无机胶凝材料在不可移动文物保护中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有为数众多的不可移动文物。这些不可移动文物往往体量巨大,而且大多暴露在野外坏境中。由于自然风化、环境污染和人为因素,加之缺乏有效的保护,这些珍贵的历史遗迹都受到了不同程度的损坏。如不采取有效的保护措施,许多文物古迹将逐渐消亡。不过,现有的材料大多都不能完全满足此类文物的保护需求。所以,研制高性能的文物保护材料已成为文物保护领域的重要任务之一
     本论文概述了土遗址和石质文物等不可移动文物的病害类型、破坏机理、保护方法、保护材料及传统砌筑灰浆的研究现状和存在问题,并结合当今文物保护材料的发展趋势,以潮湿环境土遗址、古建筑和石质文物的原址加固保护为目标,在课题组前期工作的基础上开展了传统胶凝材料作用机制、新型无机胶凝材料设计制备以及有关应用研究,主要包括以下内容:
     液态水硬性材料加固保护潮湿环境土遗址的研究。参照石灰和水泥稳定土的机理,设计了一种液态、可渗透型水硬性材料,并将之用于潮湿环境遗址土的稳定和加固。该材料为硅、钙双液体系。其中钙源为氧化钙或氢氧化钙的醇分散体系,硅源为硅酸钾水溶液。考虑到南方潮湿环境遗址土的弱酸性,加固处理时先渗透呈碱性的钙源,再渗透硅源。利用SEM, XRD, EDX,抗压强度测试、耐水浸泡性测试等研究了该水硬性材料的加固保护效果。结果表明,硅源和钙源之间的水硬性反应改变了土的片状结构,生成了丝网状凝胶体,该凝胶体能把松散的土颗粒固结起来。本研究提出了液态水硬性材料的概念,为潮湿环境土遗址的保护提供了一条新的研究思路。
     传统砌筑灰浆科学原理及其现代应用的探索性研究。考证并评述了中国古代石灰基砌筑灰浆的发展及传统糯米灰浆在中国建筑史上的作用。作为一项重要的技术发明,糯米灰浆技术出现在大致南北朝时期,曾在许多重要建筑物中广为使用。采集了多处古建筑的灰浆样品,并利用FT-IR, XRD, TG-DSC,碘-淀粉试验等方法对样品进行了分析测试。分析测试结果表明,糯米灰浆曾用于明代西安城墙和明代南京城墙的建造。探讨了糯米灰浆技术的内在科学原理。研究表明,糯米支链淀粉对石灰灰浆的硬化过程有调控作用,它通过抑制碳酸化过程中碳酸钙晶粒的生长而使糯米灰浆形成致密的有机-无机复合结构,该结构应该是糯米灰浆良好性能的内在原因。古灰浆中糯米成分长期存在的原因在于石灰的防腐作用。在自然条件下,灰浆的完全碳化是个漫长的过程。石灰的强碱性可以使糯米成分在相当长的时间内免受微生物的侵袭而得以保存。以古建筑修复保护为目的,对糯米灰浆技术进行了科学化研究。优化了糯米灰浆的配方,并对仿制灰浆的物理化学性质进行了测试。结果表明,糯米灰浆比纯石灰灰浆物理化学性质更稳定、强度更大、与古建筑材料如砖的兼容性也更好,适合于古建筑的保护和修复。以糯米灰浆为修复灰浆,参与了国家级文物保护重点单位德清寿昌桥和杭州梵天寺石经幢的修复保护工程。糯米灰浆的研究对于传统技术的科学利用,特别是对于使用原来的材料和工艺修复保护古建筑具有重要意义。
     风化石质文物的仿生加固研究。仿照骨头的生长原理,将钙源(纳米氢氧化钙的异丙醇分散体系)和磷源(磷酸铵溶液)引入风化的石质文物,经常温矿化后在风化石材内部生成多孔、相互连接的磷灰石加固相。该加固相可以把风化、破碎的石块和作为填料引入的氢氧化钙粘结起来而给出良好的加固效果。磷灰石加固相利用XRD, SEM, EDX进行了表征;加固效果利用抗压强度、STT实验、毛细水吸收、透气性和抗风化实验等进行了测试。结果表明,经仿生加固处理后,风化石灰石的表面强度、整体抗压强度和抗风化能力都有了显著提高。此外,由于磷灰石本身的多孔性,该仿生加固方法基本不改变风化石灰岩文物本身的透气性和毛细水吸收,保持了石质文物固有的“呼吸功能”。本研究将仿生技术引入石质文物的加固保护中,解决了现有无机材料自身及其与风化岩石的结合问题,为石质文物保护材料的开发探索了一条新的途径。
     总之,本论文结合不可移动文物保护材料的研究现状,以土遗址、古建筑和石质文物的加固保护为目标,分别研究了液态渗透型水硬性材料,传统砌筑灰浆和磷灰石仿生加固材料,在微观机理探讨、实验室材料设计制备和文物保护实践等方面做了一些探索性的工作,取得了一定的进展。
There are numerous immovable cultural relics in China. Most of these relics are huge and are situated in open air. Because of natural weathering, air pollution, human factors as well as inadequate protection, these precious historical relics have suffered damage in varying degrees. If this situation goes as it is, many of these cultural relics will disappear gradually in the near future. However, existing materials can not give enough conservation for these kinds of relics. Therefore, it is vital and urgent to develop high-performance materials for the protection of the open-air sites.
     This paper summarizes the common diseases, failure mechanism, conservation materials and methods of the immovable relics including earthen sites, ancient buildings and historic stones. The progress of the conservation materials has been discussed. Based on the development of protection materials for cultural heritages and the precious work of our laboratory, the application of inorganic gelling material for the conservation of immovable relics has been studied in this thesis. The followings are the main points:
     The liquid hydraulic material for the in situ consolidation of earthen sites was studied. Based on the mechanism of the lime or cement stabilized soil, a kind of liquid and hydraulic material was developed. The calcium source adopted was the alcohol dispersion of calcium hydroxide and the silicon source adopted was the solution of potassium silicate. The strategy was like below:first, the alcohol dispersion of calcium hydroxide was applied on the surface of the earth samples by spraying. Then the solution of potassium silicate was applied on the surface of the earth samples by the same method. SEM, XRD, EDX, compressive strength test and water resistance test were employed to evaluate the efficiency of the conservation. The results indicate that the introduced calcium and silicon source reacts and produce a kind of net-shape structure. This net-shape structure composed of Si, Ca and K can joint the loose soil particles together. The concept of liquid hydraulic materials is proposed for the first time, which provides a new perspective for the conservation of earthen sites.
     The mechanism of sticky rice lime mortar and its application in the conservation of ancient buildings were studied. The development and the role sticky rice lime mortar played were reviewed. The sticky rice lime mortar technology appeared about in the North-south Dynasty. It was widely used in many of the important buildings in the past. As a kind of inorganic-organic material, sticky rice lime mortar was an important technology innovation in that time. Mortar samples from ancient constructions were analyzed by FT-IR, XRD, TG-DSC, iodine-starch test. The results indicate that the siticky rice lime mortar was used in the construction of Xi'an city wall of Ming Dynasty and the Nanjing city wall of Ming Dynasty. Modeling sticky rice-lime mortar was fabricated and analyzed, and the role sticky rice amylopectin played in the sticky rice-lime mortar was explored. It was found that amylopectin in the mortar acted as an inhibitor-the growth of the calcium carbonate crystal was controlled and a compact micro-structure was produced, which should be the cause of the good performance of this kind of organic-inorganic mortar. For the conservation of ancient constructions, sticky rice lime mortar was fabricated and tested. The test results of the modeling mortars show that the sticky rice-lime mortar has more stable physicochemical properties, greater mechanical strength and better compatibility than pure lime mortar, which make it a suitable restoration mortar for ancient masonry building. Sticky rice-lime mortar has been used in the restoration of some ancient masonry constructions like Shouchang Bridge built in Song Dynasty and Fantianshi stone censers buit in the Five Dynasties. The study of sticky rice lime mortar is important for the reuse of tradition technology, especially for the conservation and restoring of ancient buildings.
     Conservation of the weathered historic calcareous stones by apatite was studied. By mimicking the growth of bone, calcium and phosphorus were introduced into the weathered stone and then mineralized at room temperature. The conservation efficiency was investigated by SEM, EDX, XRD, "Scotch Tape Test" (STT), compressive strength test, capillary water uptake test, water vapor permeability test and weather resistance test. The results of SEM, EDX and XRD show that the produced bone-like hydroxyapatite can bind the introduced calcium carbonate and the weathered stone blocks together. The test results also indicate that this conservation method can improve the surface strength, compressive strength and weather resistance of the treated samples significantly. Besides, due to the porous nature of the bone-like apatite, the water vapor permeability of treated stone is not affected and its "breathe function" is retained. Therefore, the proposed method will be a good candidate for the in situ conservation of historic calcareous stones. This study gives a good solution for the problem of adhesion between the existing inorganic consolidants and the weathered historic stones.
     In conclusion, for the conservation of earthen sites, ancient constructions and historic stones, liquid hydraulic material, traditional sticky rice lime mortar and biomimic apatite were studied, respectively. These exploring works presented here provide new insights for the conservation of immovable cultural relics.
引文
1.中华人民共和国文物保护法,2007年12月29日.
    2.王丽琴,党高潮,梁国正.露天石质文物的风化和加固保护探讨.文物保护与考古科学,2004,16(4):58-63.
    3.李伟.当前不可移动文物保护中的存在问题及解决对策.文物工作,2005,6:26-28.
    4.徐飞高,高士祥.大气污染对石灰质文物的风化影响及防护新材料.环境科学与技术,2008,31(3):35-38.
    5.三万处在册文物因大规模基建而消失.中华遗产.2010,1:10.
    6.王赟.土遗址加固保护概述.土工基础,2009,23(5):30-32.
    7.李最雄,赵林毅,孙满利.中国丝绸之路土遗址的病害及PS加固.岩石力学与工程学报,2009,28(5):1047-1054.
    8.谢振斌.甲基三甲氧基硅烷对砂岩石刻封护性能的实验室研究.文物保护与考古科学,2008,20(4):10-15.
    9.杨祥民.南朝陵墓石刻保护现状调研及对策.文物世界,2009,1:30-42.
    10.王学良,张路青,吕继祥,曾庆利,牛健,杨志法,孙学武.泰山经石峪缓坡石坪片状剥落风化的几何特征.工程地质学报,2010,18(2):197-203.
    11.邱盼.试论我国古建筑保护面临的问题.山西建筑,2009,35(29):54-55.
    12.贺林.古遗址与古建筑保护方法探索及应用.丝绸之路,2009,8:27-30.
    13.苏达根.土木工程材料,第2版,北京:高等教育出版社,2008.
    14.许艳.陕西几处土遗址保护方法的探索.丝绸之路,2009,8:34-37.
    15.俞长海.土遗址保护中的多学科应用.丝绸之路,2010,6:28-30.
    16.柴晓明.文化遗产保护工作的又一重大成就—国务院核定公布第六批全国重点文物保护单位.中国文化遗产,2006,3:3-30.
    17.程实.1996年新石器时代重要考古发现两则.历史教学,1997,10:23.
    18.余西云,刘琳,黄文新,胡文春.湖北江陵朱家台遗址.考古学报,1996,4:443-472.
    19.王青,荣子禄,王良智,赵金.山东东营市南河崖西周煮盐遗址.考古,2010,3:37-49.
    20.高虎,程召辉,胡小宝,高向楠,贺辉.洛阳人民路北宋砖瓦窑址.文物,2007,10:38-41.
    21.李最雄.丝绸之路古遗址保护.北京:科学出版社,2003.
    22.王勇.春耘秋实三十载—秦始皇兵马俑博物馆的发展记忆.文博,2009,5:94-96.
    23.张达坚.七千年前历史遗址,中华民族文化瑰宝,人类文明的沉积—河姆渡遗址博物馆简介.浙江档案,1994,4:48-49.
    24.王静,闫增峰,孙立新.土遗址博物馆室内热湿环境测试与分析.建筑科学,2010,26(8):27-31.
    25.西安唐皇城墙含光门遗址博物馆.从土遗址档案保护研究的角度谈西安唐皇城墙含光门遗址博物馆开发展示的意义.陕西档案,2010,1:46-48.
