ICPF智能材料驱动的仿生微型机器鱼的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生微型机器鱼作为仿生机器鱼的一种,有着大型机器鱼不可替代的作用。ICPF(Ionic Conducting Polymer Film离子导电聚合物薄膜)材料的驱动电压低、具有较高的能量转化效率,在交变电压作用下,会产生类似于鱼类尾部的左右摆动,适于用于微型机器鱼的尾鳍驱动,而且ICPF重量轻、结构简单、易于小型化。基于ICPF驱动的微型仿生机器鱼可由3V低电压驱动,具有体积小、重量轻、常规探测仪器难以探测到的优点。这是其他非马达驱动器所不能比拟的。目前ICPF作为仿生鱼驱动器方面的力学特性、电特性以及控制模型的研究还不完善,有必要对其进行深入研究。本文的研究内容主要包括两大部分:第一部分是ICPF的基础研究和面向控制的ICPF驱动模型的研究,第二部分是ICPF驱动的仿生微型机器鱼的研究和微型机器鱼的推进模型与效率研究。
     首先,论文在ICPF的基础研究中对ICPF的形态特征、驱动特性和传感特性进行了深入的研究和分析。通过实验重点研究了驱动电压与输出曲率的关系、ICPF的驱动电压与输出力的关系、驱动电压与输出位移的关系等。特别是建立了输出曲率与输入电压的关系,解决了以往ICPF大形变时采用激光位移传感器测量输出不准确的问题,通过曲率来精确测量ICPF的输出。对于ICPF的传感特性,通过实验获得了ICPF摆动的最大速度与输出电压的关系的曲线。还对ICPF的热力学效率进行了分析,提出了提高热力学效率的方法。
     在ICPF特性研究的基础上,本文提出了一种可用于微型机器鱼实时控制的ICPF的驱动模型。模型包括电模型、电机械耦合模型以及机械悬臂梁模型三部分。电模型是结合电荷与输入电压的映射关系以及ICPF的等效电路,描述ICPF非线性电容上的电压输入与电荷输出的关系。电机械耦合模型是将电荷在ICPF中的运动带动ICPF局部结构运动,转化为ICPF内部应力的过程。机械悬臂梁模型是将内部应力转换为外部弯曲力矩和弯曲曲率的问题。该模型明确给出了输入电压与输出电荷之间的映射关系并适合用于实时控制。
     随后,开展了ICPF驱动的仿生微型机器鱼的研究、推进模型研究以及提高推进效率的研究,主要研究内容包括:
     参考自然界小鱼的生物学特征,根据ICPF材料的特性、模型和小型鱼类运动和受力的特点,设计了长度在10cm以下的、能够三维游动、速度更快的微型机器鱼。采用ICPF作为微型机器鱼的尾鳍和胸鳍驱动器来实现微型机器鱼的各种运动模式。通过一系列实验,对设计的微型机器鱼的相关性能进行验证。
     提出了微型机器鱼的尾鳍推进模型来描述控制电压信号与机器鱼巡航速度的关系。通过解ICPF的欧拉-贝努利悬臂梁4阶偏微分方程,采用模态分析法推导出ICPF尾鳍形状与输入电压之间的传递函数。模型结合了尾鳍与水的相互作用,最终推导出ICPF的输入电压与机器鱼巡航速度的关系。实验证明该尾鳍推进模型能够很好地预测在不同频率驱动电压作用下微型机器鱼的巡航速度,该模型可以用于指导微型机器鱼的设计。
     为了提高微型机器鱼的续航能力,我们重点研究了微型机器鱼的效率优化。提出采用多段ICPF推进器拟合鱼的尾部摆动轨迹来提高推进效率的方法,并通过仿真验证了方法的可行性。我们还优化了尾鳍被动鳍的形状,采用的鳍条结构的尾鳍来提高微型机器鱼的效率,有助于尾鳍形成更好的涡流来提高微型机器鱼的推进性能,使得微型机器鱼的游速有较大提高。
     总之,以上的研究证明ICPF是微型机器鱼驱动的理想材料,好的控制方法可以使其在微型机器鱼的尾鳍驱动方面取得良好的效果。
A biomimetic micro robot fish as a type of biomimetic robot fish plays irreplaceable rolein robot fish. ICPF (Ionic Conducting Polymer Film) has the advantages of low actuationvoltage, high efficiency.It can swing like fish tail under alternating voltage actuation, so it issuitable to be tail fin of micro robot fish. ICPF is light in weight and simple in structure. It iseasy to miniature too. A micro biomimetic robot fish actuated by ICPF can work at3Vvoltage, which is in size, light in weight and is difficult to detecte. This is incomparable toother non-motor actuators. Micro robot fish actuated by ICPF has important applications inthe field of military and civilian for example longterm underwater latent work. The microrobot fish can be used in ships, boats and nuclear power stations and other equipment with asmall pipe dredging. It can also be used for medical treatment, such as the gut, screening,treatment of vascular disease. Mechanical properties, electirc properties and modeling ofICPF as actuator of biomimetic fish are not perfect, so it is necessary to study it deeply.
