仿生墨鱼机器人及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪被称为海洋的世纪,人类开发海洋和利用海洋的脚步,随着科技的发展逐渐加快。具有海洋勘测、海底探查、海洋救捞、海底管道等人造水下结构物检测、以及水下侦查和跟踪功能的水下机器人(Unmanned Underwater Vehicle, UUV),已成为探索海洋、开发海洋和海洋防卫的重要工具。本文以墨鱼为研究对象,在分析其形态结构特征和游动推进机理的基础上,研制形状记忆合金(Shape Memory Alloy,简称SMA)丝驱动的以鳍波动方式和喷射方式复合推进的仿生墨鱼机器人,并对各推进部件和仿生墨鱼机器人样机的性能进行实验研究。为仿生水下机器人的研究提供了新型的仿生水平鳍和仿生喷射系统推进部件,并为仿生墨鱼机器人的后续开发奠定了基础。
     墨鱼属于软体动物门头足纲动物,依靠喷射和鳍波动复合推进这种特殊的方式来实现游动,不仅能像鱼一样灵活地游动,还能够实现原地转弯和快速后退等鱼类难以实现的游动动作。通过对墨鱼的游动方式和受力进行分析,建立了墨鱼水平鳍鳍波动的运动学模型和动力学模型,并对鳍波动运动的流体力学特性进行了分析。建立了墨鱼外套膜横截面的运动模型,分析了喷射推进过程中推力随外套膜的收缩量和收缩速度的变化关系。以墨鱼样本为蓝本,建立了墨鱼的三维模型,并对其游动过程中的外形阻力进行了仿真分析。
     分析了墨鱼鳍肌肉结构和动作过程,研制了更具动作对称性的SMA丝驱动的柔性鳍单元,并对其摆动输出力进行了实验研究。在实验基础上,理论计算表明鳍单元最大摆动输出力3.75 N,最大弯曲角速度141.74 rad/s。研制了柔性鳍单元驱动的模仿鳐科模式游动的仿生蝠鲼。该机器鱼游动无噪声,直线游动速度可达79 mm/s,转弯半径118 mm。通过模仿墨鱼鳍的生理结构和运动方式,研制了柔性鳍单元驱动的仿生水平鳍。通过仿真分析明确了影响仿生水平鳍推进力的影响因素。实验表明仿生水平鳍能够通过柔性鳍单元的运动带动柔性鳍面形成推进波,推进力呈周期性变化,瞬时推进力最大值169 mN,此时平均推力80 mN。研制了仿生水平鳍推进器,该推进器能实现以仿生水平鳍的鳍波动运动推进游动,最高游动速度35 mm/s。
     通过对墨鱼外套膜肌肉结构和动作过程进行分析,模仿墨鱼生理结构研制了仿生喷射系统,该系统包括SMA丝驱动仿生外套膜、SMA丝驱动仿生喷嘴和被动式仿生进水膜。仿生外套膜能实现柔性的均匀收缩,嵌入内部的SMA丝最大收缩应变2.59 %,最大贮水截面应变17.55 %。仿生喷嘴能实现多方向弯曲运动,最大弯曲角度为22°。实验表明依靠仿生外套膜的收缩和扩张运动能够推动仿生喷射系统实现与墨鱼喷射运动相似的游动运动,喷射推力主要受仿生外套膜内SMA丝的驱动电压和驱动脉冲宽度、水温和喷嘴喷口直径影响。仿生喷射系统的最大瞬时推力为600 mN,最大游动速度87.6 mm/s。
     模仿墨鱼的外形,综合考虑各推进装置和控制系统硬件结构,设计了仿生墨鱼机器人,并研制了基于CAN总线的分布式控制系统和仿生墨鱼机器人样机。该机器人样机以鳍波动运动和喷射推进运动复合方式游动,能实现向前、向后和转弯游动。最大游动速度35 mm/s与墨鱼的巡游速度接近。该样机能实现原地的转弯游动,这种原地的转弯运动能够提高机器人的机动性能,有利于增强其对复杂环境的适应能力。
     综上所述,本文对仿生墨鱼机器人及其关键技术进行了研究,研制了仿生蝠鲼仿生水平鳍、仿生喷射系统和仿生墨鱼机器人样机,为仿生墨鱼机器人的研究提供了实验平台。
The 21st century is the century of ocean. With the rapid development of science and technology, human beings begin to explore and utilize the marine resources more quickly. The underwater robots (Unmanned Underwater Vehicle, UUV) with the functions of exploration, salvage, detection and tracing have become important tools to explore ocean. In this paper, the cuttlefish is chosen as the bionic object. Based on analysis of their morphological character and swimming mechanism, a kind of biomimetic cuttlefish-like underwater robot actuated by shape memory alloy (SMA) wires has been developed, which can be propelled by jetting and undulating fin. The performance of the biomimetic robot and its parts has been studied through experiment as well. The research provides a new way to imitate jetting and undulating fin for biomimetic underwater robots research and provides basis for the subsequent development.