    26.徐毓明.文物科技学简论.中国博物馆,1999,3:85-88.
    27.王元林.丝绸之路古城址的保存现状和保护问题.中国文物科学研究,2010,1:13-20.
    28.白崇斌,马涛.古遗址科学保护的探讨与实践.文博,2005,4:12-17.
    29.黄克忠.岩土文物建筑的保护.北京:中国建筑工业出版社,1998.
    30.李最雄,王旭东,郝利民.室内土建筑遗址的加固试验一半坡土建筑遗址的加固试验.敦煌研究,1998,4:144-150.
    31.张秉坚,周环.潮湿环境土遗址表层的加固剂及其加固方法.中国发明专利:CN200310108663.7,20031112.
    32.张秉坚,曾余瑶,吴坚.潮湿环境土遗址的防水加固方法.中国发明专利:CN200510050877.2,2005728.
    33.周环,张秉坚,陈港泉,赵海英,曾余瑶,郭青林,李最雄.王旭东.潮湿环境下古代土遗址的原位保护加固研究,岩土力学,2008,29(4):954-962.
    34.孙满利,李最雄,王旭东,谌文武.干旱区土遗址病害的分类研究.工程地质学报.2007,15(6):772-778,765.
    35.赵海英,李最雄,汪稔,王旭东,韩文峰.PS材料加固土遗址风蚀试验研究.岩土力学.2008,29(2):392-396
    36.郭跃文.雨滴侵蚀特征分析.中国水土保持,1997,4:15-18.
    37.孙满利,李最雄,王旭东,谌文武.环境对交河故城破坏机理研究.敦煌研究,2005,5:68-73.
    38.杨学祥,袁万红.膨胀土地区土遗址病害分析.河南科技,2010,2:80-81.
    39.张虎元,刘平,王锦芳,王旭东.土建筑遗址表面结皮形成与剥离机制研究.岩土力学.2009,30(7):1883-1891.
    40.康超,谌文武,崔凯,孙光吉,程佳.西夏王4号陵冲沟发育过程、特征及其影响因素.敦煌研究,2009.6:71-74
    41.李最雄,王旭东,孙满利.交河故城保护加固技术研究.北京:科学出版社,2008,38.
    42.蔺青涛,王旭东,郭青林,杨善龙,张艳杰.银川西夏陵3号陵、6号陵盐害现状初步分析.敦煌研究,2009,6:75-80.
    43.郭宏.文物保存环境概论.北京:科学出版社,2001.
    44.孙博,周仲华,张虎元,郑龙.温度在夯土建筑遗址风化中的作用.敦煌研究,2009,6:66-70.
    45.呼喜锋,陈平,赵冬.高昌故城土遗址保护措施探讨.水利与建筑工程学报,2009,7(3):114-115,119.
    46.黄四平,李玉虎,肖娅萍,金普军,王肃.生物病害对唐皇城含光门土遗址的危害及防治措施研究.文物保护与考古科学,2010,22(2):6-11.
    47.熊兵.土遗址加固与保护:[硕士论文],西安:西安建筑科技大学,2008.
    48.赵海英,李最雄等.西北干旱区土遗址的主要病害及成因.岩石力学与工程学报,2003,22.(z2):2875-2880.
    49.汪晶晶.浅谈高速公路石灰稳定土的施工控制.山西建筑,2010,36(18):255-256.
    50.王立伟.石灰稳定土形成机理及施工质量控制.山西建筑,2007,33(20):254-255.
    51.周双林.土遗址防风化保护概况.中原文物,2003,6:78-83.
    52.宋迪生.文物与化学.成都:四川教育出版社,1992.165.
    53.裴章勤,刘卫东.湿陷性黄上地基处理.北京:中国铁道出版社,1992.168-224.
    54.王海军,申见红.水泥-水玻璃双液浆在井矿堵水施工中的应用.山西建筑,2009,35(10):111-112.
    55.李最雄.濒危土遗址的救星神奇的PS材料.中国科技画报,2002,7:18-20.
    56.王旭东,张鲁,李最雄.银川西夏陵3号陵的现状及保护加固研究.敦煌研究,2002,4:64-74.
    57.李黎,陈锐,邵明申,裴强强,吴宏伟,王思敬,李最雄.经PS加固土遗址水饱和强度及加固效果的环境影响研究.岩石力学与工程学报,2009,28(5):1074-1080.
    58.邵明申,李黎,裴强强,王思敬,李最雄.环境因素对PS加固土遗址效果的影响.工程地质学报,2010,18(3):371-375,384.
    59.袁传勋.土遗址保护材料综述.敦煌研究,2002,6:103-105.
    60.苏伯民,李最雄,胡之德.PS与土遗址作用机理的初步探讨.敦煌研究,2000,1:30-35.
    61. Stephen P. The use of paraloid B72 as an adhesive:its application for archaeological Ceramics & other materials. Stud. Conserv.,1986,31 (1):7~14.
    62.周双林,原思训,杨宪伟等.丙烯酸非水分散体等几种土遗址防风化加固剂的效果比较.文物保护与考古科学,2003,15(6):40-148.
    63.周双林,王雪莹,胡原,黄克忠.辽宁牛河梁红山文化遗址土体加固保护材料的筛选.岩土工程学报,2005,27(5):567-570.
    64.周双林,原思训.有机硅改性丙烯酸树脂非水分散体的制备及在土遗址保护中的试用.文物保护保护与考古科学,2004,16(1]):50-55.
    65.赵胜杰,陈平,熊兵,林旭峰,陈厚飞.BS保护土建筑遗址初探.水利与建筑工程学报,2008,6.(4):127-129.
    66.周环.潮湿环境土遗址的加固保护研究:[博士论文].杭州:浙江大学,2008.
    67.曾余瑶.多孔材料吸附行为的理论计算与应用研究:[博士论文].杭州:浙江大学,2008.
    68.张慧,李玉虎,万俐,范陶峰.土遗址防风化加固材料的研制及加固性能比较研究.东南文化,2008,2:91-96.
    69.柴新军,钱七虎,杨泽平,林重德,松永和也.点滴化学注浆技术加固土遗址工程实例.岩石力学与工程学报,2009,28(A01):2980-2985.
    70.和玲,梁国正.偏氟聚物加固保护土质文物的研究.敦煌研究,2002,6:92-98.
    71.和玲,梁国正.含氟成膜聚合物应用于文物的表面保护.膜科学与技术,2003,23(3):40-45.
    72.李小洁,林金辉,万涛.一种新型土遗址加固材料的制备及加固效果评价.成都理工大学学报(自然科学版),2006,33(3):321-326.
    73.肖维兵,万涛,林金辉,等.有机硅丙烯酸酯环氧树脂杂化材料的合成及性能研究.石油化工,2006,35(10):987-993.
    74.李小洁,万涛,林金辉,肖维兵.金沙土遗址加固材料的制备及性能研究.材料科学与工艺,2009,17.(2):215-220.
    75.王赟.土遗址加固材料比选及试验研究.陕西理工学院学报(自然科学版),2010,26.(2):36-39.
    76.李轶鹏,陈平,黄香山.BS(有机硅改性丙烯酸酯树脂BS液体)液体加固土遗址的抗风化性能实验与耐久性研究.岩土工程界,2007,10(6):31-33.
    77. Feilden B, Jokilehto J. Management Guidelines for World Cultural Heritage Sites ICCROM, Rome,1993.
    78. Ellsmore D. Achieving high quality building conservation outcomes:A basic guide for local government and heritage building owners,2009. http://www.heritage.vic.gov.au.
    79. Gardner A. The use of traditional materials for historic buildings repair. In About Wales: Conserving historic buildingsthe use of traditional materials. the civic trust for wales, autumn/ hydref 2004. (http://www.spabfim.org.uk/pages/understanding_traditional_materials.html).
    80. Collepardi M. Thaumasite formation and deterioration in historic buildings. Cement. Concrete. Comp.,1999,21 (2):147~154.
    81. Vasco E, Serenella B, Andrea N, etal. Water repellent treatment on the brick walls of the external facade of the Scrovegni Chapel in Padua. Conservation of historic masonry structure, 1998,295-310.
    82. Guide to the principles of the conservation of historic buildings. British Standards. BS 7913: 1998, London.
    83. Moropoulu A, Bakolas A, Bisbikou K. Investigation of technology of historic mortars. J. Cult. Herit.,2000,1 (1):45~58.
    84. Callebout K, Elsen J, Van Balen K, Viaene W. Nineteenth century hydraulic restoration mortars in the Saint Michail's Church (Leuven, Belgium) natural hydraulic lime or cement? Cement. Concrete. Res.,2001,31 (3):397~403.
    85. Maravelaki Kalaitzaki P, Bakolas A, Moropoulou A. Physicochemical study of Createn ancient mortars. Cement. Concrete. Res.,2003,33 (5):651~661.
    86. Moropoulou A, Bakolas A, Bisbikou K. Physicochemical adhesion and cohesion bonds in joint mortars imparting durability to the historic structures. Constr. Build. Mater.,2000,14 (1): 35~46.
    87. Moropoulou A, Bakolas A, Anagnostopoulou S. Composite materials in ancient structures. Cement. Concrete. Comp.,2005,27 (2):295~300.
    88. da Silveira P M, do Rosario Veiga M, de Brito J. Gypsum coatings in ancient buildings. Constr. Build. Mater.,2007,21 (1):126~131.
    89. Moropoulou A, Polikreti K, Bakolas A, Michailidis P. Correlation of physicochemical and mechanical properties of historical mortars and classification by multivariate statistics. Cem.Concr. Res.,2003,33 (6):891~899.
    90. Bakolas A. Criteria and characterization methods of historic mortars.[PhD thesis]. Athens: National Technical University of Athens,2002.
    91. Hasan B, Sedat A, Basak I, et al. Characteristics of brick used as aggregate in historic brick lime mortars and plasters. Cem.Concr. Res.,2006,36 (6):1115~1122.
    92. Moropoulou A, Bakolas A, Michailidis M, Chronopoulos M, Spanos Ch. Traditional technologies in Crete providing mortars with effective mechanical properties. In:Brebbia CA, Leftheris B, editors. Proceedings structural studies of historical buildings Ⅳ. Southampton: Computational Mechanics Publications,1995,151~61.
    93. Bakolas A, Biscontin G, Contardi V, et al. Thermoanalytical research on traditional mortars in Venice. Thermochim. Acta,1995,269~270:817~82893.
    94.张方,杨青.浅析中国生土建筑.山西建筑,2007,33(34):30-31.
    95. Woolley L. Excavation sat Ur. London:ErnestBen,1955.22.
    96.卞文峰.水泥史话.化学教学,1995,8:6-17.
    97. Elif Ugurlu, Hasan Boke. The use of brick-lime plasters and their relevance to climatic conditions of historic bath buildings. Constr. Build. Mater.,2009,23 (6):2442~2450.
    98. Pavia S, Fitzgerald B, Treacy E. An assessment of lime mortars for masonry repair. Ciaran McNally Ed. In:Concrete Research in Ireland Colloquium. Dublin:University College Dublin, 2006,101~108.
    99. Rodriguez Navarro C, Ruiz Agudo E, Ortega Huertas M, Hansen E. Nanostructure and Irreversible Colloidal Behavior of Ca(OH)2:Implications in Cultural Heritage Conservation. Langmuir,2005,21 (24):10948~10957.
    100. Lanas J, Alvarez J I. Masonry repair limebased mortars:Factors affecting the mechanical behavior. Cem. Concr. Res.,2003,33 (11):1867~1876.
    101. Baronio G, Bindat L. Study of the pozzolanicity of some bricks and clays. Constr. Build. Mater.,1997,11(1):41~46.
    102. Maravelaki-Kalaitzaki P, Bakolas A, Karatasios I, Kilikoglou V. Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem. Concr. Res.,2005,35 (2):1577~1586.
    103. Maravelaki-Kalaitzaki P. Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cem. Concr. Res.,2007,37 (2):283~290.
    104. Rosario Veiga M, Velosa A, Magalhaes A. Experimental applications of mortars with pozzolanic additions:Characterization and performance evaluation. Constr. Build. Mater.,2009, 23(1):318~327.
    105. Sepulcre Aguilar A, HernandezOlivares F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res.,2010,40 (1):66~76.
    106. Budak M, Akkur S, Boke H. Evaluation of heat treated clay for potential use in intervention mortars Applied Clay Science,2010,49(4):414~419
    107.苏海华,王佳妮,魏林.关于优秀历史建筑如何修缮的探讨.山西建筑,2010,36.(2):64-65.
