Ti6Al4V表面激光织构化及其摩擦学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金的表面改性处理可显著改善其摩擦学特性,本文将激光表面改性技术和表面织构化相结合,在钛合金表面分别构筑直线织构网格织构和点阵状织构。对构筑的各种织构进行了表征,研究了各种织构表面的摩擦系数与织构间距、载荷和滑动速度之间的关系。通过磨斑形貌分析,比较了织构表面与抛光表面的摩擦学特性。得出的主要结论如下:
     1.经激光表面织构化处理后,试样表面形成了规则排列的直线织构网格织构和点阵状织构。试样表面硬度得到显著提高。其中,点阵状织构试样的表面硬度最高,网格织构试样的表面硬度次之,直线织构试样的表面硬度最低。同样间距的网格织构试样的表面粗糙度最大,直线织构试样的表面粗糙度次之,而点阵状织构试样表面粗糙度最小。
     2.在高载荷、大间距条件下,点阵状织构试样的摩擦系数小于抛光试样的摩擦系数。载荷越大,间距越大,点阵状织构越有助于减小摩擦系数。网格织构和直线织构的摩擦系数均大于抛光试样的摩擦系数,并且网格织构试样的摩擦系数大于直线织构试样的摩擦系数。即并不是所有的表面织构都能降低摩擦系数,当表面织构的坑槽增大摩擦阻力的效应大于其捕获磨屑,减少参与犁削和切削作用的效应时,表面织构反而会使摩擦系数增大。
     3.在高滑动速度条件下,织构面更有利于使摩擦系数变得平稳。随着载荷的增大,织构表面的摩擦系数变得不平稳。直线织构的间距对摩擦系数的影响的规律性不明显;随着网格织构间距的增大,摩擦系数逐渐减小;较大间距的点阵状织构表面,可以获得较小的摩擦系数。
     4.抛光表面磨损严重,磨痕也较深,并且产生了大量磨屑,主要表现为犁沟及黏着磨损。织构化表面的磨痕较浅,结构保留较完整,磨损明显小于抛光表面。对于点阵织构表面,凹坑起到了捕获磨屑的作用,因此试样的耐磨性较抛光表面试样大为提高。
Tribological characteristics of Titanium alloy can be improved significantly by surface modification treatment. In this thesis, line texture, grid texture and dot texture were prepared on titanium alloy surface by laser surface modification technique. The characterization to various textured surfaces was conducted. The relationships between friction coefficients and spacing of texture, load and sliding velocity were analyzed. The comparation on textured surfaces and polished surface was done by wear track analysis. Main results were concluded as follow.
     1. The regular line texture, grid texture and dot texture are formed after laser textured surface treatment, and the hardness of various specimens increases significantly. The specimens with dot texture possess the highest hardness, the specimens with grid texture are in the second, and the hardness of specimens with line texture is the lowest. In the same spacing, the roughness of specimens with grid texture is the largest, and that of specimens with line texture takes second place. The roughness of dot texture is the lowest.
     2. The friction coefficients of specimens with dot texture are smaller than that of polished specimens in the condition of high load and large spacing. Higher load and larger spacing help to reduce friction coefficient. The friction coefficients of specimens with grid and line texture are larger than that of polished specimens, and the friction coefficients of specimens with grid texture are larger than that of specimens with line texture, which means that not all textured surfaces can reduce friction coefficients. On the contrary, friction coefficients increase when the effect of friction drag increasing by groove or dot in textured surface is stronger than that of debris capturing and ploughing or cutting reduction.
     3. Friction coefficients become steady for textured surfaces in high sliding velocities. Friction coefficients become unsteady for textured surfaces with load increasing. The effect of spacing of line texture on friction coefficients possesses no clear regularity. Friction coefficients become smaller with spacing of grid texture increasing. Smaller friction coefficients appear for larger spacing of dot texture.
     4. The wear on polished surfaces is very serious and wear tracks are deep with a great deal of debris, which means ploughing action and adhesive wear. Wear tracks are not very deep and the surface structures are intact, which indicates that wear is not so serious as polished surfaces. The antiwear resistance for dot textured specimens increase significantly because of theirs capturing debris action of dots.
引文
[1]孟祥军,时锦.漫谈钛合金在舰船上的应用.钛工业进展,2003,20(4-5):23-26.