     Cuttlefish belong to cephalopoda class of marine mollusks. They can swim flexibly like fish through jetting and undulating fin. Moreover they can turn with zero radius and swim backward fast, which is difficult for fish. Through analysis of the swimming mode and force acting on cuttlefish, the kinematic model and dynamic model of undulating fin were established, including its hydrodynamics character. The kinematic model of the cross-section of mantle of cuttlefish was established, and variation of the thrust of jet with the contraction of the mantle was analyzed. The three-dimensional model of cuttlefish was established and the drag force due to its profile during the swimming process was also analyzed.
     The intramuscular structure and the action process of the cuttlefish fin are analyzed. Then an improved biomimetic flexible fin unit actuated by SMA wires which exhibits more symmetry in action process is investigated. The forces generated during the bending process are researched by experiments. Theory calculation shows that the maximum output force is 3.75 N and the corresponding maximum angular velocity is 141.74 rad/s. Based on the biomimetic flexible fin unit, a biomimetic manta ray robot fish is developed. It can swim silently with good stability. Its maximum swimming speed in line is 79 mm/s and its minimum turning radius can achieve 118 mm. Imitating the physical structure and movement pattern of the cuttlefish fin, a biomimetic horizontal fin based on the flexible fin unit is designed. The factors that affect the propulsive force of the biomimetic horizontal fin are analyzed by simulation. When the series of flexible fin units move up and down in a certain sequence, the biomimetic fin undulates like a wave to generate propulsive force. The experimental results showe that the forces vary periodically. The maximum instantaneous value is 169 mN and the average value is 80 mN. A vehicle propelled by the biomimetic level pectoral fin is developed. Its maximum swimming speed can achive 35 mm/s.
     Through analyzing the muscle structure of the mantle of cuttlefish and its movement character, a biomimetic jetting system is designed. The system includes a biomimetic mantle, a biomimetic funnel and a biomimetic membrane switch. All the parts are actuated by SMA wires. The biomimetic mantle can contract flexibly and evenly. The maximum contraction strain of SMA wires embedded in the biomimetic mantle can reach 2.59% and the maximum cross-section strain can reach 17.55%. The biomimetic funnel can bend in any direction and the maximum bending angle is 22°. The experiment shows that the biomimetic jetting system can be propelled by jetting like cuttlefish via expansion and contraction of the biomimetic mantle. The jetting thrust is affected by many factors, such as voltage, pulse width, water temperature and diameter of the biomimetic funnel. The maximum instantaneous thrust of the biomimetic jetting system is 600 mN and its maximum swimming speed is 87.6 mm/s.
     Imitating the shape of cuttlefish and considering all the propulsive and control hardware system, a biomimetic cuttlefish robot is designed a biomimetic cuttlefish robot prototype is fabricated based CAN bus control systems. The present prototype can swim in complex ways, combining undulate fin propulsion and jet propulsion. It is able to move forward, backward and in turning. The maximum swimming speed is 35 mm/s, closing to the cruise speed of cuttlefish. The prototype can turn with zero radius. This character can improve the robot's mobility and enhance its ability to adapt to complex environments.
     In summary, the biomimetic cuttlefish robot and its key technology are researched. The biomimetic manta ray, biomimetic horizontal fin, biomimetic jetting system and the biomimetic cuttlefish prototype are developed. The present research provides experimental platform for further study.
引文
[1]王建斌,王志敏.UUV发展、应用及关键技术[J].信息与电子工程,2007,5(6):476-480.
    [2]刘淮.应用前景广阔的无人水下航行器[J].船舶工业技术经济信息,2004(12):23-27.
