomplished thefollowing work:
     1) Give the basic concepts about the history, current situation, prospects,basic theory and blade technology trends of the wind turbine. These wereintroduced to definite the blade configuration feature and the law of theformation to provide a theoretical foundation for three-dimensional modeling ofwind turbine blades.
     2) Two-dimensional airfoil data was obtained through the airfoil databaseand imported into Profili software to calculate the airfoil lift-coefficient,drag-coefficient, lift-drag ratio and the curve that pitching moment ratio changedwith the angle of attack. Combining with three-dimensional coordinatetransformation theory, three-dimensional airfoil datas were achieced by Matlabsoftware. Those provided a basis for the three-dimensional modeling.
     3) Three-dimensional model of1.5MW wind turbine blades was obtainedby Pro/E software, which provided a basis for the subsequent finite elementanalysis model.
     4) Modal analysis and transient dynamic analysis were made for1.5MWwind turbine blade. By dynamic analysis, the vibration characteristics of theblade were analyzed, which provided a reference to enhance the blade vibration resistance.
     5) Vibration performance of the damping structure blade were analyzed,which were compared with the ordinary blade, and the advantages of dampingstructure blade were analyzed.
引文
[1] D.勒古里雷斯,施鹏飞译.风力机的理论与设计[M].北京:机械工业出版社,1987.
    [2] Tony Burton [美]等,武鑫,谷海涛,李海东等译.风能技术[M].北京:科学出版社,2007.
    [3]苏绍禹.风力发电机设计与运行维护[M].北京:中国电力出版社,2012.
    [4]刘震.直驱风力发电系统低电压穿越技术的研究[D].合肥:合肥工业大学,2011.
    [5] Thomas Hahm, Advanced turbulence models lead to optimized wind turbinespacing[J].Ansys Advantage Magazine.2011,1,30-31.
    [6]周修杰,宛学智,任浩宁等.2012-2016年中国风力发电行业投资分析及前景预测报告(上下卷)中投顾问[R].北京:中投顾问,2012年2月.
    [7]陶高周.全功率变流器机械结构关键技术研究[D].合肥:合肥工业大学,2010.
    [8]聂家林.我国风力发电产业三大主要问题的研究[D].合肥:合肥工业大学,2010.
    [9]李俊峰,施鹏飞,高虎等.中国风电发展报告20l0[M].海南:海南出版社,2010.
    [10]国家能源局.国家能源十二五规划[R].北京:国家能源局,2012.
    [11] Thomsen T. O..Sandwich Materials for Wind Turbine Blades-Present and Future[J].Journal of Sandwich Structures and Materials.2009,11(1):7-26.
    [12] Nitin Tenguria ect. Design and Finite Element Analysis of Horizontal Axis WindTurbineblade [J].International journal of applied engineering research,2010,1:500-507.
    [13]曾琴琴.FRP风力机叶片设计与有限元分析[D].武汉理工大学,2010.
    [14]沈德昌.浅谈当前兆瓦级风力机叶片[J].太阳能学报,2009(4):35-37.
    [15]何玉林,李海锋,金鑫等.风力机叶片翼型气动特性模型[J].机械科学与技术,2010,29(12):1590-1594.
    [16]闫海津,李佳,胡丹梅.水平轴风力机叶片翼型流场的数值模拟[J].能源技术,2010,4:81-84.
    [17]李银然.风力机专用翼型的空气动力特性研究[D].兰州:兰州理工大学,2010.
    [18]杨科,徐建中,王会社等.风力机翼型族设计方法研究[R].北京:中国工程热物理学会,2007.
    [19]杨树莲,侯志强,任勇生等.风力机叶片气动弹性和颤振主动控制研究进展[J].机械设计,2009:1-3.
    [20]林学海,任勇生.基于ONERA气动力模型的风力机叶片颤振时域分析[J].山东科技大学学报,2009,28(3):56-60.
    [21] Sarkar S, Bijl H. Nonlinear aeroelastic behavior of an oscillating airfoil duringstall-induced vibration, Journal of Fluids and Structures,2008,24(6):757-777.
    [22]乔印虎,张春燕.风力发电机叶片振动失效机理分析[J].机械工程师,2007,(4)55-57.
    [23]李德源,叶枝全,包能胜等.风力机旋转风轮振动模态分析[J].太阳能学报,2004,25(1):72-77.
    [24]金琰,袁新,风力机翼型颤振及射流减振技术的气动弹性研究[J].太阳能学报,2002,23(4):403-407.
    [25]任勇生,林学海.风力机叶片挥舞/摆振的动力失速非线性气弹稳定性研究[J].振动与冲击,2010,29(1):121-124.
    [26]刘廷瑞,任勇生,杨兴华.基于拟合气弹系数的气弹稳定性分析[J].太阳能学报,2010,31(4):513-516.