     The purpose of this paper is to study a micro robot fish actuated by ICPF. Because of itsunique mechanical and electronic transfer characteristics, ICPF can be used as both actuatorsand sensors, so it is usually called smart materials. ICPF is taken as the material of microrobot fish actuator after deeply analyzing the properties of it. On the basis of analyzing themotion characteristics of small fish and the force acting on small fish, we designed a threedimensional swimming automaus biomimetic micro robot fish actuated by the ICPF. Themicro robot fish in the water can carry out cruising straight, turn, ascent, descent, burst andmany other moments. ICPF act as the tail fin and the pectoral fin actuator in the micro robotfish. This dissertation mainly includes two parts: the first part is to study the properties ofICPF and to establish a real time control-oriented actuation model for ICPF, and the secondpart is about the ICPF actuated biomimetic micro robot fish.
     Firstly, ICPF actuting properties and sensing properties are studied deeply. ICPFactuation properties include: electrical properties, mechanical to electrical properties andmechanical properties. Especially, experiment study focus on the relationship between ICPFactuation voltage and output force, the relationship between voltage and output displacement,the relationship between actuation voltage and output curvature. Especially the relationshipbetween the actuation voltage and the output curvature is the method of solving the problemof inaccuracy measuring the large deformation of ICPF by the laser sensor. We draw thediagram of these relationships to analysis the properties of ICPF. We studied the ICPF sensing characteristics too, obtained relationship between ICPF viberating speed and themaximum output voltage through experiments, and the relationship between ICPF viberatingof maximum displacement and output voltage.
     Base on experiments and properties study of the ICPF, this dissertation presents areal-time control-oriented actuation model for ICPF, which describe the relationship betweeninput voltage and output bending moment and curvature. Then ICPF control system isdesigned according to the actuation model. Compared with other ICPF model, this model hasmany advantages such as short structure, easy calculation, real-time and can be applied to fishfin control because it is intended to the application of micro robot fish without the pursuit ofcompleted physical explanation.
     Secondly, based on the analysis of ICPF properties and control model, a kind of microrobot fish is studied, the contents is as followd:
     The fish moment track parameters are obtaind after exploring the biological basis of asmall fish, analysing the movement and force condition of small fish, sxtracting the skeletonof fish image, combining the lease squares method and the slender body theory of Lighthill,
     According to the properties and model of ICPF and analysis of the movement of fish andforce acting on the small fish, a micro robot fish is designed which can move in threedimention in water aotonomously. The performance of the mciro robot fish is verified througha series of experiment.
     At the end, the propulsion model of the micro robot fish about the relationship betweenthe control signal and swimming speed are studied. To improve swimming speed andefficiency of the micro robot fish, a method of applying multiple segments of ICPF actuator tofit the tail trajectory and a new stucture of fin stick tail are applied.