    [3]李晔,常文田,孙玉山,苏玉民.自治水下机器人的研发现状与展望[J].机器人技术与应用,2007:25-31.
    [4]喻俊志,陈尔奎,王硕,谭民.仿生机器鱼研究的进展与分析[J].控制理论与应用,2003,20(4):485-491.
    [5] Jain R K, Patkar U S, Majumdar S.Micro gripper for micromanipulation using IPMCs (ionic polymer metal composites)[J].Journal of Scientific & Industrial Research,2009,68:23-28.
    [6]彭瀚旻,丁庆军,李华峰,赵淳生.IPMC型柔顺手爪作动器的设计与性能测试[J].光学精密工程,2010,18(4):899-905.
    [7] Yan S, Zhang F, Qin Z, et al..A 3-DOFs Mobile Robot Driven by a Piezoelectric Actuator[J].Smart Materials and Structures,2006,15(1):N7-N13.
    [8] Odhner L U, Asada H H.Sensorless Temperature Estimation and Control of Shape Memory Alloy Actuators Using Thermoelectric Devices[J] . IEEE/ASME TRANSACTIONS ON MECHATRONICS ,2006,11(2):139-144.
    [9] O’toole K T, Mcgrath M M.Mechanical Design and Theoretical Analysis of a Four Fingered Prosthetic Hand Incorporating Embedded SMA Bundle Actuators[J] . International Journal of Mathematical, Physical and Engineering Sciences,2007,1(2):83-90.
    [10] Breder C M.The locomotion of fishes[J].Zoologica,1926,4(2):159-256.
    [11] Webb P W.Form and function in fish swimming[J].Scientific American,1984,251(1):58-68.
    [12] Sfakiotakis M, Lane D M, Davies J B C.Review of Fish Swimming Modesfor Aquatic Locomotion[J] . Journal of Oceanic Engineering , 1999 ,24(2):237-252.
    [13] Kato N . Median and Paired Fin Controllers for Biomimetic Marine Vehicles[J].Transactions of the ASME,2005,58:238-252.
    [14]童秉纲.鱼类波状游动的推进机制[J].力学与实践,2000,22(3):69-74.
    [15] Lauder G V, Drucker E G.Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces[J].Journal of Oceanic Engineering,2004,29(3):556-571.
    [16] George V.Lauder P G a M . Fish Locomotion:Kinematics and Hydrodynamics of Flexible Foil-Like Fins[J].Exp Fluids,2007,43:641~653.
    [17] Zhu Q, Wolfgang M J, Yue D K P, et al..Three-dimensional flow structures and vorticity control in sh-like swimming[J].J. Fluid Mech,2002,468:1-28.
    [18]张代兵.波动鳍仿生水下推进器及其控制方法研究[D].长沙:国防科学技术大学博士学位论文,2007:5-7.
    [19] Taylor G . Analysis of the swimming of microscopic oranisms[C]//Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.London:The Royal Society,1951:447-461.
    [20] Taylor G.The Action of Waving Cylindrical Tails in Propelling Microscopic Organisms[C]//Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences . London : The Royal Society ,1952:225-239.
    [21] Taylor G . Analysis of the Swimming of Long and Narrow Animals[C]//Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.London:The Royal Society,1952:158-183.
    [22] Lighthill M J.Note on the swimming of slender fish[J].Journal of Fluid Mechanics,1960,9:305-317.
    [23] Lighthill M J . Aquatic animal propulsion of high hydromechanicalefficiency[J].Journal of Fluid Mechanics,1970,44(2):265-301.
    [24] Lighthill M J . Large-amolitude elongated-body theory of fish locomotion[C]//The Royal Society of London.Series B,Biological Sciences.London:The Royal Society,1971:125-138.
    [25] Wu T Y.Swimming of a waving plate[J].Journal of Fluid Mechanics,1961,10(3):321-344.
    [26]童秉纲,王安平.三维波动板加速运动的推进性能研究[J].空气动力学学报,1991,9(3):285-293.
    [27] Finnemore E J, Franzini J B.流体力学及其工程应用[M].北京:机械工业出版社,2006:
    [28] Triantafyllou M S, Triantafyllou G S . An efficient swimming machine[J].Scientific American,1995,272(3):64-70.
