壁虎墙面和虎纹捕鸟蛛地面运动步态与反力的测试与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大壁虎能够在全空间自由运动,而蜘蛛可以在崎岖的地面稳定运动。通过深入了解它们爬行过程中脚掌与不同表面之间接触力的变化规律,研究其运动的步态特征,可以为步足机器人的设计和制造提供依据和有益启示,同时加深对生物运动的理解。
     本文采用以三维力传感器为核心的动物运动力测试系统,测试壁虎在垂直墙面运动过程中(向上、向下、横向运动),脚掌与表面接触时产生的三维接触力,同时采用高速摄像系统同步记录壁虎的运动过程。另外分别运用高速摄像系统和力学测试平台测试虎纹捕鸟蛛的运动步态及反力。
     壁虎运动速度主要依靠步频的提高来提高运动速度,随着速度的提高支撑时间线性降低,向上和向下爬行时脚掌的负荷因素也线性降低,横向爬行时负荷因素与速度的线性关系不显著,粘附时间和脱附时间与速度没有线性关系。
     壁虎在向上和向下运动中,在身体上方的脚掌受负法向力作用将身体拉向墙面,下方脚掌法向力方向在运动中发生变化;侧向力指向身体外侧。横向运动中,身体上方的脚掌受到侧向力大于下方脚掌的侧向力;前脚驱动力的方向在运动中发生变化,后脚的驱动力单向;在法向力方面,身体上方的脚掌受负法向力作用,将身体拉向墙面,下方脚掌受正法向力作用。墙面运动中,上方脚掌的牵引力是保证运动稳定的关键。
     虎纹捕鸟蛛运动速度的增加主要依靠步频的线性提高来实现;运动稳定性优于昆虫;在运动中其质心的速度和高度周期波动,步足替换状态下质心的高度和速度均较高,稳定运动状态下质心的高度和速度均较低。蜘蛛的1步足主要起缓冲的作用;2步足和3步足主要是支撑身体,并辅助驱动身体;蜘蛛前进的驱动力主要由4步足提供;侧向力均指向身体中线;蜘蛛各步足运动中的作用与四足爬行动物相比更类似于六足爬行姿态动物。
It is well known that the Gekko Gecko has the ability of free running in three-dimensional space, while the spider is good at crawling in uneven ground. It’s useful for the design of the climbing robot by studying their gait character and contact force while running on the different surfaces.
     The research objects in this paper are locomotion of Gecko on the vertical surface and the Ornithoctonus huwena on the level surface. The regularity of surface reaction force was studied by the animal reaction force measurement system which is mainly composed by three-dimensional force sensor array. Meanwhile the locomotion of gecko running upward, downward and sidelong on the vertical surface was recorded synchronously by the high speed camera. The research method was used to test the gait and reaction force of the Gecko and the Ornithoctonus huwena as well. The measurement of gait and reaction force was separate.
     The velocity of the Gecko is mainly determined by the stride frequency, the stance period and the duty factor would linear decrease as the velocity increased when running up and down. There are no significant linear relationships between the velocity and duty factor when running sidelong, and the attachment and detachment time as well.
     In the locomotion of upward and downward, the fluctuant Gecko body movement was drived by the effect of the fore-aft force and gravity. The normal reaction force is different between the upper and the below pads, the normal force of the upper pads pulled toward to the wall while below pads pushed away from the vertical surface. In the locomotion of sidelong, the lateral forces were made to against the gravity, the value of the upper pads are greater than the below pads. The normal force of the upper pads pull toward, and it reverse in the below pads. The direction of the forefeet fore-aft force changes in the locomotion while it goes constant in the hind feet. To sum up, the key factor for stable and flexible movement is the force of the upper pads.
     The velocity of the Ornithoctonus huwena is also determined by the stride frequency, it runs more stable than other insects. Moving on the level surface, the locomotion includes two stages: moving stable and exchanging the functional feet. The velocity and the height of mass center change periodic. In the exchanging stage, the velocity and height of mass center is much higher than that in the moving stage. Foot 1 & foot 3 at one side and foot 2 & foot 4 at the other side support and drive spider’s body as a group. And the two groups work alternately. The increase velocity of is mainly achieved by the increase of stride frequency. The velocity is near with stride the frequency. The velocity and height of mass center of spiders are fluctuating during movement. The movement stability of Ornithoctonus huwena is better than insects. The velocity and height of mass center are high when spiders are in feet alternation, but they are low when spiders are in steady state of movement.
引文
[1] Dickinson M H, Farley C T, Full R J et al. How animals move: an integrative view[J]. Science, 2000,4,288:100-106.