引文
[1] R. Hamlen, C. Kent, and S. Shafer. Electrochemically activated contractile polymer.Nature.1965(206):1149–1150P
    [2] A. Katchalsky. Rapid swelling and deswelling of reversible gels of polymeric acids byionization. Experientia.1949(5):319–320P
    [3] W. Kuhn. Reversible dehung und kontraktion bei anderung der ioisation einesnetzwerks polyvalenter fadenmolekulionen. Experientia.1949(5):318–319P
    [4] W. Kuhn, B. Hargitay, A. Katchalsky, and H. Eisenberg. Reversible dialation andcontraction by changingthe state of high-polymer acid networks. Nature.1950(165):514–516P
    [5] K. Oguro, Y. Kawami, and H. Takenaka. Bending of an ion-conducting polymerfilm-electrode composite by an electric stimulus at low voltage. Journal ofMicromachine Society.1992(5):27–30P
    [6] K. Sadeghipour, R. Salomon, and S. Neogi. Development of a novel electrochemicallyactive membrane and smart material based vibration sensor/damper. Smart Materialsand Structures.1992(1):172–179P
    [7] Kwang J Kim and Mohsen Shahinpoor,Ionic polymer–metal composites:II.Manufacturing techniques. Smart Materials and Structers.2003(12):65–79P
    [8] Mohsen Shahinpoor and Kwang J Kim. Ionic polymer–metal composites:III. Modelingand simulation as biomimetic sensors, actuators, transducers, and artificial muscles,Smart Materials and Structers.2004(13):1362–1388P
    [9] Mohsen Shahinpoor and Kwang J Kim. Ionic polymer–metal composites:IV. Industrialand medical applications. Smart Materials and Structers.2005(14):197–214P
    [10] Mohsen Shahinpoor and Kwang J Kim. The effect of surface-electrode resistance onthe performance of ionic polymer–metal composite (IPMC) artificial muscles. SmartMater. Struct.2000(9):543–551P
    [11] Shahinpoor.M. Conceptual design, Kinematics and dynamics of swimming roboticstructures using ionic polymeric gel muscles. SmartMaterials and Structures.1992:91-94P
    [12] Kwang J.Kim,Mohsen Shahinpoor and Arsalan Razani. Preparation of IPMCs for usein Fuel Cells,Electrolysis, and Hydrogen. Sensors Smart Structures and Materials2000:Electroactive Polymer Actuators and Devices(EAPAD), Proceedings ofSPIE(3987).2000:311-320P
    [13] R. Lumia, M. Shahinpoor, Microgripper design using electroactive polymers, SmartStructures and Materials1999:Electroactive Polymer Actuators and Devices.1999:322–329P
    [14] Byungkyu Kim, Byung Mok Kim, Jaewook Ryu. Analysis of mechanicalcharacteristics of the ionic polymer metal composite (IPMC) actuator using castion-exchange film. Smart Structures and Materials2003: Electroactive PolymerActuators and Devices (EAPAD), Proceedings of SPIE.2003(5051):486-495P
    [15] Nemat-Nasser S, Li J Y. Electromechanical response of ionic polymer-metalcomposites. Journal of Applied Physics,2000(7):3321-3331P
    [16] K. M. Farinholt. Modeling and characterization of ionic polymer transducers forsensing and actuation:[dissertation]. Virginia Polytechnic Institute and State University.2005
    [17] Zheng Chen, Xiaobo Tan, A. Will, C. Ziel. A dynamic model for Ionic Polymer-MetalComposite sensors. Smart Materials and Structures2007(4):1477–1488P
    [18] G.-H. Feng, R.-H. Chen. Fabrication and characterization of arbitrary shaped μIPMCtransducers for accurately controlled biomedical applications. Sensors and Actuators A:Physical.2008(143):34-40P
    [19] B.-K. Fang, M.-S. Ju, C.-C. K. Lin, A new approach to develop ionic polymer-metalcomposites (IPMC) actuator: Fabrication and control for active catheter systems,Sensors and Actuators A: Physical.2007(137):321–329P