    [29] Techet a H, Hover F, Triantafyllou M S.Separation and Turbulence Control in Biomimetic Flows[J].Flow, Turbulence and Combustion,2003,71(1-4):105-118.
    [30]刘军考,陈在礼,陈维山,王力刚.水下机器人新型仿鱼鳍推进器[J].机器人,2000,22(5):427-432.
    [31] Licht S, Polidoro V, Flores M, et al..Design and Projected Performance of a Flapping Foil AUV[J].Journal of Oceanic Engineering,2004,29(3):768-794.
    [32] Epstein M, Colgate J E, Maciver M A.A Biologically Inspired Robotic Ribbon Fin[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.Edmonton Alberta:IEEE,2005:1-5.
    [33] Maciver M A, Fontaine E, Burdick J W.Designing Future Underwater Vehicles: Principles and Mechanisms of the Weakly Electric Fish[J].IEEE Jounal of Oceanic Engineering,2004,29(3):651-659.
    [34] Epstein M, Colgate J E, Maciver M A . Generating Thrust with a Biologically-Inspired Robotic Ribbon Fin[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.Beijing, China:IEEE,2006:2412-2417.
    [35] Jindong Liu I D, Huosheng Hu.Novel Mechatronics Design for a Robotic Fish[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems.Edmonton, Alberta, Canada:IEEE,2005:2077-2082.
    [36] Hu H, Liu J, Dukes I, et al..Design of 3D Swim Patterns for Autonomous Robotic Fish[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.Beijing, China:IEEE,2006:2406-2411.
    [37] Liu J, Hu H, Gu D.A Hybrid Control Architecture for Autonomous Robotic Fish[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.Beijing, China:IEEE,2006:312-317.
    [38] Liu J, Hu H.Biological Inspiration: From Carangiform Fish to Multi-Joint Robotic Fish[J].Journal of Bionic Engineering,2010,7:35~48.
    [39] RoboTuna[EB/OL].http://web.mit.edu/towtank/www/Tuna/tuna.html.
    [40] Robo Pike[EB/OL].http://web.mit.edu/towtank/www/Pike/photos.html.
    [41] Low K H, Willy A.Development and initial investigation of ntu robotic fish with modular flexible fins[C]//Proceedings of the IEEE International Conference on Mechatronics & Automation . Niagara Falls , Canada :IEEE,2005:958-963.
    [42] Willy A, Low K H . Initial Experimental Investigation of Undulating Fin[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.Edmonton, Alberta, Canada:IEEE,2005:1600-1605.
    [43] Low K H.Parametric Study of Modular and Reconfigurable Robotic Fish with Oscillating Caudal Fin Mechanisms[C]//IEEE International Conference on Mechatronics and Automation.Harbin,China:IEEE,2007:123-128.
    [44] Anderson J M, Kerrebrock P A.The vorticity control unmanned undersea vehicle (VCUUV): an autonomous robot tuna[C]//10th International Symposium on Unmanned Untethered Submersible Technology.Durham, New Hampshire,1997:63-70.
    [45] Anderson J M, Chhabra N K.Maneuvering and Stability Performance of a Robotic Tuna[J].Integrative and Comparative Biology,2002,42(1):118-126.
    [46] Lachat D, Crespi A, Ijspeert a J.BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator[C]// IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics BioRob.Pisa,Italia:IEEE,2006:643-648.
    [47] Kato N . Median and Paired Fin Controllers for Biomimetic MarineVehicles[J].Applied Mechanics Reviews,2005,58(4):239-252.
    [48] Kato N.Control Performance in the Horizontal Plane of a Fish Robot with Mechanical Pectoral Fins[J].IEEE Journal of Oceanic Engineering,2000,25(1):121-129.
    [49] Fish F E, Lauder G V, Mittal R, et al. . Conceptual Design for the Construction of a Biorobotic AUV Based on Biological Hydrodynamics[C]//Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology.Durham,USA,2003:1-8.
    [50] Plamondon N, Nahon M.A trajectory tracking controller for an underwater hexapod vehicle[J].BIOINSPIRATION & BIOMIMETICS,2009,4(3):1-13.
    [51]梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展I——鱼类推进机理[J].机器人,2002,24(2):107-111.
