柔性材料表面织构润滑机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,表面织构技术因其具有的降低摩擦、减小磨损和提高承载能力等特点,引起了人们的极大关注,在汽车发动机、滑动轴承、人工关节以及磁介质存储等许多领域中有着极其广泛而重要的应用。目前对表面织构技术的研究,主要集中在硬质材料方面,如陶瓷、钢等;而对于由低弹性模量柔性材料所组成的摩擦副,表面织构的研究还未见有报导。因此,探讨因柔性材料表面织构的接触弹性形变而引起的润滑液流动对其摩擦特性的影响规律成为掌握和丰富表面织构设计原则的关键。
     本文采用光刻—复模的微细表面加工技术,在聚二甲基硅氧烷(PDMS)柔性材料表面加工了微小凹坑阵列;并对材料的相关机械性能,如硬度、弹性模量、表面粗糙度和表面接触角等参数进行了测试;最后,以不同几何参数的微小凹坑阵列表面织构PDMS材料/GCr15轴承钢球作为配对摩擦副,在自制的摩擦实验机上测试滑行速度、表面织构几何参数对水润滑下摩擦因数的影响,并进行了相关的润滑理论数值计算,初步探讨了柔性材料表面织构的润滑机理。本文获得的主要结论和创新性成果如下:
     第一,运用软光刻技术中具有代表性的复制模塑法在PDMS柔性材料表面制备了规整的微小凹坑阵列,轮廓仪照片显示:光刻—复模法制备的凹坑阵列图案清晰而均匀,表面平整无缺陷。
     第二,考察了PDMS材料制备工艺对其机械物理特性的影响,并初步研究了本研究所设计的各种几何参数的表面织构微小凹坑阵列对PDMS材料表面浸润性的影响。
     第三,研究了表面织构PDMS材料/GCr15轴承钢球的摩擦学特性,并与无织构光滑表面PDMS/GCr15轴承钢球的摩擦学特性作了对比,结果表明:表面织构的存在,具有优异的减摩效果,如在滑行速度v = 40 mm /s,凹坑直径d = 100μm,深径比h / d = 0.05,面积率r =4.9%时,出现摩擦因数的最小值0.112,相比光滑表面PDMS的摩擦因数减小了88.81%;同时,在一定条件下,表面织构又能够起到增加摩擦的作用,如在滑行速度v = 60 mm /s时,在凹坑直径d = 50μm,深径比h / d = 0.01,面积率r = 10.4%时,出现摩擦因数的最大值1.409。
     本文首次对柔性材料表面织构的宏观摩擦学特性进行了水润滑条件下的实验研究,研究结果丰富了表面织构技术在改善材料摩擦学特性方面的作用机理,并为表面织构技术在改善低弹性模量材料(橡胶、塑料)摩擦学特性的工程应用提供了相关设计依据。
Recently, more attention has been paid on surface texture technology. Due to its advantages in improving tribological performances, such as friction and wear reduction, high load-carrying capability, surface texture technology has wide and important engineering applications in a variety of fields ranging from engine components, sliding bearings, artificial joints and magnetic storage devices, etc.. Researches are now mainly focused on hard materials (like ceramic, steel, etc.). However, the lubrication effect of micro-texture on surfaces of soft material friction pairs has not been reported previously. Therefore, it becomes the most important problem to investigate the effect of lubricant flow behavior on the tribological properties caused by textured tribo-pairs soft elastic contact.
     In this thesis, patterns of micro-dimples were created on Poly (dimethylsiloxane) (PDMS) surfaces using the Lithography & Replica Molding technique. The mechanical properties such as hardness, elastic modulus, surface roughness and contact angle were measured. The macroscale tribological experiments were carried out in water-lubricated condition by using tribo-meter. The numerical calculation results and tribological mechanism were discussed. The main research results and some innovative achievements are showed as follows:
     Firstly, typical Lithography & Replica Molding (RM) technique of soft lithography was used to fabricate patterns of micro-dimples on the surface of PDMS. The surface profiler images demonstrate the high fidelity and facility of RM for the patterns of micro-dimples fabrication process.
     Secondly, the influence of PDMS preparation process on its mechanical properties was studied, and the wettability of textured surfaces with different geometrical parameters was also analyzed.
     Thirdly, compared with untextured surface, the tribological properties of textured PDMS surfaces were researched. The experimental results show that textured surface has superior tribological properties. The pattern with dimple diameter of 100μm, and area density of 4.9% has an obvious friction reduction at the sliding velocity of 40mm/s, the friction coefficient is 0.112 which is 88.81% lower than that of untextured surface. But the pattern with dimple diameter of 50μm and area density of 10.4% has a high friction coefficient about 1.409 at the sliding velocity of 60mm/s, exhibiting an obvious friction increase effect.