    108. http://www.chinanews.com.cn/cul/news/2009/12-09/2009135.shtml
    109. Sabbioni C, Bonazza A, Zappia G. Damage on hydraulic mortars:the Venice Arsenal. Cem. Concr. Res.,2002,3 (1):83~88.
    110. Tesch V, Middendorf B. Occurrence of thaumasite in gypsum lime mortars for restoration. Cem. Concr. Res.,2006,36 (8):1516~1522.
    111. Van Hees R P J, Wijffels T J, Van der Klugt L J A R.Thaumasite swelling in historic mortars: field observationsand laboratory research. Cem. Concr. Compos.,2003,25.(8):1165~1171.
    112.庄敏信.传统灰作基本操作与应用之研究:[硕士论文].台北:.台湾省成功大学,2002.
    113.陈俊良.古迹灰浆材料之配比与强度关系之研究:[硕士论文].台北:国立成功大学,2004.
    114. Yang F W, Zhang B J, PAN C C & ZENG Y Y. Traditional mortar represented by sticky rice lime mortar-One of the great inventions in ancient China. Sci China Ser ETech Sci,2009, 52.(2):1-7.
    115.杨富巍,张秉坚,曾余瑶,潘昌初,贺翔.传统糯米灰浆科学原理及其现代应用的探索性研究.故宫博物院院刊,2008,5:105-114
    116. Zeng Y Y, Zhang B J, Liang X L. A case study and mechanism investigation of typical mortars used on ancient architecture in China. Thermochim. Acta.,2008,473 (1~2):1~6
    117.曾余瑶,张秉坚,梁晓林.传统建筑泥灰类加固材料的性能研究与机理探讨.文物保护与考古科学,2008,20(2):1-7.
    118.刘玄启.中国桐油史研究.广西林业,2007,1:37-39.
    119.唐晓武,林廷松,罗雪,应丰,李振泽.利用桐油和糯米汁改善黏土的强度及环境土工特性.岩土工程学报,2007,29(9):1324-1329
    120.林廷松,唐晓武,应小丰.经过桐油糯米汁改性粘土的土工特性.建筑技术,2009,40(7):631-632
    121.陈佩杭,徐炯明,鬼塜克忠.桐油与石灰加固吉野里坟丘墓土的实验研究.文物保护与考古科学,2009,21(4):59-66
    122.李绪洪,邓其生.石经幢的艺术鉴赏.古建园林技术,2005,(3):32-34
    123.彭程,邱建辉,赵强.硅丙乳液共聚涂料对石质文物保护的应用研究.上海涂料,2006,44(11):12-15
    124.韩涛,唐英.有机硅在石质文物保护中的研究进展涂料工业,2010,40(6):74-79
    125.张金风.石质文物病害机理研究.文物保护与考古科学,2008,20(2):60-67
    126.方云,邓长青,李宏松.石质文物风化病害防治的环境地质问题.现代地质,2001,15(4):454-461.
    127. Hall K. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 1999,31(1~4),47~63.
    128. Hall K, Andre M F. New insights into rock weathering from highfrequency rock temperature data:an Antarctic study of weathering by thermal stress. Geomorphology,2001,41(1):23~35.
    129. Hrle S. Rock temperatures as an indicator of weathering processes affecting rock art. Earth Surf. Process. Landf.,2006,31(3):383-389.
    130. Rodriguez Gordillo J, SaezPerez M P. Effects of thermal changes on Macael marble: Experimental study. Constr. Build. Mater.2006,20 (6):355~365.
    131. Mckay C P, Molaro J L, Marinova M M. Highfrequency rock temperature data from hyperarid desert environments in the Atacama and the Antarctic Dry Valleys and implications for rock weathering. Geomorphology,2009,110(34):182~187.
    132.方云,李宏松.石质文物风化病害防治的环境地质问题.现代地质,2001,15.(4):458-461.
    133.李智毅,张咸恭,李宏松.忠县地面石质文物的风化病害研究.地球科学中国地质大学学报,1995,20.(4):378-382.
    134. Matsuoka N, Murton J. Frost Weathering:recent advances and future directions. Permafrost. Periglacial. Process.2008,19.(2):195~210.
    135.徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究.岩石力学与工程学报,2005,24.(17):3076-3082.
    136.张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究岩石力学与工程学报,2008,27.(8):1688-1694.
    137. Saad A, Guedon S, Martineau F. Microstructural weathering of sedimentary rocks by freeze-thaw cycles:Experimental study of state and transfer parameters. C. R. Geosci.,2010, 342.(3):197~203.
    138. Storemyr P. Weathering of soapstone in a historical perspective. Mater. Charact.,2004, 53.(24):191~207.
    139. Matsuoka N. Frost weathering and rockwall erosion in the southeastern Swiss Alps: Longterm (1994-2006) observations. Geomorphology,2008,99.(14):353~368.
    140.阎宏彬,黄继忠,赵新春,郝临山.温度.湿度的变化对云冈石窟保存的影响山西大同大学学报(自然科学版),2007,23.(3):25-29.
    141.王学良,张路青,吕继祥,曾庆利,牛健,杨志法,孙学武.泰山经石峪缓坡石坪片状剥落风化的几何特征.工程地质学报,2010,18(20):197-203.
    142. Dei L, Mauro M, Baglioni P. Growth of Crystal Phases in Porous Media. Langmuir,1999,15 (26):8915~8922.
    143.张秉坚,铁景沪.大型石质文物表面清洗技术的现状和发展趋势.石材,2007,11:19-22.
    144. Rodriguez Navarro C, Doehne E. Salt weathering:influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf. Process. Landf.,1999,24 (3):191~209.
    145. Yu S, Oguchi C T. Complex relationships between salt type and rock properties in a durability experiment of multiple salt-rock treatments. Earth Surf. Process. Landforms.,2009,34 (15): 2096~2110.
    146. Ruiz Agudo E, Mees F, Jacobs P, Rodriguez Navarro C. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ. Geol.,2007,52 (2):269~281.
    147.黄继忠,袁道先.水与盐对云冈石窟石雕的影响初探.文物世界,2004,5:61-66.
    148.屈建军,张明泉.敦煌莫高窟岩体盐风化过程的初步研究.地理科学,1995,15(2):182-187.
    149.张赞勋,付林森,汪东云,姚金石,谢本立.北山石窟风化产物可溶盐形成的水文地球化学机理.工程勘察,1996,2:37-42.
    150.屈建军,李最雄.敦煌莫高窟岩体风蚀机理及其防护对策的研究.中国沙漠,1994,14(2):18-23.
    151. Videla H A, Guiamet P S, Gomezde Saravia S. Biodeterioration of Mayan archaeological sites in the Yucatan Peninsula, Mexico.Int. Biodeterior. Biodegrad.,2000,46 (4):335~341.
    152. Salman A B, Howari F M, ElSankary M M, Wali A M, Saleh M M. Environmental impact and natural hazards on Kharga Oasis monumental sites, Western Desert of Egypt. J. Afr. Earth Sci., 2010,58(2):341~353.
    153. Orkoula M G, Koutsoukos P G. Variability of Dissolution Rates at Constant Undersaturation. J. Colloid Interface Sci.,2002,253 (1):185~189.
    154. Kanellopoulou D G, Koutsoukos P G. The Calcitic Marble/Water Interface:Kinetics of dissolution and inhibition with potential implications in stone conservation. Langmuir,2003,19 (14):5691~5699.
    155. Thornbush M J, Viles H A. Simulation of the dissolution of weathered versus unweathered limestone in carbonic acid solutions of varying strength. Earth Surf. Process. Landforms.,2007, 32(6):841~852.
    156. Tambe S, Gauri K L, Li S H, Cobourn W G. Kinetic study of sulfur dioxide reaction with dolomite. Environ. Sci. Technol.,1991,25 (12):2071~2075.
    157. Bernal J L P, Bello M A. Modeling sulfur dioxide deposition on calcium carbonate. Ind. Eng. Chem. Res.,2003,42 (5):1028~1034.
    158. Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M. Effects of atmospheric NOx on biocalcarenite coated with different conservation products. Appl. Geochem.,2007,22 (6): 1248~1254.
    159. Sanjurjo Sanchez, J, Alves C A S, Vidal Romani J R, Fernandez Mosquera D. Origin of gypsumrich coatings on historic buildings. Water Air Soil Pollut.,2009,204 (14):53~68.
    160.马在平,黄继忠,张洪.云冈石窟砂岩中碳酸盐胶结物化学风化及相关文物病害研究.中国岩溶,2005,24(1):71-76,82.
    161. Gauri K L, Holdren G C. Pollutant effects on stone monuments. Environ. Sci. Technol.,1981, 15 (4):386~390.
    162. Ortiz P, Vazquez M A, Ortiz R, Martin J M, Ctvrtnickova T, Mateo M P, Nicolas G. Investigation of environmental pollution effects on stone monuments in the case of Santa Maria la Blanca, Seville (Spain). Appl. Phys. AMater. Sci. Process.,2010,100.(3):965973
    163. Martin E. Weaver. Acid Rain and Air Pollution vs. the Buildings and Outdoor Sculptures of Montreal. In:Historic Structures in Contemporary Atmospheres. APT Bulletin,1991,23.(4): 13~19
    164. Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I, Hasenekoglu I. The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continentalcold climatic conditions in Erzurum, Turkey. Sci. Total Environ.,2006,364.(1~3): 272~283.
    165. Siegesmund S, Snethlage R, Ruedrich J. Monument futures:climate change, air pollution, decayand conservationthe WolfDieter Grimmvolume. Environ. Geol.,2008,56.(3~4):451~453.
    166.周翠英,谭祥韶,邓毅梅,张乐民,王建华.特殊软岩软化的微观机制研究.岩石力学与工程学报,2005,24(3):394-400.
    167.田卿燕,肖春发,吕建兵.粤北山区高速公路煤系地层滑坡机理分析.铁道科学与工程学报,2008,5(5):61-64.
    168.李黎,谷本规伯.龙游石窟砂岩的泥质胶结物研究.工程地质学报,2005,13(2):189-194.
    169.杨晓杰,彭涛,李桂刚,刘剑,吴佳佳,张帆,张保童.云冈石窟立柱岩体长期强度研究.岩石力学与工程学报,2009,28(A02):3402-3408.
    170.李黎,王思敬,谷本规伯,郑舰.龙游石窟岩面水岩作用研究.工程地质学报,2008,16(6):798-805.
    171. Marcello L, Michela M, Ettore P. Lichens and higher plants on stone:a review. Int. Biodeterior. Biodegrad.,2003,51(1):1~17.
    172.连宾,陈烨,朱立军,杨瑞东.微生物对碳酸盐岩的风化作用.地学前缘,2008,15(6):90-99.
    173.连宾.碳酸盐岩风化成土过程中的微生物作用矿物.岩石地球化学通报,2010,29(1):52-56.
    174.周跃飞,陆现彩,王汝成,陆建军.长石微生物风化作用的研究现状与展望.地球科学进展,2008,23(1):17-23.
    175. Keller N D, Frederickson A F. The role of plants and colloid acids in the mechanisms of weathering. Am. Journ. Sci.,1952,250:594~608.
    176. Caneva G, Altieri A. Biochemical mechanisms of stone weathering induced by plant growth. Vlth International Congress on Deterioration and Conservation of Stone, Torun,1988,32~44.
    177. Huang G H, Keller W D. Dissolution of rockforming silicates minerals in organic acids: simulated first stage weathering of fresh mineral surfaces. Amer. Mineral.,1970,55:2076~2094.
    178. Duff R B, Webley D M, Scott R O. Solubilization of minerals and related materials by ketogluconic acidproducing bacteria. Soil Sci.1963,95(2):17~39.
    179. Lebedeva E V, Lyalikova N N, Bugeliskii Y Y. Partecipation of nitrifying bacteria in the weathering of serpentinized ultrabasic rocks. Microbiol.,1978,47 (6):898~904.
    180. Livingston R A. The role of nitrogen oxides in the deterioration of carbonate stone. In:Vth International Congress on Deterioration and Conservation of Stone, Lausanne:Press Polytechniques Romandes,1985,1:509~516
    181.陈廷伟,陈华癸.钾细菌的形态生理及其对磷钾矿物的分解能力.微生物,1960,2(3):104-112
    182. Winkler EM. Stone decay by plants and animals. Stone properties, durabilities in man's environment. Springer Verlag Ed.1975,154~163.