    [2]陈国琳,吴鹏炜,冷文军等.钛合金的发展现状及应用前景.船舶科学技术,2009,31(12):110-113
    [3]Gloance A L, Henaff G, Bertheau D et al. Fatigue crack growth behaviour of a gamma-titanium-aluminide. Scripta Materialia,2003,49 (9):825-830.
    [4]Nakajma K, Terao K, Miyata T. The effect of microstructure on fatigue crack propagation of α+β titanium alloys-in-situ observation of short fatigue crack growth. Materials Science and Engineering, 1998, (A243):176-181.
    [5]何利舰,张小农.钛及钛合金的表面处理新技术.上海金属,2005,27(3):39-44.
    [6]Lebedeva L, Presnyakova G N. Adhesion wear mechanisms under dry fiction of titanium alloys in vacuum. Wear,1991,148:203-210.
    [7]梁成浩.钛的缝隙腐蚀行为研究.稀有金属材料与工程,1994,23:41-45.
    [8]王宏宇,陈康敏,许晓静等.钛合金Ti6Al4V的磨损失效及其表面耐磨处理技术.轻金属,2005,5:54-58.
    [9]徐滨士,田保红.表面工程与抗冲蚀磨损防护涂层的进展.铸造,2000,49(S 1):582-584.
    [10]刘凤岭,李金桂,冯自修.钛合金表面技术的进展.腐蚀与防护,2001,22(2):54-57.
    [11]Liu D X, Tang B, He J W. Shot peening and solid lubricating on fretting fatigue of Ti6A14V. Rare Metals,1999,18 (3):229-234.
    [12]Osterle W, Klaffke D, Griepentrog M et al. Potential of wear resistant coatings on Ti-6A1-4V for artificial hip joint bearing surfaces. Wear,2008,264(7~8):505~517.
    [13]Peng X M, Xia C Q, Ma K et al. Interaction of TC4 titanium alloy with NiCrAlY coating after vacuum heat treatment.Mater. Chem.Phys,2008,107(1):158~163.
    [14]Ceschini L,Lanzoni E,Martini C et al.Comparison of dry sliding friction and wear of Ti6A14V alloy treated by plasma electrolytic oxidation and PVD coating.Wear,2008,264(1-2):86~95.
    [15]孟庆武,耿林,郑镇洙等.钛合金表面激光熔覆技术的研究进展.材料导报,2004,18(9):57~59.
    [16]Zhang S, Wu W T, Wang M C et al. In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6A14V. Surf. Coat. Technol,2001,138(1):95~100.
    [17]高雪松,黄因慧,田宗军等.钛合金表面激光熔覆等离子体喷涂Al2O3-13%TiO2涂层冲蚀磨损性能.中国激光,2010,37(3):858-862.
    [18]崔爱永,胡芳友,回丽.钛合金表面激光熔覆(Ti+Al/Ni)/(Cr2O3+CeO2)复合涂层组织及耐磨性能.中国激光,2007,34(3):438~441.
    [19]王东生,田宗军,沈理达等.钛合金激光表面改性技术研究现状.激光技术,2008,45(6):24~32.
    [20]Chen X K, Wu G, Wang R et al. Laser nitriding of titanium alloy in the atmosphere environment. Surf. Coat. Technol,2007,201 (9-11):4843~4846.
    [21]Lima M S F, Folio F, Mischier S. Microstructure and surface properties of laser-remelted titanium nitride coatingson titanium. Surf. Coat. Technol.,2005,199 (1):83~91.
    [22]Yue T M, Yu J K, Mei Z et al. Excimer laser surface treatment of Ti-6A1-4V alloy for corrosion resistance enhancement. Mater. Lett,2002,52 (3):206~212.
    [23]Man H C, Cui Z D, Yue T M et al. Cavitation erosion behavior of laser gas nitrided Ti and Ti6A14V alloy. Mater. Sci. Eng. A,2003,355 (1-2):167~173.
    [24]Man H C, Zhao N Q, Cui Z D. Surface morphology of a laser surface nitrided and etched Ti-6A1-4V alloy. Surf.Coat. Technol,2005,192 (2-3):341-346.
    [25]Tian Y S, Chen C Z, Wang D Y et al. Laser surface alloying of pure titanium with TiN-B-Si-Ni mixed powders. Appl.Surf.Sci,2005,250 (8):223~227.
    [26]Tian Y S, Chen C Z, Chen L X et al. Microstructures and wear properties of composite coatings produced by laser alloying of Ti-6A1-4V with graphite and silicon mixed powders. Mater.Lett,2006, 60(1):109~113.