     It is the first efforts to experimental investigate the macroscale tribological performances of textured soft material under water lubrication. The results of this study enrich the mechanism of surface texture in improving tribological properties, and provide some design basis for engineering application of low elastic modulus materials (like rubber, plastic etc.).
引文
[1]刘维民,薛群基.摩擦学研究及发展趋势.中国机械工程, 2000, 11(1-2): 86~89.
    [2] Bhushan B. Introduction to Tribology, John Wiley & Sons, 2002(中译本:葛世荣.摩擦学导论,北京:机械工业出版社, 2007).
    [3]张嗣伟.我国摩擦学工业应用的节约潜力巨大——谈我国摩擦学工业应用现状的调查.中国表面工程, 2008, 21(2): 50~52.
    [4] Bruzzone A A G, Costa H L, Lonardo P M, et al. Advances in engineered surfaces for functional performance. CIRP Annals - Manufacturing Technology, 2008 (Article in press).
    [5]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研究.润滑与密封, 2007, 32(12): 36~39.
    [6] Neinhuis C, Barthlott W. Characterization and Distribution of Water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997, 79: 667~677.
    [7] Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an dealized model of shark skin. Experiments in Fluids, 2000, 28: 403~412.
    [8]陈秉聪,任露泉,徐晓波,等.典型动物体表形态及减粘脱土初步研究.农业工程学报, 1990, (2): 1~6.
    [9] Geiger M, Roth S, Becker W. Influence of laser-produced microstructures on the tribological behaviour of ceramics. Surface and Coatings Technology, 1998, 100~101: 17~22.
    [10] Wakuda M, Yamauchi Y, Kanzaki S, et al. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear, 2003, 254: 356~363.
    [11] Wang X, Kato K, Adachi K. The Lubrication Effect of micro-pits on parallel sliding faces of SiC in water. Tribology Transactions, 2002, 45(3): 294~301.
    [12] Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts. Tribology International, 2003, 36: 857~864.
    [13] Yoon E S, Singh R A, Kong H, et al. Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer. Tribology Letters, 2006, 21(1): 31~37.
    [14] Pettersson U, Jacobson S. Tribological texturing of steel surfaces with a novel diamond embossing tool technique. Tribology International, 2006, 39: 695~700.
    [15] Stephens L S, Siripuram R, Hayden M, et al. Deterministic micro asperities on bearings and seals using a modified LIGA process. Journal of Engineering for Gas Turbines and PowerTransactions of the ASME, 2004, 126(1): 147~154.
    [16] Etsion I. Improving tribological performance of mechanical seals by laser surface texturing. Proceedings of the 17th International Pump Users Symposium, 2000: 17~22.
    [17] Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces. Tribology Transactions, 1999, 42(3): 511~516.
    [18] Etsion I, Halperin G. A laser surface textured hydrostatic mechanical seal. Tribology Transactions, 2002, 45(3): 430~434.
    [19] Ronen A, Etsion I, Kligerman Y. Friction-reducing surface-texturing in reciprocating automotive components. Tribology Transactions, 2001, 44(3): 359~366.
    [20] Brizmer V, Kligerman Y, Etsion I. A laser surface textured parallel thrust bearing. Tribology Transactions, 2003, 46(3): 397~403.
    [21] Wang X, Kato K. Improving the anti-seizure ability of SiC seal in water with RIE texturing. Tribology Letters, 2003, 14(4): 275~280.
    [22] Wang X, Kato K, Adachi K, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribology International, 2003, 36: 189~197.
    [23]王晓雷,韩文非,加藤康司.碳化硅陶瓷的水润滑特性及其表面微细织构的优化设计.中国机械工程, 2008, 19(4): 457~460.
    [24]严东升,刘伟,王晓雷.表面织构对铸铁摩擦副摩擦性能的影响. 2008青年摩擦学与表面保护学术会议论文集,武汉, 2008: 241~244.
    [25]朱荻,曲宁松,王晓雷.柱形回转体零件外表面微小结构电解加工方法.中国,化学冶金, CN101070605, 2007.
    [26] Pettersson U, Jacobson S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribology Letters, 2004, 17(3): 553~559.
    [27] Pettersson U, Jacobson S. Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribology International, 2007, 40(2): 355~359.
    [28] Siripuram R B, Stephens L S. Effect of deterministic asperity geometry on hydrodynamic lubrication. Journal of Tribology Transactions of the ASME, 2004, 126(3): 527~534.
    [29]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究.农业机械学报, 2003, 34(2): 86~92.
    [30]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究.摩擦学学报, 2004, 24(4): 289~292.
    [31]任露泉,王再宙,韩志武.激光处理非光滑凹坑表面耐磨试验的均匀设计研究.材料科学与工程, 2002, 20(2): 214~216.