    183.杨华南.浚县千佛寺石窟病害原因及保护措施初探.中原文物,2003,5:82-84.
    184.丁梧秀,陈建平,冯夏庭,周辉,王士民.洛阳龙门石窟围岩风化特征研究.岩土力学,2004,2(1):145-148.
    185. Price C A. The consolidation of limestone using a lime poultice and limewater, in:Adhesives and Consolidants, Paris Meeting, ICC, London,1984,160~162.
    186. Ciliberto E, Condorelli G G, La delfa S, Viscuso E. Nanoparticles of Sr(OH)2:synthesis in homogeneous phase at low temperature and application for cultural heritage artifacts. Appl. Phys. A,2008,92(1):137~141.
    187. Committee on Conservation of Historic Stone Buildings and Monuments, National Materials Advisory Board, National Research Council. Conservation of Historic Stone Buildings and Monuments. Washingtong D.D.:National Academies Press,1982,296~297.
    188. Lewin S Z, Baer N S. Rational of the barium hydroxideUrea treatment of decayed stone, Stud. Conserv.,1974,19:24~35.
    189. Sayre E V. Direct deposition of barium sulphate from homogenuous solution within pouous stone. In:Conservation of new stone and wood objects. New York Conference. London:the international institute for conservation of historic and artistic works,1970.
    190. Mellor J W. A Comprehensive treatise on inorganic and theoretical chemistry, vol Ⅵ, Silicates. London:Longmans Green and Co.,1925.
    191. Kessler L. A process for hardening soft limestones by means of the fluosilicates of insoluble oxides. Comptes Rendus,1883,96:1317~1319.
    192. Powys A R. Repair of ancient buildings. London:J.M.Dent,1929.
    193. Warnes A R. Building stones:their properties, decay and preservation. London:Eernest Benn, 1926.
    194. Stone Presertives. Digest first series No.128. Building Research Station (Garston, England, 1963).
    195. Marsh I E. Stone decay and its prevention. Oxford:Basil Blackwell,1926.
    196. Lloyd H G. Hardening stone and earth:British patent 441,568 (1934).
    197. Baker. Breathing new life into the statues of wells. New Sci.,1977,76 (1083):754~756.
    198. Lee C H, Choi S W, Suh M. Natural deterioration and conservation treatment of the granite standing Buddha of Daejosa Temple, Republic of Korea. Geotech. Geol. Eng.,2003,21(1):63~67
    199. Church A H. Stone, preserving and colouring. Cement, British patent,220(1862);
    200. Church A H. Treatment of the decayed stonework in the Chapter House, Westminster Abbey, J. Soc. Chem. Ind.,1904,23:824.
    201. Church A H. Conservation of the historic buildings and frescoes. In:Proceeding of the meetings of the members. Royal Institution of Great Britain,1907,18:597~608.
    202. Lucia T, Chiara C, Marco R. Evaluation of barium hydroxide treatment efficacy on a dolomatic marble. Ann. Chim.,2001,91(1112):83~821.
    203. Heaton N. The preservation of stone. J. Royal Soc. Arts.1927,70:39~49.
    204. Lewin S Z, Baer N S. Rational of the barium hydroxideUrea treatment of decayed stone, Stud. Conser.,1974,19:24~35.
    205. Sayre E V. Direct deposition of barium sulphate from homogenous solution within porous stone, In:Conservation of new stone and wood objects. New York Conference, June 1970. London: the international institute for conservation of historic and artistic works,1970,115~118.
    206. Stambolov T. Conservation of stone, In:Conservation of new stone and wood objects. New York Conference, June 1970. London:the international institute for conservation of historic and artistic works,119~124.
    207. Shore B G. Stones of Britain. London:Leonard Itill Books,1957.
    208. North American International Regional Conference. Preservation and conservation, principles and practices. Washington D.C.:The Preservation press,1976,143~165.
    209. Riedere J. Further progress in German stone conservation. In the proceedings of the international symposium. Bologna,1975,369~385.
    210. Wihr R, Steeken G. On the preservation of monuments and works of art with silicates,71~75.
    211. Laurie A P, Ranken C. The preservation of stone decaying. J. Chem. Soc.,1918,37: 137t~147t.
    212. Tesch V, Middendorf B. Occurrence of thaumasite in gypsum lime mortars for restoration. Cem. Concr. Res.,2006,36 (8):1516~1522.
    213. Knopman D S. Conservation of stone artworks:barely a role of science. Science,1975,190 (4220):1187~1188.
    214. Conservation of Historic Stone Buildings and Monuments, National Materials Advisory Board, National Research Council. Conservation of Historic Stone Buildings and Monuments. Washington D.C:National Academy press,1982,293.
    215. Corradi M, Borri A, Vignoli A. Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998. Constr. Build. Mater.,2002,16 (4):229~239.
    216.黄继忠.云冈石窟的科学保护与管理.文物世界,2003,3:53-56.
    217. Cardiano P, Ponterio R C, Sergi S, Lo Schiavo S, Piraino P. Epoxysilica polymers as stone conservation materials. Polymer,2005,46 (6):1857~1864.
    218. Ginell W S, Kotlik P, Slwitz C M. Recent development in the use of epoxy resins for stone consolidation. Warrendale, PA:Material Research Society,1995,823~829.
    219. Manoudis P N, Tsakalof A, Karapanagiotis I, Zuburtikudis I, Panayiotou C. Fabrication of superhydrophobic surfaces for enhanced stone protection. Surf. Coat. Technol.,2009,203 (10~11): 1322~1328.
    220. Karatasios I, Theoulakis P, Kalagri A, Sapalidis A, Kilikoglou V. Evaluation of consolidation treatments of marly limestones used in archaeological monuments. Constr. Build. Mater.,2009,23 (8):2803~2812.
    221. Lazzari M, Chiantore O. Thermal-ageing of paraloid acrylic protective polymers. Polymer, 2000,41:6447~6455.
    222.杨璐,王丽琴,王璞.文物保护用丙烯酸树脂ParaloidB72的光稳定性能研究.文物保护与考古科学,2007,19(3):54-58.
    223. Lazzari M, Chiantore O. Thermalaging of Parloid acrylic protective polymer. Polymer,2000, 41(17):6447~6455
    224. Vicini S, Princi E, Pedemonte E, et al. In situ polymerization of unfluorinated and fluorinated acrylic copolymer for the conservation of stone. J. Appl. Polym. Sci.,2004,91 (5):.3202~3213
    225. Valter C, Mauro A, Francesco C, et al. Structure control, coating properties and durability of fluorinated acrylicbased polymers. J. Coat. Tech.,2002,74 (928):57~66.
    226. Mazzola M, Frediani P, Bracci S. New strategies for the synthesis of partly fluorinated acrylic polymers as possible materials for the protection of stone monuments. Euro. Polym. J.,2003,39 (10):1995~2003.
    227. Benedetti E, D'Alessio A, Zini M F. Characterization of acrylic resins and fluoroelastamer blends as potential materials in stone protection. Polym. Int.,2000,49 (8):888~892.
    228.聂王焰,周艺峰.石刻保护有机硅丙烯酸酯乳液涂料的研究.有机硅氟资讯,2008,7:31-35
    229.陈光琦,王巨宽.有机硅材料的文物保护方面的应用.有机硅材料及应用,1995,5:20-21
    230.郭广生,韩冬梅,王志华等.有机硅加固材料的合成及应用.北京化工大学学报,2000,27(1):98-100
    231. Zendri E, Biscontin G, Nardini I, Riato S. Characterization and reactivity of silicatic consolidants. Constr. Build. Mater.,2007,21 (5):1098~1106.
    232. Guido B, Pagona M, Elisabetta Z. Investigation into the interaction between aquous and organic solvent protection and building materials. Conservation of stone and other materials. RILEM/UNFSCO congress. Paris, June,29,1993, pp 689~696.
    233. Vasco E, Serenella B, Andrea N. Water repellent treatment on the brick walls of the external facade of the Scrovegni Chapel in Padua. Conservation of historic masonry structure,1998, 295~310
    234. Ferreira Pinto A P, Delgado Rodrigues J. Stone consolidation:The role of treatment procedures. J. Cult. Herit.,2008,9(1):38~53
    235. Maravelaki Kalaitzaki P, Kallithrakas Kontos N, Agioutantis Z, Maurigiannakis S, Korakaki D. A comparative study of porous limestones treated with siliconbased strengthening agents. Prog. Org. Coat.,2008,62 (1):49~60.
    236. Volpe C D, Toniolo L, Bruqnare M. Partly fluorinated acrylic copolymers for stone protection: characterization and surface properties. Mat. Rev. Soc. Symp. Pro.,2002,7(12):91~97236.
    237. Moropoulou T, Theoulakis P, Doffs T. The behaviour of fluoropolymers and silicon resins as water repellents under salt decay conditions, in combination with consolidation treatments on highly porous stone. Sci. technol. Cult, herit.,1994,3:113~122.
    238. Alessandrini G, Toniolo L, Colombo C. Partially fluorinated acrylic copolymers as coatings for calcareous stone materials Tradition and innovation:advances in conservation. Contributions to the IIC Melbourne congress,1014 October 2000, pp.1~6.
    239. Barone G, Campani E. Casoli A, Russa M F L. Giudice A L, Mazzoleni P, Pezzino A. The Cathedral of St. Giorgio in Ragusa Ibla (Italy):a case study of the use of protective products. Environ. Geol.,2008,54 (7):1501~1506.
    240. He L, Liang J Y. Synthesis, modification and characterization of core-shell fluoroacrylate copolymer latexes. J. Fluor. Chem.,2008,129 (7):590~597.
    241.和玲,梁国正,武予鹏.有机氛聚合物加固保护砂岩文物的可行性.材料导报,2003,17(2):82-85
    242.邵高峰,许淳淳.环保型石质文物防风化剂的研制.腐蚀与防护,2007,28(11):562-565.
    243.朱正柱,邱建辉,段宏瑜等.改性氛树脂石质文物封护材料的研究.石材,2007,5:39-43
    244. Pfefferkorn S, Holger F. Historical Conservation of Natural Stone in Kingdom of Saxony. In Snethlage R. and MeinhardDegen, Ed. Proceedings of 13th Workshop Euromarble (10~12th October 2002 Bavarian State Dept. Of Historical Monuments Munich). Munich:Bayerisches Landesamt fur Denkmalpflege Zentrallabor,2002,41~580.
    245.http://icomcc.icom.museum/Documents/WorkingGroup/ModernMaterials/Modernmaterials20 05~2008.pdf.
    246. Warscheid Th, Braams J. Biodeterioration of stone:a review. Int. Biodeterior. Biodegrad., 2000,46 (4):343~368.
    247. Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci. Total. Environ.,2007, 385(1~3):172~181.
    248. de los Rios A, Camara B, Angeles Garcia del Cura M, J. Rico V J, Galvan V, Ascaso C. Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain). Sci. Total. Environ.,2009,407 (3):11231134.
    249. Ramirez M, Hernandez-Marine M, Novelo E, Roldan M. Cyanobacteriacontaining biofilms from a Mayan monument in Palenque, Mexico. Biofouling,2010,26 (4):399~409.
    250. Flemming H C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym. Degrad. Stabil.1998,59 (1~3):309~315.
    251. Shashoua Y. Inhibiting the inevitable:current approaches to slowing the deterioration of plastics. Macromol. Symp.,2006,238 (10:67~77.
    252. Cappitelli F, Claudia Sorlini C. Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl. Environ. Microb.,2008,74(3):564~569.
    253. Cappitelli F, Nosanchuk J D, Casadevall A, Toniolo L, Brusetti L, Florio S, Principi P, Borin S, Sorlini C. Synthetic consolidants attacked by melaninproducing fungi:case study of the biodeterioration of Milan Cathedral (Italy) marble treated with acrylics. Appl. Environ. Microbiol., 2007,73(1):271~277.
    254. Gazzano C, FaveroLongo S E, Matteucci E, Roccardi A, Piervittori R. Index of Lichen Potential Biodeteriogenic Activity (LPBA):A tentative tool to evaluate the lichen impact on stonework. Int. Biodeterior. Biodegrad.,2009,63 (7):836~843.