    [20] W. J. Yoon, P. G. Reinhall, E. J. Seibel. Analysis of electro-active polymer bending: Acomponent in a low cost ultrathin scanning endoscope. Sensors and Actuators A:Physical2007(133):506–517P
    [21] K. Mallavarapu, D. Leo. Feedback control of the bending response of ionic polymeractuators. Journal of Intelligent Material Systems and Structures2001(12):143–155P
    [22] C. Kothera. Characterization, modeling and control of the nonlinear actuation responseof ionic polymer transducers:[dissertation]. Virginia Polytechnic Institute and StateUniversity.2005
    [23] N. D. Bhat. Modeling and precision control of ionic polymer metalcomposite:[dissertation]. Texas A&M University.2003
    [24] R. C. Richardson, M. C. Levesley, M. D. Brown. Control of ionic polymer metalcomposites. IEEE/ASME Transactions on Mechatronics2003(2):245–253P
    [25] J. E. Sader. Frequency response of cantilever beams immersed in viscous fluids withapplications to the atomic force microscope. Journal of Applied Physics.1998(1):64–76P
    [26] C. Bonomo, C. D. Negro, L. Fortuna, S. Graziani, D. Mazza. Characterization of IPMCstrip sensorial properties: Preliminary results. Proceedings of International Symposiumon Circuits and Systems,2003(IV)816–819P
    [27] K. Farinholt, D. Leo. Modeling of electromechanical charge sensing in ionic polymertransducers. Mechanics of Materials.2004(36):421–433P
    [28] A. Punning, M. Kruusmaa, A. Aabloo. Surface resistance experiments with IPMCsensors and actuators. Sensors and Actuators A.2007(133):200–209P
    [29] A. Punning, M. Kruusmaa, A. Aabloo. A self-sensing ion conducting polymer metalcomposite (IPMC) actuator. Sensors and Actuators: A2007(136):656–664P
    [30] K. M. Newbury. Characterization, modeling, and control of ionic polymertransducers:[dissertation]. Virginia Polytechnic Institute and State University.2002
    [31] J. Ryu, J. Park, B. Kim, J.-O. Park. Design and fabrication of a largely deformablesensorized polymer actuator. Biosensors and Bioelectronics2005(21):822–826P
    [32] Z. Chen, X. Tan, M. Shahinpoor. Quasi-static positioning of ionic polymer-metalcomposite (IPMC) actuators. Proceedings of the IEEE/ASME International Conferenceon Advanced Intelligent Mechatronics, Monterey, CA.2005:60–65P
    [33] Y. Kaneda, ed. Control of linear artificial muscle actuator using ICPF. SICE AnnualConference in Fukui, August4-6.2003Fukui tiniversiry, Japan2003:1650-1655P
    [34] Xiaoqi Bao, ed. Measurements and macro models of ionic polimer-metalcomposits(IPMC). Proceedings of the SPIE Smart Structures and MaterialsSymposium, EAPAD Conference, San Diego, CA, March18-21,2002:220-227P
    [35] Kwang J. Kim,Satoshi Oguro. Electroactive Polymers for Robotic Applications-Artificial Muscles and Sensors. Springer-Verlag London Limited2007
    [36] Tadokoro S., Yamagami S., Takamori T. et al. Modeling of Nafion-Pt compositeactuators (ICPF) by ionic motion. Electroactive Polymer Actuators and Devices.Bellingham: SPIE.2000:92-102P
    [37] Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metalcomposites(IPMCs). Journal of Applied Physics.2002(92):2899-2915P
    [38] Jun Ho Lee, Jong Hoon Lee et al. Water uptake and migration effects of electroactiveion-exchange polymer metal composite (IPMC) actuator. Sensors and Actuators A.2005(118):98–106P
    [39] Ashwin Mudigondaa, Jianchao Jim Zhu. Characterization and Dynamic Modeling ofIonic Polymer-Metal Composites (IPMC)-'Artificial Muscles’. Smart Structures andMaterials2006Proc. of SPIE.2006(6168):616815-1-12P
    [40] Vinh Khanh Nguyen, Jang Woo Lee, Youngtai Yoo. Characteristics and performanceof ionic polymer–metal composite actuators based on Nafion/layered silicate andNafion/silica nanocomposites. Sensors and Actuators B.2007(120)529–537P
