热作模具激光仿生耦合修复研究、生产试验及设备制造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模具是现代工业中一种广泛应用于塑料产品和金属产品加工的重要工艺装备,由于生产效率高、产品质量优异和生产成本低廉,在现代经济发展中占有非常重要的地位。模具工业的发展水平已经成为衡量一个国家工业水平和产品制造能力的重要标志之一。我国模具生产的整体水平明显低于发达国家,国内模具精度低、复杂程度低、使用寿命低、生产周期长等不利因素是制约其发展的主要障碍。热作模具服役环境恶劣,在热应力和热应变作用下,极易发生热疲劳失效以及疲劳开裂。热疲劳是热作模具的主要失效形式之一,每年由此造成的损失达数亿至数十亿元,浪费严重。因此,修复失效模具,延长模具使用寿命,降低生产成本,节约资源一直是困扰生产者和研究者的技术难题。针对失效热作模具修复的研究一直在广泛开展,但是,目前关于热疲劳裂纹及开裂修复方法及相关设备开发的系统研究还不多见。因此,采用一种行之有效的方法,对细小热疲劳裂纹及时修复,对开裂等大尺寸裂纹修复后进行强化,使模具寿命提高,具有重要研究价值和经济效益。
     贝壳、植物叶片和蜻蜓翅膀等生物体具有优异的止裂和抗疲劳功能。研究发现他们的结构具有相似特点,即在软质母体上分布有不同形状的硬质单元,两者彼此交替形成软硬相间的耦合结构。通过对这些生物结构的分析、简化和模仿,设计出了适合热作模具裂纹修复及强化的仿生耦合模型。本文的研究目的是将激光修复技术与仿生耦合理论相结合,用于热作模具疲劳裂纹及开裂的修复及强化,改善其抗热疲劳性能,提高模具使用寿命。以疲劳态H13钢为研究对象,利用激光仿生耦合熔凝技术制备了修复止裂单元体,分析了他们的个体特征、耦合形状、分布密度和大小对修复后试样热疲劳性能的影响;在此基础上,采用激光合金化技术强化单元体,进一步提高其止裂和抗疲劳性能,并且探讨了相关机理;研究了激光堆焊修复模具开裂后的仿生耦合强化问题,考察了强化后试样的抗拉强度和热疲劳性能;此外,本研究还制造了一套激光仿生耦合修复系统,用于模具表面热疲劳裂纹的修复,并应用于实际模具的现场试验。结果表明:
     1.依据贝壳、植物叶片和蜻蜓翅膀的耦合结构,提出的修复止裂仿生模型适合热作模具的裂纹修复和强化。在产生微小热疲劳裂纹的H13钢基体上,采用激光熔凝技术制备呈一定形状分布的修复止裂仿生单元体。单元体组织高度细化,主要由马氏体和残余奥氏体组成,平均显微硬度为510~682HV,具有良好强韧性。单元体成形过程中部分裂纹得到愈合,实现修复的目的,成形后的单元体能够阻碍裂纹扩展,裂纹扩展至单元体受阻后,往往会发生偏折甚至停滞,避免了裂纹对基体的进一步破坏,实现止裂的目的。在一定范围内,扩展受限的残余裂纹有利于裂纹扩展驱动力的释放,有利于抗热疲劳性能的提高。
     2.单元体形状、分布密度和大小对修复后试样的热疲劳性能有重要影响。通过对比点状、条纹状和网格状单元体修复试样的抗热疲劳性能发现,网格状单元体能够对裂纹形成“封闭效应”,因而具有最佳的止裂抗疲劳能力。单元体高密度分布有利于裂纹修复比例的提高以及减小残余裂纹的扩展空间。体积较大、强度较高的单元体对裂纹阻滞作用更为显著。热疲劳对单元体组织和力学性能产生不利影响,主要表现为组织粗化,碳化物颗粒逐渐析出,显微硬度下降。当组织变化趋于稳定后,单元体硬度仍明显高于基体,可以作为强化结构继续存在,贡献于试样的抗热疲劳性能。
     3.通过激光合金化Co50和Fe30A自熔性合金粉末改善单元体的化学成分和组织结构,单元体性能进一步提高。其中,Co50合金强化单元体具有最佳的抗氧化性和抗热疲劳性能。
     4.激光堆焊修复大尺寸裂纹后焊缝热影响区是热疲劳裂纹萌生和扩展的敏感区域。分布于焊缝表面的强化单元体能够抵抗远场拉应力作用延缓焊缝开裂,同时阻碍裂纹扩展。激光仿生耦合强化处理能够显著提高焊缝的抗拉强度和抗热疲劳性能。
     5.开发了基于6自由度工业机器人和300W光纤传输激光器的激光仿生耦合柔性加工系统,具备了三维空间加工、参数切换和加工工艺程序化等功能,能够满足实际生产中模具结构多样的修复需求。
     6.对激光熔凝修复参数进行优化,考察了不同参数对单元体尺寸、硬度和表面粗糙度的影响。在本文所选参数范围内,随着平均峰值功率密度的增加,单元体深度增加,硬度下降,表面粗糙度增大;频率的增大或速度的减小造成有效峰值功率密度的增加,单元体深度略有增加,硬度下降,表面粗糙度下降。结合单元体深度、平均硬度和表面粗糙度规划出了适合制备性能优异单元体的参数选择图。
     7.修复了H13钢铝压铸热作模具表面的热疲劳裂纹。实际生产验证表明,修复止裂单元体在修复裂纹的同时有效阻碍了裂纹的扩展,模具寿命得到提高。
Moulds are important equipments and have been widely applied in plastic products and metalproducts in modern industry. Owing to the high efficiency, superior product quality and lower costof production, moulds have occupied an extremely important position in the development ofmodern economic. The level of molding tool industry has now already become one of the importantsigns of national industrial level and product manufacturing capability. The overall level ofmanufacturing moulds in our country falls far behind the advanced countries due to someunfavorable factors such as low accuracy, low complexity, low service life and long productioncycle, which limit its development. Hot working dies works in very bad conditions such as thermalstress and thermal strain which usually induces thermal fatigue failure and cracking. Because ofthermal fatigue failure, which is one of most important failure modes, hot working die steels inChina waste RMB of about several billion yuan and produce a great loss. Therefore, repairingfailure dies, prolonging their service lives, reducing costs and saving resources have beenlongstanding technical problems to producers and researchers. Researchers had been dedicating tothe studies of repairing thermal fatigue failure dies.Therefore,taking an efficient method to repairtiny thermal fatigue cracks in time and strengthen the repaired cracking have important academicvalues and good economic benefits.