    255. Flemming H C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym. Degrad. Stabil.,1998,59(1~3):309~315.
    256. Baldin A, Gorassini A, Princi E, Vicini S, Zappala A. Effects of artificial weathering on the mechanical properties of paperbased materials consolidated with polymeric materials. J. Appl. Polym. Sci.,2009,112 (6):3529~3536.
    257. Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M. Effects of atmospheric NOx on biocalcarenite coated with different conservation products. Appl. Geochem.,2007,22 (6): 1248~1254.
    258. Evenson J, Crews P C. The effects of light Exposure and heataging on selected quilting products containing adhesives. JAI C,2005,44(1):27~38.
    259. Abdel Kareem O M A.The longterm effect of selected conservation materials used in the treatment of museum artefacts on some properties of textiles. Polym. Degrad. Stabil.,2005,87 (1): 121~130.
    260. Ragauskiene D, Makuska R. Consolidation and ageing features of vinylneodecanoate containing in adhesive films used as a support for museum textiles. Chemija,2006,17 (2-3): 52~59.
    261. Bugani S, Camaiti M, Morselli L, Casteele E V, Janssens K. Investigating morphological changes in treated vs.untreated stone building materials by xray microCT. Anal. Bioanal. Chem., 2008,391(4):1343~1350.
    262. Carretti E, Dei L, Baglioni P. Solubilization of acrylic and vinyl polymers in nanocontainer solutions. Application of microemulsions and micelles to cultural heritage conservation. Langmuir, 2003,19 (19):7867~7872.
    263. Carretti E, Giorgi R, Berti D, Baglioni P. Oil in water nanocontainers as low environmental impact cleaning tools for works of art:two case studies. Langmuir,2007,23 (11):6396~6403.
    264.周双林.文物保护中树脂的去除方法.江汉考古2003,85-87,81
    265. Carretti E, Dei L, Baglioni P. Microemulsions and micellar solutions for cleaning wall painting surfaces. Stud. Conserv.2005,50 (2):128~136
    266. ElSherbiny I M, Salama A, Sarhan A A. Grafting study and antifungal activity of a carboxymethyl cellulose derivative. Int. J. Polym. Mater.,2009,58 (9):453~467
    267. Lazzari M, Scalarone D, Riedo C, Chiantore O. Compositional analysis of fluorinated and unfluorinated acrylic copolymers. J. Anal. Appl. Pyrolysis.,2009,85 (1~2):321~326.
    268. Mosquera M J, Santos D M, Montes A, ValdezCastro L. New nanomaterials for consolidating stone. Langmuir,2008,24 (6):2772~277.
    269. Ioannis Karapanagiotis. Superhydrophobic Nanocomposite Films Deposited on Various Surfaces and Outdoor Works of the Cultural Heritage. http://www.certh.gr/6D3E68B1.en.aspx
    270. Kortabitarte I. A new antigraffiti coating has been developed to protect Cultural Heritage ancient materials. From http://www.eurekalert.org/pub_releases/200902/efana022009.php
    271. Manoudis P N, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Panayiotou C. Superhydrophobic Composite Films Produced on Various Substrates. Langmuir,2008,24 (19): 11225-11232.
    272. Manoudis P, Papadopoulou S, Karapanagiotis I, Tsakalof A, Zuburtikudis P, Panayiotou C. Polymersilica nanoparticles composite films as protective coatings for stonebased monuments. J. of Phys.:Conf. Series,2007,61 (1):1361~1365.
    273. Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P. Colloidal particles of Ca(OH)2:properties and applications to restoration of frescoes. Langmuir,2001,17(14):4251~4255.
    274. Dei L, Salvadori B. Nanotechnology in cultural heritage conservation:nanometric slaked lime saves architectonic and artistic surfaces from decay. J. Cult. Herit.,2006,7 (2):110~115.
    275. Daniele V, Taglieri V, Quaresima R. The nanolimes in Cultural Heritage conservation: Characterisation and analysis of the carbonatation process. J. Cult. Herit.,2008,9 (3):294~301.
    276.许淳淳,何宗虎,李伟等.添加TiO2.SiO2纳米粉体对石质文物防护剂改性的研究.腐蚀科学与防护技术,2003,15(6):320-323.
    277.许淳淳,何海平,何宗虎.用纳米材料改性的石质文物防护剂的耐老化性及重涂性研究.腐蚀与防护,2005,26(1):18-20.
    278. Wang Y P, Zhu L. Biomimetic synthesis technology and its application researches. Chem. Ind. Eng.,2001,15 (5):272~278.
    279.张秉坚,尹海燕,陈德余.一种生物无机材料—石质古迹上天然草酸钙保护膜的研究.无机材料学,2001,16(4):750-756.
    280. Garty J, Kunin P, Delarea J, Weiner S. Calcium oxalate and sulphate-containing structures on the thallial surface of the lichen Ramalina lacera:response to polluted air and simulated acid rain. Plant. Cell. Environ.,2002,25 (12):1591~1604.
    281. Alvarez de Buergo M, Fort Gonzalez R. Protective patinas applied on stony facades of historical buildings in the past. Constr. Build. Mater.,2003,17(2):83~89.
    282. Martin Gil J, Martin Gil F J, del Carmen Ramos Sanchez M, Pablo Martin Ramos P. The OrangeBrown Patina of Salisbury Cathedral (West Porch) Surfaces:Evidence of its ManMade Origin. Environ. Sci. Pollut. Res.,2005,12 (5):285~289.
    283. Maravelaki Kalaitzaki P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens):characterization and origin. Anal. Chim. Acta.,2005, 532(2):187-198.
    284. Vazquez Calvo C, Alvarez de Buergo M, Fort R, Varas M J. Characterization of patinas by means of microscopic techniques. Mater. Charact.,2007,58(11~12):1119~1132.
    285.张秉坚,尹海燕,沈忠悦.草酸钙生物矿化膜的形成机理和化学仿制.矿物学报,2001,21(3):319-322.
    286.刘强,张秉坚.石质文物表面生物矿化保护材料的仿生制备.化学学报,2006,64(15):1601-1605.
    287. Doherty B, Pamplona M, Miliani C, Matteini M, Sgamellotti A, Brunetti B. Durability of the artificial calcium oxalate protective on two Florentine monuments. J. Cult. Herit.,2007,8 (2): 186~192.
    288.洪坤,詹予忠,沈国腆.仿生合成石质文物二氧化硅保护膜研究.文物保护与考古科学,2007,19.(4):33-36.
    289. Arocena J M, Hall K. Calcium phosphate coatings on the Yalour Islands, Antarctica: Formation and geomorphic implications. Arct. Antarct. Alp. Res.,2003,35(2):233~241.
    290.潘昌初,张秉坚,杨富巍.鸟粪层磷灰石矿化过程模拟及新型膜保护材料的制备研究.化学学报,2009,67(22):2559-2565.
    291. Wang Y P, Zhu L. Biomimetic synthesis technology and its application researches. Chem. Ind. Eng.,2001,15(5):272~278.
    292. Rodriguez Navarro C, Rodriguez Gallego M, Chekroun K B, Maria Teresa Gonzalez Munoz M T. Conservation of Ornamental Stone by Myxococcus xanthuslnduced Carbonate Biomineralization. Appl. Environ. Microbiol.,2003,69 (4):2182~2193.
    293. Jimenez-Lopez C, Rodriguez Navarro C, Pinar G., Carrillo Rosu F J, Rodriguez Gallegob M, Gonzalez Munoz M T. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere,2007,68 (10):1929~1936.
    294. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez Navarro C, Pinar Larrubia G, Rodriguez Gallego M, Gonzalez Munoz M T. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int. Biodeterior. Biodegrad.,2008,62 (4):352~363.
    295.孙延忠,陈青.石质文物加固中细菌诱导碳酸钙生成的研究孙延忠文物保护与考古科学2009,21(3):29-32.
    296.李沛豪,屈文俊,徐德强,肖义平.大理石历史建筑遗产的细菌修复加固.华南理工大学学报(自然科学版),2009,37(9):36-41.
    297. Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C. Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl. Environ. Microbiol.,2007,73 (17):5671~5675.
    1.王沛钦,郑山锁,柴俊,曾磊,彭春华,郑捷.走向生土建筑结构,工业建筑,2008,38(3):101-105.
    2.赵成,阿肯江·托呼提.生土建筑研究综述,四川建筑,2010,30(1):31-33.
    3.白崇斌.半坡土遗址临时性保护工程.文博,2005,4:10-11.
    4.郎树德.大地湾遗址的发现和初步研究.甘肃社会科学,2002,5:136-139.
    5.孙满利,王旭东,李最雄,张明泉.交河故城衰落的原因分析.敦煌研究,2005,6:118-124.
    6.杨善龙,郭青林,蔺青涛,张国彬,王旭东,刘晓东,李宏伟.甘肃瓜州锁阳城遗址环境问题分析及整治对策.敦煌研究,2008,6:83-86.
    7.金磊.追寻失落的文明—西夏王陵—“东方金字塔”考察侧记.中外建筑,2000,6:27-28.
    8.胡家喜.枣阳九连墩车马坑翻模及部分车马复原、复制研究.江汉考古,2006,3:78-84.
    9.王杰.探寻炎帝氏族的足迹—从雕龙碑考古发现探讨炎帝都邑问题.江汉考古,2000,4:42-46.
    10.谭维四.曾侯乙墓的发现、发掘与研究.江汉考古,2000,1:84-90.
    11.赵守忠.铜绿山矿古矿遗址地段高陡边坡的稳定性研究.大冶科技,1993,2:1-11.
    12.李桃元.应城门板湾遗址大型房屋建筑.江汉考古,2000,1:96-96,71.
    13.谢其勇,饶杨安,吴立.印山越国王陵破碎岩质边坡稳定性分析.土工基础,2004,18(4):7-9.
    14.余飞,陈善雄,程昌炳,王小刚.萧山跨湖桥独木舟遗址区的电化学桩加固试验.2010,24(2):10-13.
    15.今井晃树.姜宝莲.赵强.良渚文化的地域间关系.文博,2002,1:62-70.
    16.王心喜.跨湖桥新石器时代文化遗存的考古学观察.文博,2004,1:88-93.
    17.赵海英,李最雄等.西北干旱区土遗址的主要病害及成因.岩石力学与工程学报,2003,22(z2):2875-2880.
    18.孙满利,李最雄,王旭东,谌文武.干旱区土遗址病害的分类研究.工程地质学报.2007,15(6):772-778,765.
    19.孙满利.土遗址保护研究现状与进展.文物保护与考古科学,2007,19(4):64-70.
    20.刘林学,张宗仁,薛茜.古文化遗址风化机理及其保护的初步研究.文博,1988,6:71-75.
    21.屈建军,王家澄,程国栋.西北地区古代生土建筑物冻融风蚀机理的实验研究.冰川冻土,2002,24(1):51-55.
    22.涂晓,陈平.高昌古城土遗址加固工程冻融试验研究.四川建筑,2008,28(6):74-75.
    23.周双林.谈谈考古发掘中文物的现场保护.文物世界,1999,4:17-20.
    24.赵西晨,邵安定.试论“及时性”在考古现场保护中的重要意义—以张家川战国墓地现场保护实践为例.文物保护与考古科学,2009,21(4):84-88.
    25.郭宏.文物保护环境概论.北京:科学出版社,2001.
    26.杨林.遥感与航空摄影考古在中国的首次尝试—河南洛阳地区航空摄影考古勘察工作追记.中国历史文物,2002,3:24-28.
    27.徐长青,余江安,肖用桁.江西泰和白口汉城勘察记.南方文物,2003,1:2-4.
    28.薛新明.山西芮城寺里—坡头遗址勘察与清凉寺墓地的重要收获.文物世界,2004,3:3-5.
    29.张虎元,赵天宇,王旭东.中国古代土工建造方法.敦煌研究,2008,5:81-90.
    30.柴新军,钱七虎,杨泽平,林重德,松永和也.点滴化学注浆技术加固土遗址工程实例.岩石力学与工程学报,2009,28(A01):2980-2985.
    31.俞长海.土遗址保护中的多学科应用.丝绸之路,2010,6:28-30.
    32.周环,张秉坚,陈港泉,赵海英,曾余瑶,郭青林,李最雄.王旭东.潮湿环境下古代土遗址的原位保护加固研究,岩土力学,2008,29(4):954-962.