    [41] Jason W. Paquette, Kwang J. Kim,and Alan Fuchs. Low Temperature Operation ofIonic Polymer Metal Composites Actuators. Smart Structures and Materials2003:Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE.2003(5051):254-261P
    [42] Hoon Cheol Park, Kwang Jin Kimb, Sang Ki Leea Chaha. Electro-mechanical flappingproduced by Ionic Polymer-Metal Composites. Smart Structures and Materials2004:Electroactive Polymer Actuators and Devices (EAPAD), SPIE.2004(5385):242-248P
    [43] Shahram Zamani and Sia Nemat-Nasser. Controlled actuation of Nafion-based IonicPolymer-metal Composites (IPMCs) with Ethylene Glycol as Solvent. Smart Structuresand Materials2004: Electroactive Polymer Actuators and Devices (EAPAD),Proceedings of SPIE.2004(5385):159-163P
    [44] Hirohisa Tamagawa, Kazuyuki Yagasaki,Fumio Nogata. Mechanical characteristics ofionic polymer-metal composite in the process of self-bending. JOURNAL OFAPPLIED PHYSICS.2002(12):7614-7618P
    [45] Kenneth M. Newbury and Donald J. Leo. Electrically induced permanent strain in ionicpolymer-metal composite actuators. Smart Structures and Materials2002: ElectroactivePolymer Actuators and Devices (EAPAD), Proceedings of SPIE.2002(4695):67-77P
    [46] Sia Nemat-Nasser and Yongxian Wu. Tailoring actuation of ionic polymer-metalcomposites through cation combination. Smart Structures and Materials2003:Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE.2003(5051):245-253P
    [47] Surya D. Panditaa, Hyoung Tae Limb, Youngtai Yoob. Degradation Mechanism ofIonic Polymer Actuators Containing Ionic Liquids as a Mixed Solvent. SmartStructures and Materials2006: Electroactive Polymer Actuators and Devices (EAPAD),Proceedings of SPIE.2006(6168):616816-1-11P
    [48] Srinivas Vemuri, Kwang J. Kim, and Il-Seok Park. Thermal Management of IonicPolymer-Metal Composites. Smart Structures and Materials2006: ElectroactivePolymer Actuators and Devices (EAPAD). Proceedings of SPIE.2006(6168):61681Z-1-9P
    [49] Kazuyuki Yagasaki. Experimental estimate of viscoelastic properties for ionicpolymer-metal composites. The American Physical Society2004, PHYSICALREVIEW E.2004(70):1-4P
    [50] Jason WPaquette, Kwang J Kim, Doyeon Kim. The behavior of ionic polymer–metalcomposites in a multi-layer configuration. Smart Mater. Struct.2005(14):881–888P
    [51] A. Punning, M. Kruusmaa, A.Aabloo. Surface resistance experiments with IPMCsensors and actuators. Sensors and Actuators A.2007(133):200–209P
    [52] Seong Jun Kim, In Taek Lee, Ho-Young Lee and Yong Hyup Kim. Performanceimprovement of an ionic polymer–metal composite actuator by parylene thin filmcoating. Smart Mater. Struct.2006(15):1540–1546P
    [53] T. Nguyen, N. Goo, V. Nguyen, Y.Yoo, S. Park. Design, fabrication, and experimentalcharacterization of a flap valve IPMC micropump with a flexibly supported diaphragm.Sensors and Actuators A.2007(09):017
    [54] Y. Xiao and Bhattacharya. Modeling electromechanical properties of ionic polymers.Proceedings of the SPIE.2001(4329):292–300P
    [55] R. Kanno, S. Tadokoro, T. Takamori, and M. Hattori. Linear approximate dynamicmodel of icpf (ionic conducting polymer gel film) actuator. Proceedings of the IEEEInternational Conference on Robotics and Automation.1996:219–225P
    [56] R. Kanno, A. Kurata, S. Tadokoro, T. Takamori, K. Oguro. Characteristics andmodeling of ICPF actuator, Proceedings of the Japan-USA Symposium on FlexibleAutomation.1994:219–225P
    [57] P.de Gennes, K.Okumura, M.Shahinpoor, and K.J.Kim. Mechanoelectric effects inionic gels. Europhysics Letters.2000(50):513–518P