     Some organisms such as shell, plant leaf and dragonfly wing have superior function ofresisting fatigue and cracking. It was found that they have similar structures, that is, there are hardunits with different shapes distributing in the soft base materials. The hard units and soft basematerials form an alternate soft and hard coupling structure. Biomimetic coupling modes weredesigned for the repairing and strengthening of thermal fatigue cracks by analyzing, simplifying andimitating these structures. The paper is aiming to repair failure dies for improving the thermalfatigue resistance and service life by combining laser repair technology and biomimetic couplingtheory. In this paper, the crack repairing and arresting units were fabricated by biomimetic laserremelting, and then the influences of their individual characteristics, distribution shape, size anddistribution density on the thermal fatigue resistance of repaired samples were analyzed on fatigueH13die steel. On that basis, the study of strengthening units fabricated by laser alloying wasconducted to improving the ability of resisting thermal and cracking, moreover the relativemechanism of action was discussed. The cracking of dies was repaired by laser repair with wire andthen the weld was strengthened by laser biomimetic coupling treatment. The tensile strength and thermal fatigue resistance of samples after repair and strengthening were investigated. In addition, alaser biomimetic coupling repair system was manufactured for the repair of thermal fatigue crackson the actual die and the production testing was carried out. The results indicated that:
     1. The biomimetic models of crack repairing and arresting constructed from couplingstructure of shell, plant leaf and dragonfly wing are accepted for the repair and strengthening of hotworking die. Biomimetic crack repairing and arresting units were fabricated on the fatigue H13diesteel with tiny thermal fatigue cracks. The units possess high strength and toughness because ofmicrostructure transformation of martensite and retained austenite as well as grain refinement. Theaverage microhardness of units is510~682HV. In the process of units formation, partial crackswere repaired. The formed units are able to resist the propagation of cracks and protect the basematerials from further destroy. When cracks propagate and encounter biomimetic units, they dipdeflection and even stop. The residual cracks on the substrate have a beneficial effect on releasingthe driving force of crack propagation in a specific range which improves the thermal fatigueresistance of samples.
     2. The distribution shape, distribution density and size of units have important effects on thethermal fatigue resistance of repaired samples. In this paper, it was found that, by contrasting thethermal fatigue resistance of repaired samples with spot unit, stration unit and lattice unit, the unitsdistributing in the substrate with lattice shape could generate “closed effect” and thus possess thebest ability of resisting thermal and cracking. The distribution of units with high density means thatmore cracks are repaired and the propagation space of residual cracks are restrained; units withlarge size and high strength have better blocking ability. Thermal fatigue process causes the declineof microstructure and mechanical property of units which manifests as grain coursing, carbideparticles precipitation and hardness decrease. When the microstructure became stable, the hardnessof units was still higher than that of the base materials and the units can still act as strengtheningstructure to contribute to the improvement of thermal fatigue resistance.
     3. The microstructure and chemical components of units strengthened by laser alloying withself-fluxing alloy powders (Co50and Fe30A) are further enhanced. And of all alloying samples, theones treated by Co50has the best oxidation resistance and thermal fatigue resistance.
     4. When the cracking of a die was repaired by laser welding with wire, the weld heat affectedzone is always a risk area for thermal fatigue cracks initiation and propagation. The tensile strengthand thermal fatigue resistance of the weld strengthened by laser biomimetic coupling treatment canbe significantly improved. The strengthening units distributing on the weld surface are able to resisttensile stress in the far field and delay the cracking of weld, in the meantime, the cracks startingfrom heat affected zone can be hindered by them.
     5. On the basis of industrial robots with6degrees of freedom and the300W Nd:YAG laser with optical fiber transmission, a set of laser biomimetic coupling flexible manufacture system wasdeveloped which can be used for the repair of a complex die. The system has functions ofprocessing in three-dimensional space, switching parameters and programmed technology.
     6. The optimization of laser remelting parameters was conducted. Effects of laser processingparameters on the size, hardness and surface roughness of units have been investigated. In the rangeof this paper, there is a steep increase in both the depth and surface roughness of units and adecrease in microhardness when the average peak power density uplifts; The increased effectivepeak power density caused by raising pulse frequency or decreasing scanning speed leads to a slightincrease in unit depth and a gradual drop in microhardness and surface roughness. Based on areasonable range of unit depth, microhardness and surface roughness, a parameter selection map forlaser biomimetic coupling repair was established.
     7. Actual failure dies for aluminum casting production were repaired and the manufacturingverification test demonstrated the effectiveness of the laser biomimetic coupling repair units inrepairing thermal fatigue cracks of a casting die and resisting their propagation as well as improvingthe die service life.
引文
[1]王忠洲.国内外模具发展概况[J].四川工业学院学报,1992,2(11):106-112.
    [2]洪慎章.现代模具技术的现状及发展趋势[J].航空制造技术,2006,6:30-32.
    [3]张建卿,郝彦琴.试论现代模具制造的特点及其发展方向[J].现代制造技术与装备,2008,5:73-74.
    [4]康爱军,马党参.模具钢与热处理[J].模具制造,2013,12:72-76.
    [5]蒋红超.模具行业信息[J].模具工业,2013,39(08):80-83.
    [6]黄荣学,范洪远.我国模具工业发展概述及展望[J].机械工程师,2007,5:13-15.
    [7]白莉.废旧模具堆焊修复技术研究展望[J].热加工工艺,2013,42(01):218-219.
    [8]郭小燕,张津,张叶成,等.表面技术在模具修复中的应用进展[J].表面技术,2008,36(6):70-73.
    [9]高殿奎,付宇明.3Cr2W8V热疲劳裂纹的止裂与修复[J].中国表面工程,2001,14(4):42-44.