    33.赵海英,李最雄,汪稔,王旭东,韩文峰.PS材料加固土遗址风蚀试验研究.岩土力学.2008,29(2):392-396.
    34.汤国华.不可移动文物的移动保护.建筑学报,2006,6:28-32.
    35.陈伯超.慎谈“异地保护”.建筑学报,2009,6:48-51.
    36.王赟.土遗址加固保护概述.土工基础,2009,23(5):30-32.
    37.毛晖,梁渠,谭君.土遗址保护材料综述.广东微量元素科学,2007,14(1):11-15.
    38.秦俑坑土遗址保护课题组.文博,1995,1:79-86.
    39.秦俑坑土遗址的研究与保护.李最雄,王旭东,张志军,周铁,何帆.秦俑坑土遗址的加固试验.敦煌研究,1998,4:151-158.
    40.孙满利,王旭东,李最雄,梁收运,张鲁.交河故城瞭望台保护加固技术.岩土力学,2008,28(1):163-168.
    41.李最雄,赵林毅,孙满利.中国丝绸之路土遗址的病害及PS加固.岩石力学与工程学报,2009,28(5):1047-1054.
    42.柴新军,钱七虎,罗嗣海,林重德.微型土钉微型化学注浆技术加固土质古窑.2008,27(2):347-353.
    43.袁传勋.土遗址保护材料综述.敦煌研究,2002,6:103-105.
    44.李最雄,王旭东.一种土遗址加固剂与加固工艺.中国发明专利:CN200510081268.3,20051109.
    45.王银梅.西北干旱区土建筑遗址加固概述.工程地质学报,2003,12(2):189-192.
    46.陈子繁,谭白明,夏璐,周松峦.基于固体晶憎水材料的高含水量土遗址加固保护方法.中国发明专利:CN200810048420.1,2008-12-20.
    47.张秉坚,周环.潮湿环境土遗址表层的加固剂及其加固方法.中国发明专利:CN200310108663.7,2004-11-10.
    48.张秉坚,曾余瑶,吴坚.潮湿环境土遗址的防水加固方法.中国发明专利:CN200510050877.2,2006-1-11.
    49.林金辉,万涛,刘菁,叶巧明,汪灵,李小洁,肖维兵.一种潮湿环境土遗址表层保护材料的制备方法.中国发明专利:CN200610020200.9,2006-10-04.
    50.李克彪.潮湿环境下土遗址异地保护加固方法.中国发明专利:CN200610088440.2,2007-2-14.
    51.万涛,林金辉,汪灵,肖维兵,李小洁.一种有机硅改性丙烯酸酯微乳液土遗址表层保护材料的制备方法.中国发明专利:CN200710048881.4,2008-10-22.
    52.范敏,马振华,陈粤,傅英毅.一种土遗址土体加固用有机无机复合材料及其制备方法.中国发明专利:CN200810028176.2,2008-10-22.
    53.周环,张秉坚,陈港泉,赵海英,曾余瑶,郭青林,李最雄.王旭东.潮湿环境下古代土遗址的原位保护加固研究,岩土力学,2008,29(4):954-962.
    54.张登良.加固土原理.北京:人民交通出版社,1990.
    55. Kolias S, KasselouriRigopoulou V, Karahalios A. Stabilization of clayey soils with high calcium fly ash and cement. Cem. Concr. Compos.,2005,27(2):301~313.
    56. Chen L, Lin D F. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. J. Hazard. Mater.,2009,162 (1):321~327.
    57.周永祥,阎培渝.土壤加固技术及其发展.铁道科学与工程学报,2006,3(4):35-40.
    58. Giorgi R, Chelazzi D, Baglioni P. Nanoparticles of calcium hydroxide for wood conservation. the deacidification of the Vasa warship. Langmuir,2005,21(23):10743~10748.
    59.周环.潮湿环境土遗址加固保护研究:[博士毕业论文].杭州:浙江大学,2008.
    60.铁路工程岩土分类标准(TB10772001 J1232001).
    61. Ambrosi M, Dei L, Giorni R, Neto C, Baglioni P. Colloidal particles of Ca(OH)2:properties and applications to restoration of frescoes. Langmuir,2001,17 (14):4251~4255.
    62. Giorgi R, Dei L, Ceccato M, Schettino C, Baglioni P. Nanotechnologies for conservation of cultural Heritage:paper and canvas deacidification. Langmuir,2002,18(21):8198~8203.
    63.张信贵,欧鸥,易念平.土壤固化类材料及其应用.工程设计与建设,2004,36(6):8-11.
    64. Attoh Okine N O. Lime treatment of laterite soils and gravels-revisited. Constr. Build. Mater., 1995,9(5):283~287.
    65. Bell F G. Lime stabilization of clay minerals and soils. Eng. Geol.,1996,42 (4):223~237.
    66.黄新.水化产物钙矾石在软土地基加固中的增强作用.硅酸盐学报,2000,28(4):299-308.
    67.戴蕾,黄新.强硫酸盐盐渍土固化研究.铁道建筑,2010,5:99-101.
    68. Ouhadi V R, Yong R N. Ettringite formation and behaviour in clay soil. Appl. Clay Sci.,2008, 42(1~2):258~265.
    69. Elert K, Rodriguez Navarro C, Sebastian E. Geopolymerization as a novel method to consolidate earthen architecture:Preliminary results. In:Proceedings of the International Conference on Heritage, Weathering and Conservation, H WC. Taylor and Francis/Balkema,2006, 2:771~776.
    70. Elert K, Rodriguez Navarro C, Sebastian E. Alkaline treatment of clay minerals from the Alhambra Formation:Implications for the conservation of earthen architecture. Appl. Clay Sci., 2008,39(3~4):122~132.
    71. Salehi M, Sivakugan N. Effects of Lime Clay Modification on the Consolidation Behavior of the Dredged Mud. J. Waterw. Port Coast. Ocean Eng. ASCE,2009,135(6):251~258.
    72.谭文英,汪益敏,陈页开.土固化材料的研究现状.中外公路,2004,24(4):169-172.
    73.王旭东.中国西北干旱环境下石窟和土遗址保护加固研究:[博士论文].兰州:兰州大学,2003.
    74.李最雄.丝绸之路古遗址保护.北京:科学出版社,2003.
    75.苏伯民,李最雄,胡之德.PS与土遗址作用机理的初步探讨.敦煌研究,2000,1:30-35.
    76.李最雄,赵林毅,孙满利.中国丝绸之路土遗址的病害及PS加固.岩石力学与工程学报,2009,28(5):1047-1054.
    77.魏坤峰,刘慧媛,严秀华.改碱肥料在西部开发园林中的应用.林业实用技术,2004,2:9-10.
    78.王维君.我国南方一些酸性土壤铝存在形态的初步研究.土壤与环境,1995,4(1):1-8.
    79.万苏.为什么我国南方多红土?科学大观园,2002,4:29.
    80.杨守业,李从先.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质,1999,19(2):19-26.
    81.杨守业,李徐生.长江下游下蜀黄土化学风化的地球化学研究.2001,30(4):402-406.
    82.徐瑞松,徐金鸿,苗莉,朱照宇.华南红土主元素表生地球化学特征.地球化学,2006,35(5):547-552.
    83.朱丽东,周尚哲,李凤金,叶玮,王天阳,姜永见,李建武.南方更新世红土氧化物地球化学特征.地球化学,2007,36(3):295-302.
    84.何军志,冯青琴.水泥水化机理和废弃物的利用与固化.安阳师范学院学报,2008,2:78-81,86.
    85.张秉坚,杨富巍,潘昌初.一种液态水硬性土遗址加固材料及加固方法.中国发明专利:CN200810120151.2008-12-24.
    1.何君林.秦砖汉瓦历史推前800年.建筑工人,2005,7:57.
    2.沈毅秀,兰文江.砖的历史文化点滴.砖瓦,2004,2:47-48.
    3.宇晓锋,程锐,姚瑶.砖石建筑的对比研究.工程与建设,2008,22(5):615-617.
    4.张旭东.砖石材料与中国传统建筑.山西建筑,2009,35(12):28-29.
    5.盛发和,徐峰,廖绍锋.砖石结构古建筑渗浆加固的研究报告.敦煌研究,2000,1:158-168.
    6.张金风.砖石结构古建筑修缮中的规范应用问题.文物保护与考古科学,2010,22(2):79-86.
    7.姚谦峰,卢俊龙,张荫.砖石古塔抗震加固对策探讨.工业建筑,2007,37(9):115-118.
    8.郑天天,李萌,雷克.砖石古塔震害机理分析及加固方案探讨.重庆建筑,2010,3(9):19-23.
    9. Moropoulu A, Bakolas A, Bisbikou K. Investigation of technology of historic mortars. J. Cult. Herit.,2000,1(1):45~58.
    10. Callebout K, Elsen J, Van Balen K, Viaene W. Nineteenth century hydraulic restoration mortars in the Saint Michail's Church (Leuven, Belgium) natural hydraulic lime or cement? Cem. Concr. Res.,2001,31(3):397~403.
    11. MaravelakiKalaitzaki P, Bakolas A, Moropoulou A. Physicochemical study of Createn ancient mortars. Cem. Concr. Res.,2003,33(5):651~61.
    12. Yang F W, Zhang B J, PAN C C, Zeng Y Y. Traditional mortar represented by sticky rice lime mortar-One of the great inventions in ancient China. Sci. China Ser. ETech. Sci.,2009, 52(2):1~7.
    13.柳俊哲.土木工程材料.北京:科学出版社,2005,37.
    14.卢连成.关于我国新石器时代“白灰面”建筑性质的探讨.见:自然科学史研究所主编.科技史文集(第14辑).上海:上海科技出版社,1985.107.
    15.仇士华.人工烧制石灰始于何时?14C方法可以判定.考古与文物,1980,5:126-130.
    16.姚远.汉代长安词典·科学技术.西安:陕西人民出版社,1993,477-478.
    17.(春秋)左丘明.左传.长沙:岳麓出版社,2001,289.
    18.邢景文.陕西古代科学技术.北京:中国科学技术出版社,1995,161-163.
    19.王开.陕西古代道路交通史.北京:人民交通出版社,1989.10.
    20.铁付德.西汉早期柿园墓四神云气图壁画保护研究(一).文物保护与考古科学,2004,16(1):47-51.
    21.黄雅峰.河南汉墓壁画艺术.南都学刊,1998,18(2):17-20.
    22.马新宇.打虎亭汉墓壁画别论.史学月刊,1995,32-65.
    23.陕西省考古研究所.西安北郊北朝墓清理简报.考古与文物,2005,1:7-16.
    24.山东邹城市文物局.山东邹城西晋刘宝墓文物.文物,2005,1:4-26.
    25.山西省考古研究所.灵石旌介发现商周及汉代遗迹.文物,2004,8,29-37.
    26.璞石.辽宁朝阳袁台子北燕墓.文物,1994,11,43-47.
    27.姚勤镇,吕达.统万城的历史演变及其建筑特点探析.延安大学学报(社会科学版),2004,26(2):126-128.
    28.(宋)沈括.梦溪笔谈,卷十二.长春:时代文艺出版社,2001,110.
    29.唐长孺.中国通史参考资料,古代部分,第三册.北京:中华书局,1983.
    30.河南省文化局文物工作队.邓县彩色画像砖墓.北京:文物出版社,1958.
    31.(明)宋应星.天工开物,卷中,燔石,第十一卷,石灰.明崇祯初刻本,42.
    32.吴庆洲.中国古城防洪的历史经验与借鉴(续).历史研究,2002,26(5):76-84.
    33.(宋)江修复.邻几杂志,说郭,卷30.上海古籍出版社,1988.
    34.李绪洪,邓其生.石经幢的艺术鉴赏.古建园林技术,2005,3:32-34.
    35.林建生,林子健,陈俊峰.历史大震与泉州古建筑塔寺桥类的结构抗震.世界地震工程,2005,21(2):159-166.
    36.季士家.明都南京城垣略论.故宫博物院院刊,1984,2:70-81.
    37. Riccardia M P, Duminucob P, Tomasic C et al. Thermal, microscopic and Xray diffraction studieson some ancient mortars. Thermochim. Acta,1998,321(1-2):207~214.