    [2]张秀丽,郑浩峻,陈恳等.机器人仿生学研究综述[J] .机器人,2002,24(2):188-192.
    [3]吉爱红,戴振东,周来水.仿生机器人的研究进展[J] .机器人,2005,27(3):284-288.
    [4] Full R J, Autumn K,Chung J I et al.Rapid negotiation of rough terrain by death-head cockroach[J] .American zoologist,1998,38(5):81.
    [5]王伟民,杨海兴,刘延柱.马的步态实验和分析[J].上海交通大学学报,1991,2,25(2);72-83.
    [6] Stephen M R, Michael J D.Sprawling locomotion in the lizard Sceloporus clarkII: quantitative kinematics of a walking trot. J.Exp.Biol ,1996,11,200:753-765.
    [7] Stephen M R, Jason A E.Locomotion in Alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to erect paradigm[J] . J. Exp. Biol. 1998,8,201:2559-2574.
    [8] Manter J T.The Dynamics Quadrupedal Walking[J].J.Exp.Biol.1938,15:522-540.
    [9] Takanobu H, Motegi S, Sanada K et al.Spider Based Octopod[C].日本机器人学会学术会议,2004,(22):1F21.
    [10]杜永辉,黄真.昆虫腿机构参数测量[J] .机械设计,1996,1:24-26.
    [11]杜永辉,黄真.昆虫类步行器整体多环机构模型[J] .东北重型机械学院学报,1996,4:301-304.
    [12]赵铁石,赵永生,李晨霞等.海蟹足系仿生机构模型及位置反解[J] .东北重型机械学院学报,1996,1:10-14.
    [13]王沫楠.仿生机器蟹机构设计及结构参数优化[J] .机械与电子,2004,8:37-40.
    [14] Full R J, Michael S T.Mechanics of six-legged runners[J].J.Exp.Biol,1990,148:129-146.
    [15] Full R J, Michael S T.Mechanics of a rapid running insect:two-,four- and six-legged locomotion[J].J.Exp.Biol,1991,156:215-231.
    [16] Ting L H, Blickhan R, Full R J . Dynamic and static stability in hexahedral runners[J].J.Exp.Biol,1994,197:251-269.
    [17] Full R J, Yamauchi A, Jindrich L.Maximum single force production:cockroaches righting on photo elastic gealatin[J].J.Exp.Biol,1995,198:2441-2452.
    [18] Devin L J, Full R J . Many-legged maneuverability:dynamics of turning in hexapods[J].J.Exp.Biol,1999,202:1603-1623.
    [19] Bartsch M S, Federle W, Full R J et al.Small insect measurements using a custom MEMS force sensor[C].The 12th International Conference on Solid State Sensors, IEEE,2003:1039-1042.
    [20] Bartsch M S . Micro-machined transducers for insect ground reaction force measurement[D].Doctor dissertation,Stanford University,December,2003.
    [21] Goldman D I,Chen T S, Dudek D M.Dynamics of rapid vertical climbing in cockroaches reveals a template[J].J.Exp.Biol,2006,209:2990-3000.
    [22] Chen J J,Peattie A M,Autumn K,Differential leg function in a sprawled-posture quadrupedal trotter[J].J.Exp.Biol,2006,209:249-259.
    [23] Full R J,Koehl A R,Drag and lift on running insects[J].J.Exp.Biol.1993,176:89-101.
    [24] Jinfrich D L,Full R J.Dynamic stabilization of rapid hexapedal locomotion[J].J.Exp.Biol,2002,205:2803-2823.
    [25] Herreid C F,Full R J,Prawel D A.Energetics of cockroach locomotion[J].J.Exp.Biol,1981,94:189-202.
    [26] Kram R,Wong B , Full R J.Three-dimensional kinematics and limb kinetic energy of running cockroaches[J] .J.Exp.Biol,1997,200:1919-1929.
    [27] Dai Z D,Gorb S N,Schwarz U.Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera,Scarabaeidae)[J] .J.Exp.Biol,2002,205:2479-2488.
    [28]戴振东,于敏,吉爱红等.动物驱动足摩擦学特征研究及仿生设计[J].中国机械工程,2005,16(16):1454-1457.
    [29] Haas F,Gorb S.Evolution of locomotory attachment pads in the Dermaptera (Insecta) [J].Arthropod Structure & Development,2004,33:45-66.
    [30] Ahn A N, Merjer K, Full R J.In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron[J] .J.Exp.Biol,2006,209:3370-3382.
    [31]戴振东,孙久荣.壁虎的运动及仿生研究进展[J] .自然科学进展,2006,16(5):519-523.