    [10] LUMLEY R, O’DONNELL R, GUNASEGARAM D, et al. Heat treatment of high-pressuredie castings[J]. Metall Mater TransA,2007,38(10):2564-2574.
    [11] KLOB AR D, KOSEC L, KOSEC B, et al. Thermo fatigue cracking of die casting dies[J].Eng Fail Anal,2012,20:43-53.
    [12] SRIVASTAVA A, JOSHI V, SHIVPURI R. Computer modeling and prediction of thermalfatigue cracking in die-casting tooling[J]. Wear,2004,256:38-43.
    [13] PERSSON A, HOGMARK S, BERGSTR M J. Temperature profiles and conditions forthermal fatigue cracking in brass die casting dies[J]. J Mater Process Technol,2004,152(2):228-236.
    [14] IVANOV V V, FERGUSON W G, PAINE I R. Study of thermal fatigue of H13die steel withvarious surface treatments[J]. Int J Mod Phys B,2003,17(08,09):1671-1677.
    [15] MUHI M, TU EK J, KOSEL F, et al. Thermal fatigue cracking of die-casting dies[J].Metalurgija,2010,49(1):9-12.
    [16]夏鹏成,陈蕴博,葛学元,等.热作模具钢热疲劳性能的研究现状与发展趋势[J].金属热处理,2009,33(12):1-6.
    [17]罗洪军,黄小鸥,徐林.铝合金压铸模具的焊接修复[J].新技术新工艺,1997,1:15-17.
    [18]黄春峰.国外新型热作模具钢及其热处理工艺[J].航空精密制造技术,2004,40(03):16-19.
    [19]李勇,左秀荣,陈蕴博,等.国内外热作模具钢的研究进展[J].特殊钢,2010,31(03):20-23.
    [20] NORSTR M L, SVENSSON M, HRBERG N. Thermal-fatigue behaviour of hot-worktool steels[J]. Metals Technology,1981,8(1):376-381.
    [21] KRISHNADEV M R, JAIN S C. Improved productivity through failure analysis: Casestudies in precision forging of aerospace components[J]. Eng Fail Anal,2007,14(6):1053-1064.
    [22]张洪奎,刘笑莲.国内热作模具钢发展概况[J].热处理,2003,18(2):52-58.
    [23]刘俊英,蒋伯平,刘金海.热作模具钢的发展与应用[J].工程机械,2006,6:48-51+89.
    [24]郝松涛.热作模具钢及压铸模具钢的发展和应用[J].机械管理开发,2003,2:58-59+62-63.
    [25]王鹏,张杰江,胡亚民. H13钢的应用现状[J].模具制造,2008,12:1-7.
    [26]于静. H13热作模具钢的应用[J].特殊钢,1993,14(05):44-46.
    [27]潘晓华,朱祖昌. H13热作模具钢的化学成分及其改进和发展的研究[J].模具制造,2006,4:78-85.
    [28] BAHRAMI A, ANIJDAN S H M, GOLOZAR M A, et al. Effects of conventional heattreatment on wear resistance ofAISI H13tool steel[J]. Wear,2005,258:846-851.
    [29]张家涛,钟毅,孙淑红,等.压铸用H13热作模具钢热处理工艺研究[J].特种铸造及有色合金,2009,29(3):237-239.
    [30]隗功益.表面改性技术在H13钢上的应用[J].表面技术,2007,36(06):77-80.
    [31] LEE J H, JANG J H, JOO B D, et al. Laser surface hardening of AISI H13tool steel[J].Trans Nonferrous Met Soc China,2009,19(4):917-920.
    [32] ZHANG Z H, ZHOU H, REN L Q, et al. Tensile property of H13die steel withconvex-shaped biomimetic surface[J]. Appl Surf Sci,2007,253(22):8939-8944.
    [33]曹晓卿,贺海燕,周珊珊,等. H13钢表面激光熔覆Ni60A合金组织及性能分析[J].太原理工大学学报,2010,41(4):360-363.
    [34]刘昌云,蔡云.热作模具钢的选用及展望[J].铸造技术,2013,34(02):161-163.
    [35]李月恩,赵军,王维.热作模具表面失效与模具寿命关系研究[J].锻压技术,2009,34(2):91-93.
    [36]杨宗田.模具失效的原因及预防措施[J].模具制造,2004,6:56-58.
    [37]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.
    [38] ZHU Y, SCHWAM D, WALLACE J F, et al. Evaluation of soldering, washout and thermalfatigue resistance of advanced metal materials for aluminum die-casting dies[J]. Mater SciEng A,2004,379(1-2):420-431.
    [39]宁志良,周彼德.压铸模具失效分析[J].哈尔滨理工大学学报,2001,6(5):117-120.
    [40]王荣,吴晓春,闵永安.铝合金压铸模的焊合熔损现象及其预防措施[J].金属热处理,2005,30(2):68-72.
    [41]林占光.谈模具失效的原因及其预防措施[J].莆田学院学报,2006,13(02):69-71+76.
    [42]宋志坤,刘伟.金属材料热疲劳寿命的定量研究方法[J].机械工程材料,1999,23(5):4-5.
    [43] COFFIN L R, SPERA D A, MOWBRAY D F. Thermal Fatigue of Materials andComponents[M]. Philadelphia: ASTM STP612, American Society for Testing and Materials,1976.
    [44]李健.热处理和显微组织因素对热作模具钢热疲劳抗力的影响[J].安徽工学院学报,1982,(3,4):1-9.
    [45] BOAS W, HONEYCOMBE R. Thermal fatigue of metals[J]. Nature,1944,153:494-495.
    [46] MILLENSON M, MANSON S. Investigation of Rim Cracking in Turbine Wheels withWelded Blades[M]. Washington: National Advisory Committee for Aeronautics,1947.
    [47] Gillis P P. Manson-coffin fatigue[J]. Acta Metallurgica,1966,14(12):1673-1676.
    [48] COFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Trans.ASME,1954,76:931-950.
    [49] IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. JAppl Mech,1957,24:361-364.
    [50]张志辉.激光仿生耦合处理热作模具的热疲劳性能研究[D].长春:吉林大学,2007.