    38. Lea F M. Investigations on pozzolanas. Building Research, Technical Paper 1940,27.
    39. Hasan B, Sedat A, Basak I, et al. Characteristics of brick used as aggregate in historic bricklime mortars and plasters. Cem. Concr. Res.,2006,36(6):1115~1122.
    40. Rua H. The ten books of architecture by Vitruvius, Lisbon:IST.
    41. Bakolas A, Biscontin G, Contardi V, et al. Thermoanalytical research on traditional mortars in Venice, Thermochim. Acta,1995,269~270:817~828.
    42. Gulec A, Tulun T. Physico~chemical and petrographical studies of old motars and plasters of Anatolia. Cem. Concr. Res.,1997,27(2):227~234
    43.李约瑟.中华科学文明史.上海:上海人民出版社,2001,2.
    44.江苏省文管会.江苏淮安宋代壁画墓.文物参考资料,1960,8(9):43.
    45.河北省文物研究所.石家庄后太保村史氏家族墓发掘报告.见:河北省考古文集.东方出版社,1998,344-369.
    46.刘晓东.金代土坑石椁墓及相关问题.见:青果集-吉林大学考古专业成立二十周年考古论文集.知识出版社,1993,397-401.
    47.杨根来.从古代墓葬文化看遗体的防腐技术.长沙民政职业技术学院学报,2004,11(4):25-28.
    48.马健.华东交大惊现王妃墓.文物世界,2003,3:116-117.
    49.得安县博物馆.江西德安代熊氏墓清理简报.南方文物,1994,4:5-9.
    50.郑琦.台州古塔的建筑特色与人文价值.华中建筑,2003,21:83-86.
    51.湖北省玉泉铁塔考古队.湖北当阳玉泉铁塔塔基及地宫清理发掘简报.文物,1996,10:43-57.
    52.陈俊良.古迹灰浆材料之配比与强度关系之研究.台湾:国立成功大学,2004.
    53.上海市文物管理委员会.上海嘉定法华塔明代地宫清理简报.文物,1999,2:4-15.
    54.邱志坚.重庆“比萨斜塔”倾斜45度300年不倒.建筑工人,2006,7:55-55.
    55.彭适凡.再论古代南昌城的变迁与发展.南方文物,1995,4:86-98.
    56.张驭寰.中国古代建筑技术史.科学出版社,1985,173.
    57.吴庆洲.明南京城的军事防御体系研究.建筑师,2005,2:96-101.
    58.赵彤梅.商丘归德府古城城门建筑特点.山西建筑,2007,33(6):63-65.
    59.王新生.古城墙修缮及应用技术初探.古建筑园林技术,2004,1:20-22.
    60.王致诚.水下古市—泗州城.百科知识.2005,11:54-56.
    61.余焕阳,陈单.钱塘江明清古海塘旅游资源的保护与开发.浙江水利科技,2004,4:9-10.
    62.王燕谋.中国水泥发展史.北京:中国建筑工业出版社,2005,4-5.
    63.蔡树传.江苏古桥概述.古建筑园林技术,2001,3:48-54.
    64.武汉市博物馆.武汉地区的古代桥梁.武汉文史资料,2001,9:45-48.
    65.陆翔.龙桥古今.文博,2007,2:56-57.
    66.王文鹃.昆明市护国桥的检测、评定及修复加固设计.云南交通科技,2001,2:44-48.
    67.申秀英,刘沛林,Abby Liu.开平碉楼景观的类型、价值及其遗产管理模式.湖南文理学院学报(社会科学版),2006,1(4):95-99.
    68.蔡济世,资源型生态土楼.建筑学报,1995,5:42-44.
    69.建筑砂浆基本实验性能实验方法(JGJ/T702009)
    70.建筑砂浆基本实验性能实验方法(JGJ/T701990)
    71. Methods of test for mortar for masonrysPart 19:Determination of Water Vapor Permeability of Hardened Rendering and Plastering Mortars (BS EN 101519:1999).
    72. Methods of test for mortar for masonrys. Part 21:Determination of the Compatibility of One Coat Rendering Mortars with Substrates (BS EN 101521:2002).
    73. Zeng Y Y, Zhang B J, Liang X L. A case study and mechanism investigation of typical mortars used on ancient architecture in China, Thermochim. Acta,2008,473 (1~2):1~6.
    74.张年安.南京城墙测量结果报告.南京市文物局,2006.
    75. Rundl, R E, Foster E J F, Baldwin R R. On the Nature of the Starch Iodine Complex. J. Am. Chem. Soc.,1944,66(12),2116~2120.
    76.傅云鹏,孙向东.粳糯稻谷简易鉴别法.黑龙江粮油科技,1994,4:17-18.
    77. Liu X X, Yu L, Liu S H, Chen L, Li L. Thermal Decomposition of Corn Starch with Different Amylose/Amylopectin Ratios in Open and Sealed Systems. Cereal Chem.,2009,86 (4),383~385.
    78. Genestar C, Pons C, Mas A. Analytical Characterisation of Ancient Mortars from the Archaeological Roman city of Pollentia. Anal. Chim. Acta,2006,557(1~2):373~379.
    79. Sawai J, Shiga H, Kojima H, et al. Kinetic analysis of the bactericidal action of heated scallopshell powder. Int. J. Food Microbiol.,2001,71(2~3):211~218.
    80. Catalano V R, Knabel S J. Incidence of Salmonella in Pennsylvania egg processing plants and destruction by high pH. J. Food Prot.,1994,57(7):587~591.
    81.曾余瑶,张秉坚,梁晓林.传统建筑泥灰类加固材料的性能研究与机理探讨,文物保护与考古科学,2008,20(2):1-7.
    82.刘强,张秉坚.石质文物表面生物矿化保护材料的仿生制备.化学学报,2006,64(15):1601-1605.
    83. Liu Q, Zhang B J. Syntheses of a novel nanomaterial for conservation of historic stones inspired by nature. Mater. Lett.,2007,61(28):4976~4979.
    84.杨林,丁唯嘉,安英格等.以葡聚糖为模板控制合成文石型碳酸钙.高等学校化学学报,2004,25(8):1403-1406.
    85.张秀英.p环糊精与碳酸钙结晶的相互作用.化学学报,2003,61(1):69-73.
    86.丁唯嘉,安英格,杨林等.3种变性淀粉与CaC03相互作用的红外光谱研究.光谱学与光谱分析,2005,25(5):701-704
    87.王立铎,孙文珍.仿生材料的研究现状.材料工程,1996,2:3-5
    88.谢福兰.用EDGE法制备羟基磷灰石/明胶交联纳米复合材料.明胶科学与技术,2007,27(1):24-28.
    89.李秀华,侯文涛.贝壳结构及陶瓷的仿生研究.硅酸盐学报,2003,22(2):53-56.
    90. Yang L, Zhang X Y, Liao Z J, Guo Y M, Hu G, Cao Y. Interfacial Molecular Recognition between Polysaccharides and Calcium Carbonate during Crystallization. J. Inorg. Biochem.,2003, 97(4):377~383.
    91. Steven R D, McGrath K M. Aqueous Precipitation of Calcium Carbonate Modified by HydroxylContaining Compounds. Cryst. Growth Des.,2004,4 (6):1141~1148.
    92. Vishwas V, Hardikar I, Egon M. Influence of Ionic and Nonionic Dextrans on the Formation of Calcium Hydroxide and Calcium Carbonate Particles. Colloids Surf., A 2001,186(1~2):23~31.
    93. Pavia S, Fitzgerald B, Howard R. Evaluation of Properties of Magnesian Lime Mortar; WIT Press:Southampton, U.K.,2005,375~384.
    94.砌筑砂浆配合比设计规程(JGJ 982000)
    95. Leemann A, Winnefeld F. The Effect of Viscosity Modifying Agents on Mortar and Concrete. Cem. Concr. Compos.,2007,29(5):341~349.
    96. Sjoqvist M, Gatenholm P. The Effect of Starch Composition on Structure of Foams Prepared by Microwave Treatment. J. Polym. Environ.,2005,13 (1):29~37.
    97. Van Balen K, Van Gemert D. Modelling Lime Mortar Carbonation. Mater. Struct.,1994,27(7): 393~398.
    98. Michoinova D, Rovnanikova D. HighCalcium Lime Mortar:The Effects of Traditional Preparation and Curing. APT Bull.,2008,39 (4):23~29.
    99. Chandra S, Eclund F, Villarreal R R. Use of Cactus in Mortars. Cem. Concr. Res.,1998,28 (1): 41~45.
    100. De Silva P, Bucea L, Moorehead D R, Sirivivatnanon V. Carbonate Binders:Reaction Kinetics, Strength and Microstructure. Cem. Concr. Compos.,2006,28 (7):613~620.
    101. Franco M, Rinaldi G. Poly-Amino-Phenolic Additives Accelerating the Carbonation of Hydrated Lime in Mortar. Environ. Eng. Sci.,2002,19 (4):271~276.
    102. BostenaruDan M. Materials, Technologies and Practice in Historic Heritage Structures; Springer:Dordrecht, The Netherlands,2010,37.
    103.赵满仓.维修古代建筑不宜使用水泥之管见.文物春秋,1995,4:76-77.
    104. Ziad A S, Mohamed A H. Laboratory Evaluation of Various Types of Mortars for the Conservation of Qasr alBint monument, Petra, Jordan. Eng. Struct.,2001,23(8):926~933.
    105. Fernandez Munoz J L, Zelaya Angel O, Cruz Orea A, Sanchez Sinencio F. Phase Transitions in Amylose and Amylopectin Under the Influence of Ca(OH)2 in Aqueous Solution..Anal. Sci., 2001,17(2):338~341.
    106. Watta D, Colston B. Investigating the Effects of Humidity and Salt Crystallization on Medieval Masonry. Build. Environ.,2000,35(8):737~749.
    107.传统糯米灰浆科学原理及其现代应用的探索性研究.故宫博物院院刊,2008,5:105-114.
    108.以糯米灰浆为代表的传统灰浆中国古代的重大发明之一.中国科学E辑:科学技术,2009,39(1):1-7.
    109. Yang F W, Zhang B J, Ma Q L. Study of Sticky Rice-Lime Mortar Technology for the Restoration of Historical Masonry Construction. Accounts of Chemical Research,2010,43 (6): 936~944.
    1. Orkoula M G, Koutsoukos P G. Variability of Dissolution Rates at Constant Undersaturation. J. Colloid Interface Sci.,2002,253(1):185~189.
    2. Kanellopoulou D G, Koutsoukos P G. The Calcitic Marble/Water Interface:Kinetics of dissolution and inhibition with potential implications in stone conservation. Langmuir,2003,19 (14):5691~5699.
    3. Thornbush M J, Viles H A. Simulation of the dissolution of weathered versus unweathered limestone in carbonic acid solutions of varying strength. Earth Surf. Process. Landforms.,2007, 32(6):841~852.
    4. Tambe S, Gauri K L, Li S H, Cobourn W G. Kinetic study of sulfur dioxide reaction with dolomite. Environ. Sci. Technol.,1991,25 (12):2071~2075.
    5. Bernal J L P, Bello M A. Modeling sulfur dioxide deposition on calcium carbonate. Ind. Eng. Chem. Res.,2003,42 (5):1028~1034.
    6. Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M. Effects of atmospheric NO x on biocalcarenite coated with different conservation products. Appl. Geochem.,2007,22(6): 1248~1254.
    7. Sanjurjo Sanchez, J, Alves C A S, Vidal Romani J R, Fernandez Mosquera D. Origin of gypsumrich coatings on historic buildings. Water Air Soil Pollut.,2009,204(1~4):53~68.
    8. Gauri K L, Holdren G C. Pollutant effects on stone monuments. Environ. Sci. Technol.,1981, 15 (4):386~390.
    9. Ortiz P, Vazquez M A, Ortiz R, Martin J M, Ctvrtnickova T, Mateo M P, Nicolas G. Investigation of environmental pollution effects on stone monuments in the case of Santa Maria la Blanca, Seville (Spain). Appl. Phys. AMater. Sci. Process.,2010,100(3):965973.
    10. Martin E. Weaver. Acid Rain and Air Pollution vs. the Buildings and Outdoor Sculptures of Montreal. In:Historic Structures in Contemporary Atmospheres. APT Bulletin,1991,23(4): 13-19.