    [52]梁建宏,王田苗,魏洪兴,等.水下仿生机器鱼的研究进展II—小型实验机器鱼的研制[J].机器人,2002,24(3):234-238.
    [53]粱建宏,邹丹,王松,等.SPC-Ⅱ机器鱼平台及其自主航行实验[J].北京航空航天大学学报,2005,31(7):709-713.
    [54]文力,梁建宏,谢成荫,等.SPC-3 UUV仿生机器鱼及其长航时实验[J].机器人技术与应用,2007(4):33-36.
    [55] Xu Y, Zong G, Bi S, et al..initial development of a flapping propelled unmanned underwater vehicle(UUV)[C]//proceedings of the 2007 IEEE international conference on robotics and biomimetics . Sanya,China :IEEE,2007:524-529.
    [56] Wang M, Yu J, Tan M.Modeling Neural Control of Robotic Fish with Pectoral Fins Using a CPG-based Network[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference.Shanghai,China:IEEE,2009:6502-6507.
    [57] Zou K, Wang C, Xie G, et al..Cooperative Control for Trajectory Tracking of Robotic Fish[C]//2009 American Control Conference.St. Louis, USA,2009:5504-5509.
    [58] Hu Y, Zhao W, Wang L, et al..Neural-based Control of Modular Robotic Fish with Multiple Propulsors[C]//Proceedings of the 47th IEEE Conferenceon Decision and Control.Cancun, Mexico:IEEE,2008:5232-5237.
    [59] Wang J Y a L.Parameter Optimization of Simplified Propulsive Model for Biomimetic Robot Fish[C]//2005 IEEE International Conference on Robotics and Automation.Barcelona, Spain:IEEE,2005:3306-3311.
    [60] Zhao W, Hu Y, Wang L.Leader-following Formation Control of Multiple Vision-based Autonomous Robotic Fish[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China:IEEE,2009:579-584.
    [61] Zhao W, Hu Y, Wang L.Construction and Central Pattern Generator-Based Control of a Flipper-Actuated Turtle-Like Underwater Robot[J].Advanced Robotics,2009,23:19-43.
    [62] Zhao W, Hu Y, Wang L, et al..Development of a Flipper Propelled Turtle-like Underwater Robot and Its CPG-based Control Algorithm[C]//Proceedings of the 47th IEEE Conference on Decision and Control.Cancun, Mexico:IEEE,2008:5226-5231.
    [63] Shang L, Wang S, Tan M, et al..Motion Control for an Underwater Robotic Fish with Two Undulating Long-Fins[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China:IEEE,2009:6478-6483.
    [64]王光明,胡天江,李非,等.长背鳍波动推进游动研究[J].机械工程学报,2006,42(3):88-92.
    [65]谢海斌,沈林成,胡天江.“尼罗河魔鬼”柔性长鳍运动曲面建模与仿真[J].国防科技大学学报,2005,27(5):62-66,94.
    [66] Hu T, Shen L, Lin L, et al..Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus[J].Mechanism and Machine Theory,2009,4:633-645.
    [67]谢海斌,张代兵,沈林成.基于柔性长鳍波动推进的仿生水下机器人设计与实现[J].机器人,2006,28(5):525-529,535.
    [68] Yang S B, Qiu J, Han X Y.Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish[J] . Journal of Bionic Engineering,2009,6(2):174-179.
    [69]杨少波,韩小云,张代兵,等.一种新型的摆动模式推进机器鱼设计与实现[J].机器人,2008,30(6):508-515.
    [70]仿生推进器[EB/OL] . http://robot.buaa.edu.cn/project/dept7-5-fangshengtuijinqi.htm.
    [71]成巍.仿生水下机器人仿真与控制技术研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2004:21-22.
    [72]成巍,苏玉民,秦再白,万磊,徐玉如.一种仿生水下机器人的研究进展[J].船舶工程,2004,26(1):5~8.
    [73] Xia D, Chen W, Liu J, et al..System and Experimental Research on Biomimetic Robot Fish[C]//2007 IEEE International Conference on Mechatronics and Automation.Harbin, China:IEEE,2007:111-116.
    [74]郑精辉.基于波动机理的仿生鱼探测器研究[D].浙江大学硕士学位论文,2007:64-67.