    [27]任勇生,张明辉.水平轴风力机叶片的弯扭耦合气弹稳定性研究[J].振动与冲击,2009,29(7):196-200.
    [28] Murtagh P.J, Ghosh A,Basu B.Passive control of wind turbine vibrations includingblade/tower interaction and rotationally sampled turbulence[J]. Wind Energy,2008,11(4):305-317.
    [29] Thomas B., Gaunaa M., Christian B., Potential Load Reduction Using Airfoils withVariable Trailing Edge Geometry[J]. Transactions of the ASME,2005,127:507-516.
    [30] Berggreen C., Branner K., Jensen J.F.. Application and Analysis of Sandwich Elements inthe Primary structure of Large Wind Turbine Blades[J]. Journal of Sandwich andStructures and Materials,2007,9:525-552.
    [31]龚佳兴.基于弯扭耦合的仿生自适应风力机叶片的设计与评估[D].广州:华南理工大学,2010.
    [32]张鑫.基于柔性多体系统的大型风力机动力学特性研究与仿生机理探索[D].广州:华南理工大学,2010.
    [33]张勇.大型水平轴风力机伞形风轮的静动态特性分析与结构仿生研究[D].广州:华南理工大学,2011.
    [34]黄碧斌.分段式模块化直驱型永磁同步风力发电机的磁场分析[D].天津:天津大学,2007.
    [35]陈云程.风力机设计与应用[M].上海:上海科学技术出版社,1990.
    [36]苏烧禹.风力发电机设计与运行维护[M].北京:中国电力出版社,2002.
    [37]吕小静.大型水平轴风力机风轮气动性能计算与优化设计[D].兰州:兰州理工大学,2011.
    [38]姚志岗.大型风力发电机叶片的设计研究[D].保定:华北电力大学,2008.
    [39] http://www.tup.tsinghua.edu.cn/Resource/tsyz/027492-01.pdf.
    [40]张承东.风力机叶片的动力学特性分析及分形特征研究[D].天津:天津工业大学,2007.
    [41]李德顺.水平轴风力机专用翼型的空气动力学性能研究[D].兰州:兰州理工大学,2008.
    [42]叶杭冶,风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [43]王承煦,张源.风力发电[M].北京:中国电力出版社,2002.
    [44] U.S. Department of Energy. Wind Power in America's. Future:20%Wind Energy by2030[M].New York: DOVER PUBNINC,2010.
    [45](丹麦)Martin O.L. Hansen.风力机空气动力学[M].北京:中国电力出版社,2009.
    [46] Griffin D A. Blade system design studies volume I: composite technologies for largewind turbine blades[R].Albuquerque: Sandia National Laboratories,2002:1-54.
    [47] D. A. Griffin. Wind PACT Turbine Design Scaling Studies Technical Area1-CompositeBlades for80-to120-Meter Rotor[R]. Washington: NREL,2001.
    [48]张慧珍.1.5MW水平轴风力机叶片结构性能分析[D].成都:西华大学,2011.
    [49]傅程,王延荣.风力机叶片动力学响应分析[J].太阳能学报,2010,31(7).
    [50][美]K. J.巴斯.工程分析中的有限元法[M].北京:机械工业出版社,1997.
    [51]李梨明.ANSYS有限元分析实例教程[M].北京:清华大学出版社,2005.
    [52]李声艳.大型风力发电机组的动力学特性计算分析[D].天津:天津工业大学,2007.
    [53]刘伟,高维成,于广滨.ANSYS12.0宝典[M].北京:电子工业出版社,2010.
    [54]石可重毛火军王建礼.阻尼影响下风电叶片模态问题研究.[R].北京:中国工程热物理学会(流体机械),2009.
    [55]包能胜,曹人竫,叶枝全.风力机桨叶结构振动特性有限元分析[J].太阳能学报,2000,21(1):77-81.
    [56]王庆五,左防,胡仁喜等.ANsYS10.0机械设计高级应用实例[M].北京:机械工业出版社,2006.
    [57] O.C.Zienkiewicz,R.L.Taylor(著),庄茁,吟松(译).固体力学[M],北京:清华大学出版社,2006.
    [58]刘伟,高维成,于广滨.ANSYS12.0宝典[M].北京:电子工业出版社,2010.
    [59] Ole Thybo Thomsen. Sandwich Materials and Structures for Wind Turbine Blades–Present and Future Challenges.[R] Pasadena, USA: Advanced Sandwich StructuresSchool9th International Conference on Sandwich Structures(ICSS-9),12-13June,2010.
    [60]戴德沛.阻尼减振降噪技术[M].西安:西安交通大学出版社,1986.
    [61]陈严,王小虎,刘雄等.水平轴风力机叶片稳态失速气动阻尼分析[J].太阳能学报,2011,32(9):1294-1302.
    [62]吴风豪.风力机叶片气动优化设计及气动阻尼分析[D].汕头:汕头大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700