    11. Li W. Yu LJ. He OF. Wu Y. Yuan DX. Cao J H. Effects of microbes and their carbonic anhydrase on Ca2+ and Mg2+ migration in columnbuilt leached soillimestone karst systems. Appl. Soil. Ecol.,2005,29(3):274~281.
    12.贾丽萍,李为,朱敏,贺秋芳,刘彦,余龙江.典型细菌、真菌、放线菌对石灰岩动态溶蚀效果比较.应用与环境生物学报,2007,13(1):126-130.
    13.吴庆余.藻类生物与自然界CO2循环的水文地球化学.大自然探索,1987,6(3):4347.
    14.曹建华,潘根兴,袁道先.柠檬酸对石灰岩溶蚀动力模拟及岩溶意义.中国岩溶,2001,20(1):1-4.
    15.刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义.地球学报,2001,22(5):477-480.
    16.袁道先.碳循环与全球岩溶.第四纪研究,1993,1:1-6.
    17.徐胜友,何师意.碳酸盐岩土壤CO2的动态特征及其对溶蚀作用的驱动.中国岩溶,1996,15(1-2):50-57.
    18.黄黎英;曹建华;何寻阳;杨慧;李小方;申宏岗;几种低分子量有机酸对石灰岩溶蚀作用的室内模拟试验.地球与环境,2006,34(3):44-45.
    19. Smith K S, Jakubzick C, Whittam T S, Ferry J G. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Nat. Acad. Sci. USA.,1999,96:15184~15189.
    20.刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义.地球学报,2001,22(5):477-480.
    21.余龙江,吴云,李为,曾宪东,付春华.微生物碳酸酐酶对石灰岩的溶蚀驱动作用研究中国岩溶,2004,23(3):225-228.
    22.刘强.基于生物矿化的石质文物仿生保护:[博士学位论文]杭州:浙江大学2007.
    23.王兴山,张捷,秦中.石灰岩石刻文物表面硬度与生物风化研究——以南京明代石刻为 例.安徽师范大学学报:自然科学版,2006,29(4):381-384,394.
    24. Price C A. In stone conservation:an overview of current research, GCI, Santa Monica,1996, 73.
    25. Proietti N, Capitani D, Cozzolino S, Valentini M, Pedemonte E, Princi E, Vicini S, Segre A. L. J. In situ and frontal polymerization for the consolidation of porous stones:A unilateral NMR and magnetic resonance imaging study. J. Phys. Chem. B.,2006,110(47):23719~23728.
    26. Carretti E, Dei L, Baglioni P. Solubilization of acrylic and vinyl polymers in nanocontainer solutions. Application of microemulsions and micelles to cultural heritage conservation.Langmuir, 2003,19(19):7867~7872.
    27. Cardiano P, Ponterio R C, Sergi S, Lo Schiavo S, Piraino P. Epoxysilica polymers as stone conservation materials. Polymer,2005,46(6):1857~1864.
    28. Lazzari M, Chiantore O. Thermalageing of paraloid acrylic protective polymers. Polymer, 2000,41(17):6447~6455.
    29. Chiantore O, Lazzari M. Photooxidative stability of Paraloid acrylic protective polymers. Polymer,2001,42(1):17~27.
    30. Cappitelli F, Sorlini C. Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage. Appl. Environ. Microbiol.,2008,74(3):564~569.
    31. Favaro M, Mendichi R, Ossola F, Russo U, Simon S, Tomasin P, Vigato P A. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part Ⅱ: Photooxidative and saltinduced weathering of acrylicsilicone mixtures. Polym. Degrad. Stabil., 2007,92(3):335~351.
    32. Bugani S, Camaiti M, Morselli L, Van de Casteele E, Janssens K. Investigating morphological changes in treated vs.untreated stone building materials by xray microCT. Anal. Bioanal. Chem., 2008,391(4):1343~1350.
    33. Moropoulou A, Kouloumbi N, Haralampopoulos G, Konstanti A, Michailidis P. Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog. Org. Coat.,2003,48(2~4):259~270.
    34.刘强,张秉坚,龙梅.石质文物表面憎水性化学保护的副作用研究.文物保护与考古科学,2006,18(2):1-7.
    35. Baglioni P, Giorgi R. Soft and hard nanomaterials for restoration and conservation of cultural Heritage. Soft. Matter.,2006,2:293~303.
    36. S. Grassi, M. Favaro, P. Tomasin, L. Dei, J. Cult Herit.,2009,10 (3),347-355.
    37. Mellor J W. A Comprehensive treatise on inorganic and theoretical chemistry, vol Ⅵ, Silicates. London:Longmans Green and Co.,1925.
    38. Stambolov T. Conservation of stone, pp119~124 in In Conservation of new stone and wood objects. New York Conference, June 1970.(the international institute for conservation of historic and artistic works, London.
    39. Shore B G. Stones of Britain (Leonard Itill Books, London,1957)
    40. Preservation and conservation, principles and practices. Washington D.C.:The preservation press,1976,143~165.
    41. Riedere J. Further progress in German stone conservation. In the proceedings of the international symposium. Bologna,1975,369~385.
    42. Wihr R, Steeken G. On the preservation of monuments and works of art with silicates,71~75.
    43. Grassi S, Favaro M, Tomasin P, Dei L. Nanocontainer aqueous systems for removing polymeric materials from marble surfaces:A new and promising tool in cultural heritage conservation. J. Cult Herit.,2009,10(3):347~355.
    44. Rodorico Giorgi, Luigi Dei, Piero Baglioni. A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol. Stud. Conserv,2000,45(3):154~161
    45. Tiano P, Cantisani E, Sutherland I, Paget J M. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit.,2006,7(1):49~55.
    46. E. Ciliberto, G. G. Condorelli, E. Viscuso, S. La Delfa. Nanoparticles of Sr(OH)2:synthesis in homogeneous phase at low temperature and application for cultural heritage artifacts. Appl. Phys. A.,2008,92(1):137~141.
    47.张秉坚,尹海燕,陈德余.一种生物无机材料—石质古迹上天然草酸钙保护膜的研究.无机材料学,2001,16(4):750-756.
    48. Wang Y P, Zhu L. Biomimetic synthesis technology and its application researches. Chem. Ind. Eng.,2001,15(5):272~278.
    49. Garty J, Kunin P, Delarea J, Weiner S. Calcium oxalate and sulphate containing structures on the thallial surface of the lichen Ramalina lacera:response to polluted air and simulated acid rain. Plant. Cell. Environ.,2002,25(12):1591~1604.
    50. Alvarez de Buergo M, Fort Gonzalez R. Protective patinas applied on stony facades of historical buildings in the past. Constr. Build. Mater.,2003,17(2):83~89.
    51. Martin Gil J, Martin Gil F J, del Carmen Ramos Sanchez M, Pablo Martin Ramos P. The Orange Brown Patina of Salisbury Cathedral (West Porch) Surfaces:Evidence of its ManMade Origin. Environ. Sci. Pollut. Res.,2005,12 (5):285~289.
    52. Maravelaki Kalaitzaki P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens):characterization and origin. Anal. Chim. Acta.,2005, 532(2):187~198.
    53.刘强,张秉坚.石质文物表面生物矿化保护材料的仿生制备.化学学报,2006,64(15):1601-1605.
    54. Vazquez Calvo C, Alvarez de Buergo M, Fort R, Varas M J. Characterization of patinas by means of microscopic techniques. Mater. Charact.,2007,58(11~12):1119~1132.
    55. Doherty B, Pamplona M, Miliani C, Matteini M, Sgamellotti A, Brunetti B. Durability of the artificial calcium oxalate protective on two Florentine monuments. J. Cult. Herit.,2007,8(2): 186~192.
    56. Jimenez Lopez C, Rodriguez Navarro C, Pinar G., Carrillo Rosu F J, Rodriguez Gallegob M, Gonzalez Munoz M T. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere,2007,68 (10):1929~1936.
    57. Zamarreno DV, Inkpen R, May E. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl. Environ. Microb.,2009,75(18),5981~5990.
    58. Rodriguez Navarro C, Rodriguez Gallego M, Chekroun K B, Maria Teresa Gonzalez Munoz M T. Conservation of Ornamental Stone by Myxococcus xanthusInduced Carbonate Biomineralization. Appl. Environ. Microbiol.,2003,69 (4):2182~2193.
    59. Jimenez Lopez C, Jroundi F, Pascolini C, Rodriguez Navarro C, Pinar Larrubia G, Rodriguez Gallego M, Gonzalez Munoz M T. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int. Biodeterior. Biodegrad.,2008,62(4):352~36.
    60.孙延忠,陈青.石质文物加固中细菌诱导碳酸钙生成的研究孙延忠文物保护与考古科学2009,21(3):29-32.
    61.李沛豪,屈文俊,徐德强,肖义平.大理石历史建筑遗产的细菌修复加固.华南理工大学学报(自然科学版),2009,37(9):36-41.
    62. Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C. Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl. Environ. Microbiol.,2007,73(17): 5671~5675.
    63. Rodriguez-Navarro C, Doehne E, Eduardo S. Influencing Crystallization Damage in Porous Materials through the Use of Surfactants:Experimental Results Using Sodium Dodecyl Sulfate and Cetyldimethylbenzylammonium Chloride. Langmuir,2000,16 (3):947~954.
    64. Vallet J M, Gosselin C, Bromblet P, Rolland O, Verges-Belmin V, Kloppmann W. Origin of salts in stone monument degradation using sulphur and oxygen isotopes:First results of the Bourges cathedral (France). J. Geochem. Explor.2006,88 (1~3):358~362.
    65. Zeng Y Y, Zhang B J, Liang X L. A case study and mechanism investigation of typical mortars used on ancient architecture in China. Thermochim. Acta.,2008,473(1~2):1~6.
    66. Giorgi R, Chelazzi D, Baglioni P. Nanoparticles of Calcium Hydroxide for Wood Conservation. The Deacidification of the Vasa Warship. Langmuir,2005,21(23):10743~10748.
    67. Gabrielli G, Cantale F, Guarini G G T. Adsorption of amphiphilic mixtures and stabilization of suspensions of hydrophobic solids in water. Colloid. Surfaces. A.,1996,119(2~3):163~174.
    68. Standard test methods for measuring adhesion by tape test (ASTM D335902), ASTM International,10 August,2002.
    69. Standard for Test Method of Performance on Building Mortar (JGJ/T702009).
    70. Deutsches Institut fuer Normung, DIN 52615. Shrinkage of mortars, edition 198508. Berlin: BEUTH,1985.
    71. Giorgi R, Dei L, Ceccato M, Schettino C, Baglioni P. Nanotechnologies for Conservation of Cultural Heritage:Paper and Canvas Deacidification. Langmuir.2002,18(21):8198~8203.
    72. Price C A. A further appraisal of the "lime technique" for limestone consolidation, using a radioactive tracer. Stud. Conserv.,1988,33:178~186.
    73. Landis W J, Song MJ, Leith A. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by highvoltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol.,1993,110(1):39~54.
    74. Kumar E, Xie J, Chittur K, Riley C. Transformation of modified brushite to hydroxyapatite in aqueous solution:effects of potassium substitution. Biomaterials,1999,20(15):1389~1399.
    75. Daniele V, Taglieri G, Quaresima R. The nanolimes in Cultural Heritage conservation: Characterisation and analysis of the carbonatation process. J. Cult. Herit.,2008,9(3):294~301.
    76. Ratner M, Ni B D. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution. Biomaterials,2003,24(23):4323~4331.
    77. Hafez I T, Paraskeva C A, Toliza A, Klepetsanis P G, Koutsoukos PG, Gustavsen (?), (?)stvold T, Payatakes A C. Calcium Phosphate Overgrowth on Silicate Sand. Cryst. Growth. Des.,2006,6(3), 675~683.
    78. Moreno F, Vilela S A G, Antunes A S, Alves C A S. Capillaryrising salt pollution and granitic stone erosive decay in the parish church of Torre de Moncorvo (NE Portugal) implications for conservation strategy. J. Cult. Herit.,2006,7(1):56~57.
    79. Mosquera M J. de los Santos D M, Montes A, ValdezCastro L. New nanomaterials for consolidating stone. Langmuir.2008,24 (6):2772~2778.
    80. Yang, F W, Zhang B Z, Liu Y, Wei G F, Zhang H. Biomimetic conservation of historic stones by bone-like apatite. New Journal of Chemistry,2010,(in press)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700