    [58] K. Asaka and K Oguro. Bending of polyelectrolyte membrane platinum composites byelectric stimuli, part ii. response kiinetics. Journal of Electroanalytical Chemistry.2000(480):186–198P
    [59] L.M. Weiland and D.J. Leo. Electrostatic analysis of cluster response to electrical andmechanical loadingin ionic polymers with cluster morphology. Smart Materials andStructures.2004(2):323–336P
    [60] L.M. Weiland and D.J. Leo. Computational analysis of ionic polymer cluster energetics.Journal of Applied Physics.2005(97):1819974-1819983P
    [61] L.M. Weiland and D.J. Leo. Ionic polymer cluster energetics: Computational analysisof pendant chain stiffness and charge imbalance. Journal of Applied Physics.2005(97):1937475-1937484P
    [62] Guillaume Laiirent, Emmanuel Piat. Efficiency of Swimming Microrobots using IonicPolymer Metal Composite Actuators. Proceedings of the2001IEEE InternationalConference on Robotics&Automation Seoul, Korea. May21-26,2001:3914-3919P
    [63] Z. Chen, D. Hedgepeth, X. Tan. A nonlinear control-oriented model for ionicpolymer-metal composite actuators. Proceedings of the47th IEEE Conference onDecision and Control, Cancun, Mexico,2008:1851–1856P
    [64] G. D. Bufalo, L. Placidi, M. Porfiri. A mixture theory framework for modeling themechanical actuation of ionic polymer metal composites. Smart Materials andStructures2008(10):1–14P
    [65] OguroK,KawamiY,TakenakaH. Bending of an ion-conduction polymer film-electrodecomposite by an electric stimulus at low voltage. Trans. Journal of MicromachineSociety.1992:27-30P
    [66] Michael Sfakiotakis, David M. Lane, and J. Bruce C. Davies. Review of FishSwimming Modes for Aquatic Locomotion. IEEE Journal of Ocean Engineering.1999(24):237-252P
    [67] Roberte E. Shadwick, George V.Lauder. Fish Biomechanics. Elsevier AcademicPress, London.2006
    [68] Xiaobo Tan, Drew Kim, Nahan Usher and Dan Laboy. An Autonomous Robotic Fishfor Mobile Sensing. Proceedings of the IEEE/RSJ International Conference onIntelligent Robotics and Systems.2005:5424-5429P
    [69] Ernest Mbemmo, Zheng Chen, Stephan Shatara, and Xiaobo Tan. Modeling ofBiomimetic Robotic Fish Propelled by an Ionic Polymer-Metal Composite Actuator.IEEE International Conference on Robotics and Automation.2008:689-694P
    [70] Zheng Chen, Stephan Shatara, and Xiaobo Tan. Modeling of Biomimetic Robotic FishPropelled by An Ionic Polymer–Metal Composite Caudal Fin. IEEE/ASMETRANSACTIONS ON MECHATRONICS,2010(15):448-459P
    [71] M.J.Lighthill. Aquatic animal propulsion of high hydromechanical efficiency.J.FluidMech.1970(44):265-301P
    [72] B. Kim, D.-H. Kim, J. Jung, and J.-O. Park. A biomimetic undulatory tadpole robotusing ionic polymer-metal composite actuators. Smart Materials and Structures.2005(14):1579–1585P
    [73] Shuxiang GUO, Norihiko KATO,Toshio FUKUDA and Keisuke OGURO. AFish-microrobot Using ICPF Actuator. IEEE ACM98.1998:592-597P
    [74] Shuxiang GUO, Toshio FUKUDA and Kinji ASAKA. Fish-like UnderwaterMicrorobot with3DOF.ICRA.2002:738-743P
    [75] Baofeng Gao, Shuxiang Guo. Development of an Infrared Ray Controlled Fish-likeUnderwater Microrobot. Proceedings of the2010IEEE International Conference onAutomation and Logistics.2010:150-155P
    [76] S. Guo, T. Fukuda, K. Kosuge, F. Arai, M. Negoro. Micro catheter system with activeguide wire. Proceedings of IEEE International Conference on Robotics andAutomation.1995:79–84P
    [77] S. Guo, T. Fukuda, K. Asaka. A new type of fish-like underwater microrobot.IEEE/ASME Transactions on Mechatronics2003(1):136–141P