    [75] Punning A, Anton M, Kruusmaa M, et al..A Biologically Inspired Ray-like Underwater Robot with Electroactive Polymer Pectoral Fins[C]//IEEE Mechatronics and Robotics.,2004:241-245.
    [76] Anton M, Punning A, Aabloo A, et al. . Towards a biomimetic EAP robot[C]//Proceedings of Towards the Autonomous Mobile Robots .UK:University of Essex,2004:1-7.
    [77] Punning A, Kruusmaa M, Aabloo A.A self-sensing ion conducting polymer metal composite (IPMC) actuator[J].Sensors and Actuators A: Physical ,2007,136(2):656-664.
    [78] Guo S, Shi L, Ye X, et al. . A New Jellyfish Type of Underwater Microrobot[C]//2007 IEEE International Conference on Mechatronics and Automation.Harbin, China:IEEE,2007:509-514.
    [79] Guo S, Fukuda T, Asaka K . A New Type of Fish-Like Underwater Microrobot[J].2003 IEEE/ASME Transactions on Mechatronics,2003,8(1):136-141.
    [80] Guo S, Hasegaw Y, Fukuda T, et al..Fish-like Underwater Microrobot with Multi DOF[C]//2001 International Symposium on Micromechatronics and Human Science.Nagoya, Japan,2001:63-68.
    [81] Guo S, Sugimoto K, Hata S, et al..A New Type of Underwater Fish-like Microrobot[C]//2000 IEEE/RSJ International Conference on Intelligent Robots and Systems.Takamatsu, Japan:IEEE,2000:867-872 .
    [82] Guo S, Fukuda T, Kato N, et al..Development of Underwater Microrobot Using ICPF Actuator[C]//1998 IEEE International Conference on Robotics and Automation.Leuven, Belgium:IEEE,1998:1829-1834 .
    [83] Guo S, Okuda Y, Asaka K.Hybrid Type of Underwater Micro Biped Robot with Walking and Swimming Motions[C]//2005 IEEE International Conference on Mechatronics and Automation. Niagara Falls, Canada:IEEE,2005:1604-1609.
    [84] Tangorra J, Anquetil P, Fofonoff T, et al..The application of conducting polymers to a biorobotic fin propulsor[J] . BIOINSPIRATION & BIOMIMETICS,2007,2(2):6-17.
    [85] Takagi K, Yamamura M, Luo Z W, et al..Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Beijing, China:IEEE,2006:1861-1866.
    [86] Chen Z, Shatara S, Tan X.Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer Metal Composite Caudal Fin[J] . IEEE/ASME TRANSACTIONS ON MECHATRONICS,2010,5(3):448-459.
    [87] Mbemmo E, Chen Z, Shatara S, et al..Modeling of Biomimetic Robotic Fish Propelled by an Ionic Polymer-Metal Composite Actuator[C]//2008 IEEE International Conference onRobotics and Automation . Pasadena, CA, USA:IEEE,2008:689-694.
    [88]郝丽娜,徐夙,刘斌.基于IPMC驱动器的小型遥控机器鱼的研制[J].东北大学学报(自然科学版),2009,30(6):773-776.
    [89] Xu S, Liu B, Hao L.A Small Remote Operated Robotic Fish Actuated by IPMC[C]//Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics . Bangkok, Thailand : IEEE , 2008 : 1152-1156.
    [90]苏玉东,叶秀芬,郭书祥.基于IPMC驱动的自主微型机器鱼[J].机器人,2010,32(2):262-270.
    [91] Fukuda T, Kawamoto A, Ami F, et al. . Mechanism and Swimming Experiment of Micro Mobile Robot in Water[C]//1994 IEEE International Conference on Robotics and Automation.San Diego, CA, USA:IEEE,1994:814-819.
    [92] Fukuda T, Kawamoto A, Arai F, et al..Steering Mechanism of Underwater Micro Mobile Robot[C]//1995 IEEE international Conference on Robotics and Automation.Nagoya, Japan:IEEE,1995:363-368.
    [93] Deng X, Avadhanula S . Biomimetic Micro Underwater Vehicle with Oscillating Fin Propulsion: System Design and Force Measurement[C]//2005 IEEE International Conference on Robotics and Automation.Barcelona, Spain:IEEE,2005:3312-3317.