    [51]史密斯,顾梅澄.疲劳裂纹扩展:30年来的进展[M].西安:西安交通大学出版社,1988.
    [52] SURESH S. Fatigue of materials[M]. Cambridge: Cambridge university press,1998.
    [53] UDOUCHI T. W ada T. Thermal Effect on Low-Cycle Fatigue Strength of Steels[C]. Prce.International Conference on Thermal Stress and Thermal Fatigue. Gloucestershire,Sevenoaks, Kent, England,1971.
    [54] MUHIC M, KOSEL F, PUKSIC A, et al. A new approach to monitoring thermal fatiguecracks in die casting moulds[J]. Int J Mater Res,2011,102(1):69-75.
    [55] DUDEK R, AUERSWALD E. Thermal Fatigue Analysis[M]. London: Springer,2011.
    [56] KOSTER A, DIB M, R MY L, et al. Shielding effects in multiple fatigue cracks: anexperimental simulation of thermal fatigue effects, in stainless steel304[C]. ECF17, Brno2008,2013.
    [57]闫明,王世杰,孙淑霞,等.热疲劳裂纹网的屏蔽规律及主裂纹应力强度因子的计算方法[J].机械工程学报,2009,45(12):279-283.
    [58]刘玉凤,夏春晶,闫明,等.热疲劳裂纹张开过程的有限元模拟[J].失效分析与预防,2008,3(1):43-47.
    [59]吴晓春,许珞萍.模具钢热疲劳裂纹的计算机辅助评定[J].上海金属,2001,23(6):1-5.
    [60]于辉,杜凤山,李亮.热疲劳裂纹扩展的数值模拟[J].重型机械,2004,5:50-52.
    [61]徐晓,吴晓春.热作模具钢热疲劳损伤因子的研究[J].上海金属,2003,25(2):1-5.
    [62]陈京生.3Cr2W8V热作模具钢的热处理现状[J].模具工业,1992,1:53-56.
    [63]梁洪达,崔崑,何向山,等.合金元素对热作模具钢4Cr3Mo2NiVNb (HD)热疲劳性能的影响[J].机械工程材料,1994,18(5):3l-32.
    [64]张艳琴.影响模具寿命的相关因素及改进措施探讨[J].内江科技,2013,34(6):101-106.
    [65]赵柏森.热作模具钢特性及焊接修复应用现状[J].热加工工艺,2013,42(17):9-12.
    [66]胡志刚.热作模具材料的进展[J].甘肃冶金,2000,3:18-20.
    [67]俞德刚.钢的强韧化理论与设计[M].上海:上海交通大学出版社,1990.
    [68]胡心彬,李麟,吴晓春.微量Nb对H13钢性能的影响[J].金属热处理,2004,29(8):13-16.
    [69]郭洪飞,郝新.稀土La对3Cr2W8V热作模具钢组织和性能的影响[J].铸造技术,2007,27(12):1338-1341.
    [70]陈列,佐辉,苗红生,等.3Cr2W8V热作模具钢的稀土合金处理[J].特殊钢,2006,26(5):51-53.
    [71]贾萍.稀土对35Cr3Mo3W2V热作模具钢组织性能及寿命的影响[J].金属热处理,1985,9:13-18.
    [72]兰杰,翟春泉. RE对铸造H13钢凝固组织及冲击韧性的影响[J].钢铁,2000,35(10):48-50.
    [73]李士战,王雷刚,黄瑶.稀土元素在H13热作模具钢表面强化中的应用综述[J].稀土,2008,28(6):88-91.
    [74]朱祖昌,王琦,王丽莲,等.热作模具钢H13的显微组织分析[J].热处理,2002,17(02):21-24.
    [75]张文华.材质和热处理对模具热疲劳性能的影响[J].中国建材装备,1999,2:26-28.
    [76]樊爱民,黄国钦,章瀚,等.热处理对热作模具钢热疲劳性能的影响[J].兵器材料科学与工程,1992,15(11):31-36.
    [77]王良平,吴晓春.影响奥氏体热作模具钢性能的因素[J].钢铁,2008,43(11):78-81.
    [78] HANLON T. Grain size effects on the fatigue response of nanocrystalline metals[J]. ScrMater,2003,49(7):675-680.
    [79]李代忠.钢中非金属夹杂物[M].北京:科学出版社,1983:203-207.
    [80]余宗森,褚幼义,贺信莱,等.钢中稀土[M],北京:冶金工业出版社,1982.
    [81] KIESSLING R. Non-metallic inclusions in steel[M], London: Met. Soc.,1978.
    [82]李熙章,施占华,肖中义.显微组织对模具钢热疲劳性能的影响[J].机械工程材料,1993,17(1):40-42.
    [83] PERSSON A. Simulation and evaluation of thermal fatigue cracking of hot work toolsteels[J]. Int J Fatigue,2004,26(10):1095-1107.
    [84]何世禹,冯晓曾,刘北兴,等.五种热作模具钢热疲劳性能的研究[J].机械工程材料,1985,9(3):41-44.
    [85]兰杰,贺俊杰,丁文江.铝压铸模具的失效形式及材料进展[J].机械工程材料,1999,23(3):38-41.
    [86] CAIA Y, HALIM F S, LI G, et al. Hot Stamping Simulation and Austenite DecompositionModeling of an Automobile Cross Member[J]. Procedia Engineering,2011,15:4902-4907.
    [87]李健,束德林,郭新成.钨系热作模具钢热疲劳特性的研究[J].安徽工学院学报,1988,7(2):21-31.
    [88]平修二,郭廷玮,李安定.热应力与热疲劳[M].北京:国防工业出版社,1984.
    [89]许珞萍,吴晓春,邵光杰,等.4Cr5MoSiV1,8407钢的热疲劳性能[J].材料工程,2001,2:3-7.
    [90] TANG W, WU X, MIN Y, et al. Effect of Microstructural Homogeneity on Mechanical andThermal Fatigue Behavior of a Hot-Work Tool Steel[J]. Proceedings of the6th InternationalTooling Conferece,2002:755-765.
    [91]冯晓曾,刘剑虹.3Cr2W8V,4Cr5MoSiVl钢热疲劳机理及热疲劳抗力的差异[J].安徽工学院学报,1988,7(2):1-9.