    [32]李建桥,李忠范,李重涣,等.仿生非光滑犁壁规范化设计.农机化研究, 2004, 6: 119~121.
    [33]施卫平,任露泉.波纹形非光滑推土板减粘降阻的简化力学模型.农业机械学报, 2005, 36(1): 93~95.
    [34]赵国如,任露泉,田丽梅,等.利用逆向制造系统集成技术开发仿生防粘鞋底.吉林大学学报(工学版), 2005, 35(6): 649~653.
    [35]华希俊,符永宏,袁润,等.激光微造型表面摩擦磨损性能研究.润滑与密封, 2007, 32(5): 20~22.
    [36]王霄,张广海,陈卫,等.不同微细造型几何形貌对润滑性能影响的数值模拟.润滑与密封, 2007, 32(8): 66~73.
    [37] Wang Q, Zhu D. Virtual texturing: Modeling the performance of lubricated contacts of engineered surfaces. Journal of Tribology Transactions of the ASME, 2005, 127(4): 722~728.
    [38] Nanbu T, Ren N, Yasuda Y, et al. Micro-textures in concentrated conformal-contact lubrication: Effects of texture bottom shape and surface relative motion. Tribology Letters, 2008, 29(3): 241~252.
    [39] Ren N, Nanbu T, Yasuda Y, et al. Micro textures in concentrated-conformal-contact lubrication: Effect of distribution patterns. Tribology Letters, 2007, 28: 275~285.
    [40] Epstein D, Keer L M, Wang Q, et al. Effect of surface topography on contact fatigue in mixed lubrication. Tribology Transactions, 2003, 46(4): 506~512.
    [41] Schreck S, Zum Gahr K H. Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties. Applied Surface Science, 2005, 247(1~4): 616~622.
    [42]汪家道,陈大融,孔宪梅,等.面接触规则凹坑表面流体润滑计算.清华大学学报(自然科学版), 2003, 41(2): 42~45.
    [43]汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究.摩擦学学报, 2003, 23(1): 52~55.
    [44]林子光,谢辉.改善机械零件表面形貌的试验研究.机械设计, 1995, 5: 26~28.
    [45]林子光.铸铁表面激光微精处理的摩擦学特性.表面工程杂志, 1996, 2: 12~15.
    [46]林子光,郭炎.表面形貌对抗擦伤能力影响的试验研究.机械设计, 1999, 11(1): 8~11.
    [47]张云电,赵峰,黄文剑.摩擦副工作表面微坑超声加工方法的研究.中国机械工程, 2004, 15(14): 1280~1286.
    [48] Wang Y, Xiong D. The effect of laser surface texturing on frictional performance of face seal. Journal of Materials Processing Technology, 2008, 197(1~3): 96~100.
    [49] Willis E. Surface finish in relation to cylinder liners. Wear, 1986, 109(1~4): 351~366.
    [50] Ranjan R, Lambeth D N, Tromel M, et al. Laser texturing for low-flying-height media. Journal of Applied Physics, 1991, 69(8): 5745~5747.
    [51] Tan A, Cheng S. A novel textured design for hard disk tribology improvement. Tribology International, 2006, 39(6): 506~511.
    [52] Herbst L, Lindner H. Targeting diesel engine efficiency. Industrial Laser Solutions, 2004, 10: 32~35.
    [53] Klink U, Flores G. Zylinderbohrungen in aluminium-silicium-werkstoffen honen (honing cylinder bores in aluminum silicon materials). Werkstatt und Betrieb, 1999, 132(9): 50~55.
    [54] Ogihara H, Kido T, Yamada H, et al. Technology for reducing engine rubbing resistance by means of surface improvement. HONDA R&D Technical Review, 2000, 12(2): 93~98.
    [55] http://aerospaceweb.org/question/aerodynamics/q0215.shtml
    [56] http://www.atomicsnow.com/
    [57] Salama M.E. The effect of microroughness on the performance of parallel thrust bearings. Proc. Institute of Mechanical Engineers, 1952, 163: 149-158.
    [58] Hamilton D B, Walowit J A, Allen C M. A theory of lubrication by micro-irregularities. Journal of Basic Engineering, 1966, 88(1): 177~185.
    [59] Anno J N, Walowit J A, Allen C M. Microasperity lubrication. ASME Journal of Lubrication Technology, 1968, 90(2): 351~355.
    [60] Anno J N, Walowit J A, Allen C M. Load support and leakage from microasperity lubricated face seals. ASME Journal of Lubrication Technology, 1969, 91(4): 726~731.
    [61]王晓雷,大冢克则,足立幸志,等.碳化硅陶瓷的水润滑特性以及表面织构的影响.第六届全国表面工程学术会议论文集,兰州, 2006: 890~895.
    [62] Suh N P, Mosleh M, Howard P S. Control of friction. Wear, 1994, 175(1~2): 151~158.