    [94] Borgen M G, Washington G N, Kinzel G L.Design and Evolution of a Piezoelectrically Actuated Miniature Swimming Vehicle[J].IEEE/ASME TRANSACTIONS ON MECHATRONICS,2003,8(1):66-76.
    [95]谭湘强,钟映春,杨宜民.液体中运动微机器人的研制[J].现代制造工程,2003(4):7-9.
    [96]谭湘强.液体中微机器人的运动机理及实验研究[D].广东:广东工业大学博士学位论文,2002:54-68.
    [97]钟映春,谭湘强,杨宜民.泳动微机器人主体机构的设计研究[J].机床与液压,2001(6):18-19、31.
    [98] Ayers J, Wilbur C, Olcott C . Lamprey Robots[C]//Proceedings of the International Symposium on Aqua Biomechanisms. Hiratsuka, Japan:Tokai University,2000:1-6.
    [99]杭观荣,曹国辉,王振龙,等.SMA驱动的仿生机器人研究现状及其展望[J].微特电机,2006,34(11):4-8.
    [100] Safak K K, Adams G G.Modeling and simulation of an artificial muscle and its application to biomimetic robot posture control[J] . Robotics and Autonomous System,2002,41(4):225-243.
    [101] Suleman A, Crawford C.Design and testing of a biomimetic tuna using shape memory alloy induced propulsion[J].Computers and Structures,2008,86(3-5):491-499.
    [102] Shinjo N, Swain G W.Use of a Shape Memory Alloy for the Design of an Oscillatory Propulsion System[J] . 2004 IEEE Journal of Oceanic Engineering,2004,29(3):750-755.
    [103]章永华,马记,何建慧,等.基于人工肌肉的仿生机器鱼关节机构设计与力学分析[J].机器人,2006,28(1):40-44.
    [104] Zhang Y, Li S, Ma J, et al..Development of an Underwater Oscillatory Propulsion System Using Shape Memory Alloy[C]//2005 IEEE International Conference on Mechatronics and Automation. Niagara Falls, Canada:IEEE,2005:1878-1883.
    [105]章永华何,吴月华,等.基于功能材料的柔性多关节水下仿鱼形推进器设计及分析[J].机器人,2006,28(4):367-373.
    [106] Low K H, Yang J, Pattathil a P, et al..Initial Prototype Design and Investigation of an Undulating Body by SMA[C]//2006 IEEE International Conference on Automation Science and Engineering.Shanghai, China:IEEE,2006:472-477.
    [107] Zhang Y, He J, Yang J, et al..Initial Research on Development of a Flexible Pectoral Fin Using Shape Memory Alloy[C]//2006 IEEE International Conference on Mechatronics and Automation.Luoyang, China:IEEE,2006:255-260.
    [108] Wu Z S, Hua Z Y, Jie Y, et al..Computational Study on Posture Control of Shape Memory Alloy Biomimetic Pectoral Fin[C]//2007 IEEE International Conference on Mechatronics and Automation . Harbin, China : IEEE ,2007:497-502.
    [109] Hua Z Y, Wu Z S, Jie Y, et al..Morphologic Optimal Design of Bionic Undulating Fin Based on Computational Fluid Dynamics[C]//2007 IEEE International Conference on Mechatronics and Automation.Harbin, China:IEEE,2007:491-496.
    [110] Zhang Y, Laibin J, He J, et al..A Numerical Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy[C]//2006 IEEE International Conference on Robotics and Biomimetics.Kunming, China:IEEE,2006:73-78.
    [111] Zhenlongwang, Hang G, Yangweiwang, et al. . Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion[J] . SMART MATERIALS AND STRUCTURES , 2008 ,17(2):1-17.
    [112]杭观荣,王振龙,李建,等.基于柔性弯曲鳍单元的尾鳍推进微型机器鱼设计研究[J].机器人,2008,30(2):171-175,181.
    [113]王宏.用于仿生推进的SMA驱动器研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2007:99-106.
    [114] Kornbluh R, Peirine R, Pei Q, et al..Ultrahigh strain response of field-actuated elastomeric polymers[C]//Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD) .Newport Beach, CA, USA :SPIE,2000:51-64.
    [115]赵连成,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002:1-4.
    [116]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科技大学出版社,1993:1-9.
    [117]王家海,宣力伟.形状记忆合金在驱动器上的应用研究[J].机电产品开发与创新,2006,19(4):65-67.