    [92] SJ STR M J, BERGSTR M J. Thermal fatigue testing of chromium martensitic hot-worktool steel after different austenitizing treatments[J]. J Mater Process Technol,2004,153-154:1089-1096.
    [93] MELLOULI D, HADDAR N, K STER A, et al. Thermal fatigue failure of brass die-castingdies[J]. Eng Fail Anal,2012,20:137-146.
    [94] MIN Y A, WU X C, WANG R, et al. Prediction and Analysis on Oxidation of H13Hot WorkSteel[J]. J Iron Steel Res Int,2006,13(1):44-49.
    [95]金向云.3Cr2W8V和H13钢热疲劳抗力的差异[J].模具工业,1990,9:48-49.
    [96]李国彬,李香芝.4Cr2NiMoV和5CrMnMo钢热疲劳裂纹的萌生[J].机械工程材料,1998,22(6):36-38.
    [97]李国彬,凌超,李香芝.4Cr5MoSiV1钢和3Cr2W8V钢热疲劳寿命的研究[J].钢铁,1997,32(4):51-55.
    [98]陈建亭,吴晓春,闵永安,等. SDH2与8407钢热疲劳性能的对比研究[J].材料热处理学报,2007,28(1):72-76.
    [99]刘剑虹,冯晓曾,张德福.利用扫描电镜动态研究3Cr2W8V钢热疲劳裂纹的萌生[J].安徽工学院学报,1988,7(2):45-50.
    [100]何世禹,李瑛,刘剑虹.5CrMnMo钢的热疲劳裂纹研究[J].金属学报,1990,26(4):292-295.
    [101]刘剑虹,何世禹,姚枚.3Cr2W8V钢热疲劳裂纹长大方式的原位观察[J].金属学报,1992,28(12):527-529.
    [102] SUSMEL L. The Theory of Critical Distances: Applications in Fatigue, Fracture of Nanoand Engineering Materials and Structures[M]. London: Springer,2006:1101-1102.
    [103]李国彬,李香芝.40Cr2NiMoV热作模具钢热疲劳裂纹扩展的研究[J].河北工学院学报,1995,24(4):91-95.
    [104]宁志良,武运启.压铸模具钢H13热疲劳裂纹扩展规律的试验研究[J].哈尔滨理工大学学报,1999,4(4):77-79.
    [105] HOCHANADEL P, EDWARDS G, MAGUIRE M, et al. The effect of microstructure on thethermal fatigue resistance of investment cast and wrought AISI H13hot work die steel[C].Transactions of the18th International Die Casting Congress and Exposition, Indianapolis,1995.
    [106] WOODFORD D, MOWBRAY D. Effect of material characteristics and test variables onthermal fatigue of cast superalloys[J]. Materials Science and Engineering,1974,16(1):5-43.
    [107] KCHAOU M, ELLEUCH R, DESPLANQUES Y, et al. Failure mechanisms of H13die onrelation to the forging process–A case study of brass gas valves[J]. Eng Fail Anal,2010,17(2):403-415.
    [108]马向东,雷雨,刘睿.激光熔覆合金技术在模具修复中的应用[J].润滑与密封,2010,35(11):98-101.
    [109]裴海,杜万才,温强.热喷涂,热喷焊技术在设备维修中的应用[J].机械工程师,1995,2:35-36.
    [110]薜红伟,薜家伟.电刷镀修复模具型腔局部缺陷[J].模具工业,1989,1:37-40.
    [111]梁延德.模具的电刷镀修复技术[J].电刷镀技术,1996,4:18-20.
    [112]杨成贞,舒邦全.用电火花强化修复大型模具[J].现代制造工程,1990,6:23+44.
    [113]张蓉,杨湘红.用电火花强化工艺修复模具磨损表面[J].模具制造,2003,3:49-50+60.
    [114]李亚江,张永喜,王娟.焊接修复技术[M].北京:化学工业出版社,2005.
    [115]王怀建,伍光凤.5CrMnMo热作模具的堆焊修复研究[J].现代制造工程,2007,10:84-87.
    [116]孙杰.5CrNiMo锤锻模具补焊工艺方法[J].制造技术与机床,2009,3:144-146.
    [117]王国平,陶余德. H13钢模具的焊接修复[J].焊接技术,1996,3:9-10.
    [118]徐尊平,强华,雷斌隆. H13钢热锻模的焊接修复工艺[J].热加工工艺,2006,35(19):82-83.
    [119] CAPELLO E, PREVITALI B. The influence of operator skills, process parameters andmaterials on clad shape in repair using laser cladding by wire[J]. J Mater Process Technol,2006,174(1-3):223-232.
    [120]李会山,杨洗陈,王云山,等.模具的激光修复[J].金属热处理,2004,29(2):39-42.
    [121]刘必利,谢颂京,姚建华.激光焊接技术应用及其发展趋势[J].激光与光电子学进展,2005,42(9):43-47.
    [122] WANG W, PINKERTON A, WEE L, et al. Component repair using laser direct metaldeposition[C]. Proceedings of the35th International MATADOR Conference. SpringerLondon,2007.
    [123] KLOB AR D, MUHI M, PLETERSKI M, et al. Thermo-mechanical cracking of a newand laser repair welded die casting die[J]. Content Sadr aj,2012,51(3):305-308.
    [124] READY J F. Industrial applications of lasers[M]. Access Online via Elsevier,1997.
    [125] STEEN W M, MAZUMDER J. Laser material processing[M]. London: Springer,2010.
    [126] TOTTEN G E, FUNATANI K, XIE L. Handbook of metallurgical process design[M].Florida: CRC press,2004.
    [127] SUN Y, SUNADA H, TSUJII N. Crack repair of hot work tool steel by laser meltprocessing[J]. ISIJ Int,2001,41(9):1006-1009.
    [128]高桦,李明,陈德海.激光熔凝处理修复表面裂纹[J].机械强度,1988,10(4):50-52.
    [129] SUN Y, HANAKI S, YAMASHITA M, et al. Fatigue behavior and fractography oflaser-processed hot work tool steel[J]. Vacuum,2004,73(3-4):655-660.