    [27]田永生,陈传忠,王德云等.激光熔覆生成碳硅钛化合物及组织性能研究.中国激光,,2004,31(7):879~882.
    [28]邵德春,李鑫,刘克勇.激光表面合金化提高钛合金高温抗氧化性能的研究.中国激光,1997,24(3):281~285.
    [29]田永生,陈传忠,王德云等.钛合金的激光表面处理研究进展.金属热处理,2005,30(8):29~34.
    [30]Matsuura K, Kudoh M. Surface modification of titanium by a diffusion carbonitrding method. Acta materialia,2002,50:2693~2700.
    [31]Sun Z. Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Materials Science and Engineering A,2003,345 (122):293-300.
    [32]Langlade C. Surface modification and tribological behaviour of titanium and titanium alloys after YAG-laser treatments. Surface and Coatings Technology,1998,100-101 (123):383-387.
    [33]Perez del Pino A. Oxidation of titanium through Nd:YAG laser irradiation. Applied Surface Science,2002,197-198:887-890.
    [34]Lavisse L. Early stage of the laser induced oxidation of titanium substrates. Applied Surface Science,2002,186 (124):150-155.
    [35]屠振密,朱永明,李宁等.钛及钛合金表面处理技术的应用及发展.表面技术,2009,38(6):76-86.
    [36]彭艳萍.军用新材料的应用现状及发展趋势.材料导报,2000,14(1):13-15.
    [37]付艳艳,宋月清,惠松骁等.航空用钛合金的研究与应用进展.稀有金属,2006,30(6):850-856.
    [38]王宝云,李争显,马东康.钛及钛合金表面强化技术.稀有金属,2005,30(6):25-30.
    [39]Bharat Bhushan.摩擦学导论.葛世荣译.北京:机械工业出版社,2007.
    [40]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究.摩擦学学报,2004,24(4):289-293.
    [41]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研究.润滑与密封,2007,32(12):36-39.
    [42]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究.农业机械学报,2003,34(2):289-293.
    [43]万轶,熊党生.激光表面织构化改善摩擦学性能的研究进展.摩擦学学报,2006,26(6):603-607.
    [44]Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts. Tribology International,2003,36:857-864.
    [45]Pettersson U, Jacobson S. Textured surfaces for inproved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribology International,2007,40:355-359.
    [46]历建全.朱华.表面织构及其对摩擦学性能的影响.润滑与摩擦,2009,34(2):94-103.
    [47]Wang X L, Kato K, Adachi K et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribology International,2003,36:189-197.
    [48]Wakuda M. Yamauchi Y, Kanzaki S et al. Effect of surface textuiing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear,2003,254:356-363.
    [49]闫利文.微机械制造工艺及其应用.现代制造工程,2004,3:83-85.
    [50]Moshkovith A, Perfiliev V, Gindin D et al. Surface texturing using pulsed air arc treatment. Wear,2007,263:1467-1469.
    [51]Schreck S, Zum Gahr K H. Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties. Applied Surface Science,2005,247:616-622.
    [52]宋起飞,周宏,李跃等.仿生非光滑表面铸铁材料的常温摩擦磨损性能.摩擦学学报,2006,26(1):24-26
    [53]Ltsion 1. Improving tribological performance of mechanical components by laser surface texturing. Tribology Letters,2004,17 (4):733-737.
    [54]Ryk G,Kligeman Y, Etsion I. Experimental investigation of laser surface texturing for reciprocating automotive components. Tribology Transaction,2002,45:444-449.
    [55]Pe(?)ersson U. lacobson S. Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribology International,2006, in public:1-4.
    [56]Kovalchenko A, Ajayi O, Erdemir A et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribology International,2005,38:219-225.
    [57]胡传炘.特种加工手册,北京:北京工业大学出版社,2001.
    [58]Du D,He Y F, Sui B et al. Laser texturing of rollers by pulsed Nd:YAG laser[J]. Journal of Materials Processing Technology,2005,161:456-461.
    [59]Ronen A, Etsion I, KligermanY. Friction reducing surface-texturing in reciprocating automotive components[J].Tribology Transaction,2001,44 (3):359-366.
    [60]Etsion I, Halperin G, Technion. A laser surface textured hydro-static mechanical seal[J]. Sealing Technology,2003 (3):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700