    [118]赵可昕,杨永民.形状记忆合金在建筑工程中的应用[J].材料开发与应用,2007,22(3):40-46.
    [119]王利红.形状记忆合金驱动元件动作响应速度的分析[J].2002(5):34-35.
    [120] Hughes D.Preisach Modeling of Piezoceramic and Shape Memory Alloy Hysteresis[C]//Smart Structures and Materials 1996: Mathematics and Control in Smart Structures.San Diego, CA, USA :SPIE,1996:507-528.
    [121] Hughesy D, Wenz J T. Preisach modeling of piezoceramic and shape memory alloy hysteresis[J].SMART MATERIALS & STRUCTURES ,1997,6(3):287-300.
    [122]杨凯,辜承林,史铁林,等.用于柔性机械手的形状记忆合金驱动器滑模控制研究[J].中国机械工程,2004,15(20):1794-1797.
    [123] Vaidyanathan R, Chiel H J, Quinn R D.A Hydrostatic Robot for Marine Applications[J].Robotics and Autonomous Systems,2000,30(1-2):103-113.
    [124] Menciassi A, Gorinii S, Pemorio G, et al..A SMA Actuated Artificial Earthworm[C]//Proceedings of the 2004 IEEE International Conference on Robotics and Automation.NeW Orleans, LA,USA:IEEE,2004:3282-3287.
    [125]秦昌骏,马培孙,姚沁.基于SMA的仿昆虫蠕动微型车[J].功能材料与器件学报,2004,10(2):239-244.
    [126]任淑仙.无脊椎动物(上册)[M].北京:北京大学出版社,1990:403~409.
    [127]董正之科学出版社.中国动物志软体动物门头足纲[M].北京:科学出版社,1998:14.
    [128] Payne N L, Gillanders B M, Seymour R S, et al..Accelerometry estimates field metabolic rate in giant Australian cuttlefish Sepia apama during breeding[J].Journal of Animal Ecology,2011,80(2):422-430.
    [129] K.Bartol I, R.Patterson M, Mann R.Swimming Mechanics and Behavior of the Shallow-Water Brief Squid Lolliguncula brevis[J] . Jurnal of Experimental Biology,2001,204:3655-3682.
    [130] Jordan C E.A Model of Rapid-Start Swimming at Intermediate Reynolds Number : Undulatory Locomotion in the Chaetognath Sagitta Elegans[J].The Journal of Experimental Biology,1992,163(1):119-137.
    [131] O'dor R K, Webber D M.invertebrate athletes:trade-offs between transport efficiency and power density in cephalopod evolution[J] . Journal of Experimental Biology,1991,160:93-112.
    [132]童兼纲,庄礼贤,程健宇.鱼类波状摆动推进的流体力学研究[J].力学与实践,1991,13(3):17-26.
    [133] Kier W M, Thompson J T.Muscle Arrangement, Function and Specialization in Recent Coleoids[J].Berliner pal?obiologische Abhandlungen,2003,3:141-162.
    [134]杭观荣.基于肌肉性静水骨骼原理的机器乌贼原型关键技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:50-56.
    [135] Schaefer J T, Summers a P . Batoid Wing Skeletal Structure: Novel Morphologies,Mechanical Implications, and Phylogenetic Patterns[J].Journal of Morphology,2005,264:298-313.
    [136] Klausewitz W . Der lokomotionsmodus der flugelrochen (myliobatoidei)[J].Zool.Anz,1964,173:110-120.
    [137] Lu T J, Hutchinson J W, Evans a G . Optimal design of a flexural actuator[J].Journal of the Mechanics and Physics of Solids,2001,49(9):2071-2093.
    [138] Krieg M, Mohseni K.Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots[J] . Journal of Oceanic Engineering,2008,33(2):123-132.
    [139] Thomas a P, Milano M, G’sell M G, et al..Synthetic jet propulsion for small underwater vehicles[C]// Proceedings of the IEEE International Conference on Robotics and Automation.Barcelona, Spain:IEEE,2008:509-514.
    [140]杜威.SMA驱动的仿乌贼喷射推进器原型研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:39-59.
    [141]吴清华.形状记忆合金丝驱动的仿乌贼外套膜和腕鳍研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:17-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700