    [130] GRUM J, SLABE J M. Effect of laser-remelting of surface cracks on microstructure andresidual stresses in12Ni maraging steel[J]. Appl Surf Sci,2006,252(13):4486-4492.
    [131] PLETERSKI M, TU EK J, KOSEC L, et al. Laser repair welding of molds with variouspulse shapes[J]. Metalurgija,2010,49(1):41-44.
    [132]田应涛.激光重熔修复镍基合金微裂纹应力应变场的数值模拟[D].哈尔滨:哈尔滨工业大学,2006.
    [133]雷俊鹏,王忠柯,叶和清.激光表面重熔,熔覆温度场的研究评述[J].激光与光电子学进展,2001,9:74-74.
    [134]居毅,郭绍义.金属表面激光合金化及熔覆处理的研究进展[J].材料科学与工程,2002,20(1):143-145.
    [135]肖永亮,郭义,姚戈,等. Co基高温合金疲劳裂纹的修复[J].材料研究学报,2009,10(3):271-274.
    [136] NAVAS C, CONDE A, FERN NDEZ B J, et al. Laser coatings to improve wear resistance ofmould steel[J]. Surf Coat Technol,2005,194(1):136-142.
    [137]田威,廖文和,刘长毅,等.基于绿色再制造的火车车钩裂纹激光修复和表面强化[J].应用激光,2008,28(2):103-107.
    [138]王毅,李宾,杨涛.激光熔覆报废航空发动机叶片模具生成高硬度涂层的机理[J].贵州大学学报:自然科学版,2010,27(005):41-43.
    [139] BENDEICH P, ALAM N, BRANDT M, et al. Residual stress measurements in laser cladrepaired low pressure turbine blades for the power industry[J]. Mater Sci Eng A,2006,437(1):70-74.
    [140] GRAF B, GUMENYUK A, RETHMEIER M. Laser Metal Deposition as Repair Technologyfor Stainless Steel and Titanium Alloys[J]. Physics Procedia,2012,39:376-381.
    [141] NOWOTNY S, SCHAREK S, BEYER E, et al. Laser Beam Build-Up Welding: Precision inRepair, Surface Cladding, and Direct3D Metal Deposition[J]. J Therm Spray Technol,2007,16(3):344-348.
    [142] SUN Z, KUO M. Bridging the joint gap with wire feed laser welding[J]. J Mater ProcessTechnol,1999,87(1):213-222.
    [143]余阳春.激光填丝焊的焊丝熔入行为及工艺研究[D].武汉:华中科技大学,2010.
    [144] LAPSANSKA H, CHMELICKOVA H, HRABOVSKY M. Effect of Beam Energy on WeldGeometric Characteristics in Nd:YAG Laser Overlapping Spot Welding of Thin AISI304Stainless Steel Sheets[J]. Metall Mater Trans A,2010,41(5):1108-1115.
    [145]黄开金,邵可然.裂纹修复与激光技术[J].金属热处理,2002,27(3):1-4.
    [146] CAPELLO E, COLOMBO D, PREVITALI B. Repairing of sintered tools using lasercladding by wire[J]. J Mater Process Technol,2005,164-165:990-1000.
    [147] VEDANI M. Microstructural evolution of tool steels after Nd-YAG laser repair welding[J]. JMater Sci,2004,39(1):241-249.
    [148] BORREGO L P, PIRES J T B, COSTAJ M, et al. Mould steels repaired by laser welding[J].Eng Fail Anal,2009,16(2):596-607.
    [149] YANG T C, LIN J C, CHEN C. Mechanical properties of422stainless steel repaired viawire feed laser welding[J]. Sci Technol Weld Joining,2004,9(1):53-58.
    [150]刘立峰,杨洗陈,王非,等.基于机器人的柔性激光再制造系统[J].中国激光,2012,38(12):65-70.
    [151]钟宝华.激光焊接技术应用现状及发展趋势[J].现代焊接,2008,9:1-5.
    [152]杨洗陈.激光加工机器人技术及工业应用[J].中国激光,2009,11:2780-2798.
    [153]袁庆龙,冯旭东,曹晶晶,等.激光熔覆技术研究进展[J].材料导报,2010,24(2):112-116.
    [154]杨文广,陈武柱,刘春,等.基于单片机的高精度送丝全闭环控制系统研究[J].电焊机,2002,32(5):18-20.
    [155]胡军辉,曾晓雁,谢长生.激光填料焊接技术的发展现状及展望[J].激光技术,1997,21(5):257-261.
    [156]刘喜明,关振中.送粉式激光熔覆获得最佳熔覆层的必要条件及其影响因素[J].中国激光,1999,26(5):470-476.
    [157]张庆茂,刘喜明,关振中.激光表面熔覆的进展及智能控制[J].金属热处理,1999,11:1-3.
    [158] XIE J W, FOX P, O’NEILL W, et al. Effect of direct laser re-melting processing parametersand scanning strategies on the densification of tool steels[J]. J Mater Process Technol,2005,170(3):516-523.
    [159] AQIDAS N, CALOSSO F, BRABAZON D, et al. Thermal fatigue properties of laser treatedsteels[J]. Int J Mater Form,2010,3(S1):797-800.
    [160]孙久荣,戴振东.仿生学的现状和未来[J]. ACTA BIOPHYSICA SINICA,2007,23(2):109-115.
    [161] TEERI T T, BRUMER III H, DANIEL G, et al. Biomimetic engineering of cellulose-basedmaterials[J]. Trends Biotechnol,2007,25(7):299-306.
    [162] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent,self-cleaning plant surfaces[J]. Annals of Botany,1997,79(6):667-677.
    [163]林宣益.仿生学在建筑涂料中的应用-荷叶效应乳胶漆[J].上海涂料,2005,43(1):7-7.
    [164]许群辉,檀子桢.仿生学在服装设计中的应用研究[J].山东纺织科技,2009,50(5):51-53.
    [165] BECHERT D, BRUSE M, HAGE W. Experiments with three-dimensional riblets as anidealized model of shark skin[J]. Exp Fluids,2000,28(5):403-412.
    [166] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination inbiological surfaces[J]. Planta,1997,202(1):1-8.