    [63] Ito H, Kaneda K, Yuhta T, et al. Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints. Journal of Arthroplasty, 2000, 15(3): 332~338.
    [64] Anderson J R, Chiu D T, Jackman R J, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Analytical Chemistry, 2000, 72(14): 3158~3164.
    [65] Duffy D C, McDonald J C, Schueller O J A, et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 1998, 70(23): 4974~4984.
    [66] Xia Y, Whitesides G M. Soft lithography. Annual Review of Materials Science, 1998, 28: 153~184.
    [67] Lee S, Spencer D N. Aqueous lubrication of polymers: Influence of surface modification. Tribology International, 2005, 38(11~12): 922~930.
    [68] http://www.dowcorning.com/
    [69]李光亮.有机硅高分子化学.北京:科学出版社, 1999.
    [70] Armani D, Liu C, Aluru N. Re-configurable fluid circuits by PDMS elastomer micromachining. MEMS '99: 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999: 222~227.
    [71] http://www4.dowcorning.com/DataFiles/090007b280daa747.pdf/
    [72] Costa H L, Hutchings I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribology International, 2007, 40(8): 1227~1238.
    [73] Wang X, Kato K, Adachi K. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribology International, 2001, 34: 703~711.
    [74]沈聪,王晓雷,李劲峰,等.基于虚拟仪器的球盘式摩擦磨损实验机设计.电子测量技术, 2008, 31(12): 74~77.
    [75] Johnson K L. Contact Mechanics. Cambridge University Press, 1985.
    [76]李永刚. PDMS微流控芯片关键工艺技术研究.长春:中国科学院长春光学精密机械与物理研究所硕士学位论文, 2006.
    [77] Dumitru G, Romano V, Weber H P, et al. Laser microstructuring of steel surfaces for tribological applications. Applied Physics A-Materials Science & Processing, 2000, 70(4): 485~487.
    [78]叶美英,方群,殷学锋,等.聚二甲基硅氧烷基质微流控芯片封接技术的研究.高等学校化学学报, 2002, 23(12): 2243~2246.
    [79]刘长维.高分子材料与工程实验.北京:化学工业出版社, 2004.
    [80] Young T. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 1805, 95: 65~87.
    [81]温诗铸,黄平.摩擦学原理(第二版).北京:清华大学出版社, 2002.
    [82] Efimenko K, Wallace W E, Genzer J. Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. Journal of Colloid and Interface Science, 2002, 254(2): 306~315.
    [83] Spanos C G, Ebbens S J, Badyal J P S, et al. Surface segregation and plasma oxidation of poly(dimethylsiloxane)-doped polyolefins. Macromolecules, 2001, 34(23): 8149~8155.
    [84] Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936, 28(8): 988~994.
    [85] Wenzel R N. Surface roughness and contact angle. The Journal of Physical Chemistry, 1949, 53(9): 1466~1467.
    [86] Cassie A B D. Contact angle hysteresis on heterogeneous surfaces. Discussions of the Faraday Society, 1948, 3: 11~16.
    [87]杨加宏.超疏水非光滑表面的设计与制作及其血液相容性和流体减阻的初步研究.镇江:江苏大学硕士学位论文, 2007.
    [88] Santner E, Czichos H. Tribology of polymers. Tribology International, 1989, 22: 104~109.
    [89] Bongaerts J H H, Fourtouni K, Stokes J R. Soft-tribology: Lubrication in a compliant PDMS-PDMS contact. Tribology International, 2007, 40: 1531~1542.
    [90]杨沛然.等温稳态点接触弹流润滑的多重网格解法. 2005青岛摩擦学前沿研讨会,青岛, 2005.
    [91]栗心明.自旋条件下弹性流体动力润滑的研究.青岛:青岛理工大学硕士学位论文, 2008.
    [92] Roelands C J A. Correlation aspects of the viscosity-temperature-pressure relationship of lubrication oils. Netherlands: Delft University of Technology Ph, D. Thesis, 1966.
    [93] Hamrock B J, Dowson D. Film thickness for different regimes of fluid film lubrication. Proceedings of the 5th Leeds-Lyon Symposium on Tribology, 1979.
    [94] Markho P H. Highly accurate formulas for rapid calculation of the key gemetrical parameters of elliptic hertzian contacts. ASME Journal of Tribology, 1987, 109: 640~647.
    [95]杨沛然.流体润滑数值分析.北京:国防工业出版社,1998.
    [96]郭峰.椭圆接触微观热弹性流体动力润滑求解的多重网格算法研究.青岛:青岛建筑工程学院硕士学位论文, 1998.
    [97]朱华,葛世荣.摩擦力和摩擦振动的分形行为研究.摩擦学学报, 2004, 24(5): 433~437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700