    [32]杜世章,陈立侨,刘定震.中国壁虎属Gekko动物系统学研究进展.四川动物,2002,21(3):200-204.
    [33]张正杰.壁虎脚掌3维接触力测试系统研制[硕士学位论文].南京:南京航空航天大学,2007.
    [34]孙希任,许第昌,李增瑜.计算器在压力传感器性能指标计算中的应用.北京:航空工业部第三零一研究所,1987,7-10.
    [35]张于北.从实验看力传感器标定的必要性[J].测试技术学报,1994,8(2):65-68.
    [36] Kuwana Y , Shimoyama I et al . Steering Control of a Mobile Robot Using Insect Antennae.Proceedings of the IEEE IROS’95 conference in Pittsburgh,1995.
    [37]蔡煜东,吴伟,宫家文,等.传感器阵列信号处理的人工神经网络方法.分析测试仪器通讯,1995,1:43-47.
    [38]孙传友,孙晓斌,李胜玉,等.测控电路及装置.北京:北京航空航天大学出版社,2002.
    [39]杨乐平,李海涛,赵勇,等.LabVIEW高级程序设计.北京:清华大学出版社,2002.
    [40] Zaaf A,Damme V R,Herrel A et al.Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko.J.Exp.Biol,2001,204:1233-1246.
    [41] Autumn K,Liang Y A,Hsieh S T et al.Adhesive force of a single gecko foot-hair.Nature,2000,405:681-685.
    [42] Tian Y, Pesika N., Zeng H et al.Adhesion and friction in gecko toe attachment and detachment [J].PNAS, 2006, 103:19320-19325.
    [43] Zhendong Dai, Jiurong Sun, David Yue et al.Morphology and contact mechanics influence adhesive characteristics at Dung Beetle’s bristle and Gecko’s setae [J].Progress in natural science, 2007, 17:1074-1081.
    [44] Autumn K, Sitti M, Liang Y A et al.Evidence for van der waals adhesion in gecko setae [J].PNAS, 2002,99: 12252-12256.
    [45] Cartmill M, Hildebrandt M et al . Climbing in functional vertebrate morphology, pp. 430.Cambridge: The Belknap Press of Harvard University Press.
    [46]丁光,陈振昆.大壁虎(Gekko Gecko)附肢肌的解剖.云南农业大学学报,1995,10(1):12-17.
    [47]蔡雷,崔希云,艾洪滨.中华大蟾蜍脊髓灰质神经元构筑和脊神经的研究.山东师范大学学报(自然科学版),2007,22(3):104-106.
    [48]刘晓燕,戴振东,曾小龙等.大壁虎附肢肌的定量研究.解剖学研究,2005,27(4):292-301.
    [49] Autumn K,Hsieh S T,Dudek D M.Dynamics of geckos running vertically.J.Exp.Biol.2006,209:260-272.
    [50]朱明生,宋大祥.虎纹捕鸟蛛(蜘蛛目:狒蛛科:捕鸟蛛亚科)的分类研究[J].河北大学学报,2000,3,20(1):53-56.
    [51]梁宋平,覃于宾,张东裔等.虎纹捕鸟蛛毒的生物学活性鉴定[J].动物学研究,1993,14(1):60-65.
    [52]费瑞,杨洋,张丽娇等,蜘蛛毒素的研究概况及应用.吉林大学学报(医学版),2004,11,30(6):994-996.
    [53] Land M F.Stepping movements made by jumping spiders during turns mediated by the lateral eyes[J].J. Exp. Biol. , 1971,12,57:15-40.
    [54] Clive B.Spider heart-rates and locomotion[J].J. Comp. Physiol B,1987,5,157:451-460.
    [55] OHNISHI T, ASAKURA T. SICE 2004 Annual Conference, August 4-6, 2004[C], Piscataway. NJ. USA: IEEE, 2005,1999-200.
    [56] Full R J, Yamauchia D L, Jindrich D L.Maximum Single Leg Force Production:Cockroaches Righting on Photo elastic Gelatin, Journal of Experimental Biology, 1995, 198:2441-2452.
    [57]肖世旭.大壁虎的步态实验与分析[硕士学位论文].南京:南京航空航天大学,2006年.
    [58]张正杰,吉爱红,王周义,戴振东.用于壁虎脚掌接触力测试的3维传感器[J] .传感器学报,2007,20(6):1271-1274.
    [59] Cavagna, G. A., Heglund, N. C. and Taylor, C. R.(1977). Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Physiol.233, R243-R261.
    [60]徐小云,颜国正,丁国清.微型六足仿生机器人及其三角步态的研究.光学精密工程,2002,8,10(4):392-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700