    [167] REN L Q, TONG J, LI J Q, et al. Soil and Water: Soil Adhesion and Biomimetics ofSoil-engaging Components: a Review[J]. JAgric Eng Res,2001,79(3):239-263.
    [168] REN L Q, TONG J, ZHANG S J, et al. Reducing sliding resistance of soil against bulldozingplates by unsmoothed bionics surfaces[J]. Journal of terramechanics,1995,32(6):303-309.
    [169] REN L Q, DENG S Q, WANG J C, et al. Design Principles of the Non-smooth Surface ofBionic Plow Moldboard[J]. J Bionic Eng,2004,1(1):9-19.
    [170] REN L Q, HAN Z W, LI J Q, et al. Effects of non-smooth characteristics on bionic bulldozerblades in resistance reduction against soil[J]. Journal of Terramechanics,2002,39(4):221-230.
    [171] CONG Q, REN L Q, WU L, et al. Taxonomic research on geometric non-smooth animalsurface shapes[J]. Transactions of the Chinese Society of Agricultural Engineering,1992,2(8):7-12.
    [172]李建桥,任露泉,刘朝宗,等.减粘降阻仿生犁壁的研究[J].农业机械学报,1996,27(2):1-4.
    [173]丛茜,王连成,初日法,等.凸包形推土板减粘降阻的仿生研究[J].工程机械,1995,11:14-16.
    [174]马云海,佟金,周江,等.穿山甲鳞片表面的几何形态特征及其性能[J].电子显微学报,2008,27(4):336-340.
    [175]齐彦昌,马成勇,彭云,等.轧辊表面激光雕刻仿生非光滑形态耐磨性研究[J].应用激光,2006,26(1):1-4.
    [176]何龙飞,孙友宏,高科,等.仿生非光滑螺旋钻头的设计及试验[J].吉林大学学报:地球科学版,2009,39(2):300-304.
    [177]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究[J].摩擦学学报,2004,24(4):289-293.
    [178]佟鑫.激光仿生耦合处理铸铁材料的抗热疲劳性能研究[D].长春:吉林大学,2009.
    [179]程红,陈茂生,孙久荣.臭蜣螂体壁的组织结构[J].昆虫学报,2003,46(4):429-435.
    [180]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展[J].材料研究学报,2009,17(4):337-344.
    [181] WISE JR S W. Microarchitecture and deposition of gastropod nacre[J]. Science,1970,167(3924):1486-1488.
    [182]万欣娣,任凤章,刘平,等.贝壳珍珠层的研究现状[J].材料导报,2006,20(10):21-28.
    [183]李恒德,冯庆玲,崔福斋,等.贝壳珍珠层及仿生制备研究[J].清华大学学报:自然科学版,2001,41(4):41-47.
    [184] MAYER G. Rigid biological systems as models for synthetic composites[J]. Science,2005,310(5751):1144-1147.
    [185] KAMAT S, SU X, BALLARINI R, et al. Structural basis for the fracture toughness of theshell of the conch Strombus gigas[J]. Nature,2000,405(6790):1036-1040.
    [186]任露泉,李秀娟.蜻蜓翅膀功能特性及其仿生研究进展[J].中国科学:技术科学,2013,43(4):353-367.
    [187]李秀娟.蜻蜓翅膀功能特性力学机制的仿生研究[D].长春:吉林大学,2013.
    [188]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [189] KLOB AR D, TU EK J. Thermal stresses in aluminium alloy die casting dies[J]. ComputMater Sci,2008,43(4):1147-1154.
    [190] CHIANG K A, CHEN Y C. Laser surface hardening of H13steel in the melt case[J]. MaterLett,2005,59(14-15):1919-1923.
    [191] AQIDA S N, BRABAZON D, NAHER S. An investigation of phase transformation andcrystallinity in laser surface modified H13steel[J]. Appl Phys A,2012,110(3):673-678.
    [192] RAFI H K, RAM G D J, PHANIKUMAR G, et al. Microstructural evolution during frictionsurfacing of tool steel H13[J]. Mater Des,2011,32(1):82-87.
    [193] PE I KAJ, KU EL R, DRONHOFER A, et al. The evolution of dislocation density duringheat treatment and creep of tempered martensite ferritic steels[J]. Acta Mater,2003,51(16):4847-4862.
    [194]颜鸣皋,刘才穆.金属的疲劳与断裂[M].上海:上海科学技术出版社,1983.
    [195] TONG X, ZHOU H, LIU M, et al. Effects of striated laser tracks on thermal fatigueresistance of cast iron samples with biomimetic non-smooth surface[J]. Mater Des,2011,32(2):796-802.
    [196] TONG X, ZHOU H, ZHANG W, et al. Thermal fatigue behavior of gray cast iron withstriated biomimetic non-smooth surface[J]. J Mater Process Technol,2008,206(1-3):473-480.
    [197] TONG X, DAI M J, ZHANG Z H. Thermal fatigue resistance of H13steel treated byselective laser surface melting and CrNi alloying[J]. Appl Surf Sci,2013,271:373-380.
    [198]郑启光,辜建辉,王涛,等.激光深熔焊接的熔池行为与焊接缺陷的研究[J].激光技术,2000,24(2):90-94.
    [199] LEE J Y, KO S H, FARSON D F, et al. Mechanism of keyhole formation and stability instationary laser welding[J]. J Phys D: Appl Phys,2002,35(13):1570-1576.
    [200] GRUM J, STURM R. Influence of laser surface melt-hardening conditions on residualstresses in thin plates[J]. Surf Coat Technol,1998,100:455-458.
    [201]占焕,王勇,韩涛,等.42CrMo钢表面单道激光宽带处理后熔凝层的残余应力[J].中国激光,2009,35(4):625-630.
    [202]许友谊,周明.全20CrMnTi表面激光重熔的组织与性能研究[J].应用激光,2002,22(4):401-404.
    [203]高传玉,周明.激光快速熔疑40Cr钢表面硬度与残余应力研究[J].应用激光,2002,22(1):19-22.
    [204] KANG K J, SONG J H, EARMME Y Y. Fatigue crack growth and closure behaviourthrough a compressive residual stress field[J]. Fatigue Fract Eng Mater Struct,1990,13(1):1-13.
    [205] HUGO R, KUNG H, WEERTMAN J, et al. In-situ TEM tensile testing of DC magnetronsputtered and pulsed laser deposited Ni thin films[J]. Acta Mater,2003,51(7):1937-1943.
    [206]韩培德,武小雷. H13激光熔凝组织及耐磨性研究[J].机械工程师,1999,9:52-53.
    [207]蔡幼庆.激光熔凝处理H13钢的组织和性能[J].热处理,2004,19(2):42-45.
    [208] ZHANG Z H, LIN P Y, ZHOU H, et al. Microstructure, hardness, and thermal fatiguebehavior of H21steel processed by laser surface remelting[J]. Appl Surf Sci,2013,276:62-67.
    [209] LIEURADE H,沈威奕.热疲劳裂纹形核与扩展的实验模拟与理论模型[J].轧钢,1991,2:21-27.
    [210]刘剑虹,冯晓曾,周文学.热处理对4Cr5MoSiVl钢热疲劳裂纹扩展驱动力的影响[J].安徽工学院学报,1988,7(2):58-62.
    [211]闫明,孙志礼,杨强,等.热疲劳裂纹开裂过程的有限元模拟[J].东北大学学报:自然科学版,2007,28(12):1741-1744.
    [212] YANG J X, ZHENG Q, SUN X F, et al. Thermal fatigue behavior of K465superalloy[J].Rare Met,2006,25(3):202-209.
    [213] LI G B, WU J J, JIANG Y F, et al. The nucleation and propagation of a thermal fatigue crackin4Cr2NiMoV steel[J]. J Mater Process Technol,2000,100(1):63-66.
    [214] BLUEMM M, DEMESTRAL B, EGGELER G, et al. The influence of crystallography andcreep ductility on thermal fatigue crack initiation in nickel-base superalloys with elongatedmacrograins[J]. Scripta Metallurgica et Materialia,1995,33(5):719-725.
    [215]刘江龙.激光表面合金化技术发展中的若干问题[J].金属热处理,1992,3:3-6.
    [216] CAI G J, ANDRN H O, SVENSSON L E. Microstructural change of a5%Cr steel weldmetal during tempering[J]. Mater Sci Eng A,1998,242(1-2):202-209.
    [217] KORKUT M, YILMAZ O, BUYTOZ S. Effect of aging on the microstructure and toughnessof the interface zone of a gas tungsten arc (GTA) synthesized Fe-Cr-Si-Mo-C coated lowcarbon steel[J]. Surf Coat Technol,2002,157(1):5-13.
    [218] LIU F, LIU C, CHEN S, et al. Laser cladding Ni-Co duplex coating on copper substrate [J].Opt Lasers Eng,2010,48(7-8):792-799.
    [219] ANTONY K. Wear-resistant cobalt-base alloys[C]. International Conference on Cobalt:Metallurgy and Uses,1981.
    [220] HIDOUCI A, PELLETIER J, DUCOIN F, et al. Microstructural and mechanicalcharacteristics of laser coatings[J]. Surf Coat Technol,2000,123(1):17-23.
    [221] TONG X, LI F H, LIU M, et al. Thermal fatigue resistance of non-smooth cast iron treatedby laser cladding with different self-fluxing alloys[J]. Opt Laser Technol,2010,42(7):1154-1161.
    [222] CUI C Y, GUO Z X, LIU Y H, et al. Characteristics of cobalt-based alloy coating on toolsteel prepared by powder feeding laser cladding[J]. Opt Laser Technol,2007,39(8):1544-1550.
    [223] CHAO M J, WANG W L, LIANG E J, et al. Microstructure and wear resistance of TaCreinforced Ni-based coating by laser cladding[J]. Surf Coat Technol,2008,202(10):1918-1922.
    [224] FERNNDEZ E, GARCAJ R, CUETOS J M, et al. Behaviour of laser treated Cr, Ni coatingsin the oxidative atmosphere of a steam boiler[J]. Surf Coat Technol,2005,195(1):1-7.
    [225] SONG W L, ECHIGOYAJ, ZHU B D, et al. Effects of Co on the cracking susceptibility andthe microstructure of Fe-Cr-Ni laser-clad layer[J]. Surf Coat Technol,2001,138(2):291-295.
    [226]朱蓓蒂,彭英姿. H13模具钢表面激光熔覆钴基合金的研究[J].特殊钢,1994,15(5):38-40.
    [227] PERSSON A, HOGMARK S, BERGSTR M J. Failure modes in field-tested brass diecasting dies[J]. J Mater Process Technol,2004,148(1):108-118.
    [228] HU X, LI L, WU X, et al. Coarsening behavior of M23C6carbides after ageing or thermalfatigue in AISI H13steel with niobium[J]. Int J Fatigue,2006,28(3):175-182.
    [229] ZHANG Z H, REN L Q, ZHOU H, et al. Effect of Thermal Fatigue Loading on TensileBehavior of H13Die Steel with Biomimetic Surface[J]. J Bionic Eng,2010,7(4):390-396.
    [230] COSTA J M, PIRES J T B, ANTUNES F, et al. Residual stresses analysis of ND-YAG laserwelded joints[J]. Eng FailAnal,2010,17(1):28-37.
    [231] TORKAMANY M J, HAMEDI M J, MALEK F, et al. The effect of process parameters onkeyhole welding with a400W Nd:YAG pulsed laser[J]. J Phys D: Appl Phys,2006,39(21):4563-4567.
    [232] MALEKGHAINI F, HAMEDI M, TORKAMANY M, et al. Weld metal microstructuralcharacteristics in pulsed Nd: YAG laser welding[J]. Scr Mater,2007,56(11):955-958.
    [233]陆建等.激光与材料交互作用物理学[M].北京:机械工业出版社,1996.
    [234] AQIDAS N. Laser surface modification of steel[D], Dublin: Dublin City University,2011.
    [235] TZENG Y F, CHEN F C. Effects of Operating Parameters on the Static Properties of PulsedLaser Welded Zinc-Coated Steel[J]. Int JAdv Manuf Technol,2001,18(9):641-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700