    [78] B. Kim, J. Ryu, Y. Jeong, Y. Tak, B. Kim, J.-O. Park. A ciliary based8-legged walkingmicro robot using cast IPMC actuators. Proceedings of IEEE International Conferenceon Robots and Automation.2003:2940–2945P
    [79] J. W. L. Zhou, H.-Y. Chan, T. K. H. To, K. W. C. Lai, W. J. Li. Polymer MEMSactuators for underwater micromanipulation. IEEE/ASME Transactions onMechatronics.2004(2):334–342P
    [80] S. Tadokoro, S. Yamagami, M. Ozawa. Soft micromanipulation device with multipledegrees of freedom consisting of high polymer gel actuators. Proceedings of IEEEInternational Conference on Micro Electro Mechanical Systems.1999:37–42P
    [81] Z. Chen, Y. Shen, N. Xi, X. Tan. Integrated sensing for ionic polymer-metal compositeactuators using PVDF thin films. Smart Materials and Structures2007(16):262–271P
    [82] Xiufen Ye, Shizhao Xu, Shuxiang Guo and Kejun Wang Yi Yang. A New Type ofUnderwater Microrobot Driven by Single ICPF Actuator. Sixth World Congress onIntelligent Control and Automation(WCICA)June21-23,2006, Dalian, China.2006:8953-8957P
    [83] Xiufen Ye, Baofeng Gao, Shuxiang Guo and Liquan Wang. Development of ICPFActuated Underwater Microrobots. The International Journal of Automation andComputing. Springer Science Press. Oct.2006(3):382-391P
    [84] Xiufen Ye, Baofeng Gao, Shuxiang Guo, Weixing Feng and Kejun Wang. GaitAnalysis of Underwater Octopod Microrobot, Proceedings of the2006IEEEInternational Conference on Robotics and Biomimetics December17-20,2006,Kunming, China.2006:1316-1321P
    [85] Xiufen Ye, Baofeng Gao, Shuxiang Guo, Weixing Feng and Kejun Wang. A NovelUnderwater Crablike Microrobot. Proceeding of the2006IEEE InternationalConference on Mechatronics and Automation,Luoyang, China.2006:272-277P
    [86] Yunchun Yang, Xiufen Ye, Shuxiang Guo. A New Type of Jellyfish-Like Microrobot.roceedings of the2007IEEE International Conference on Integration Technology,Shenzhen, China.2007:673-678P
    [87] Hong-Il Kim, Dae-Kwan Kim, and Jae-Hung Han. Study of flapping actuator modulesusing IPMC. Electroactive Polymer Actuators and Devices (EAPAD), Proceedings ofSPIE.2007(6524):65241A-1-12P
    [88] Masaki Yamakita, Akio Sera, Norihiro Kamamichi. Integrated Design of IPMCActuator/Sensor. Proceedings of the2006IEEE International Conference on Roboticsand Automation, Orlando, Florida。2006:1834-1839P
    [89] N. Kamamichi, Y. Kaneda, M.Y amakita. Biped Walking of Passive Dynamic Walkerwith IPMC Linear Actuator. SICE Annual Conference in Fukui2003, Fukui University,Japan.2003:123-128P
    [90] L. Ferrara, M. Shahinpoor, Kwang J. Kim. Use of ionic polymer-metal composites(IPMCs) as a pressure transducer in the human spine. Part of the SPIE Conference onElectroactive Polymer Actuators and Devices. Newport Beach, California. SPIE.1999(3669):394-401P
    [91] Deniz Dogruer1, Kwang J. Kim, and Woosoon Yim. Fluid interaction of segmentedionic polymer-metal composites under water.Smart Structures and Materials,Proc. ofSPIE.2006(6168):616810-1-8P
    [92] Shuxiang Guo and Yaming Ge. Underwater Swimming Micro Robot Using IPMCActuator. Proceedings of the2006IEEE International Conference on Mechatronics andAutomation.2006:249-254P
    [93] Lighthill, M.J. Mathematical Biofluiddynamics, Soc. Ind.&Appl. Math.1975
    [94] N. Lakshminarayanaiah. Transport Phenomena in Membranes. Academic Press, NewYork.1969
    [95]唐华平,姜永正等.人工肌肉IPMC电致动响应特性及其模型.中南大学学报(自然科学版)2009(2):153-158页
    [96]郝丽娜,徐夙,刘斌.基于IPMC驱动器的小型遥控机器鱼的研制.东北大学学报(自然科学版).2009(6):773-776页
    [97] Shahinpoor M, Bar-cohen Y,Simpson J O, et al. Ionic polymer-metalcomposites(IPMC) as biomimetic sensors, actuators and artificial muscle-a review.Smart Material and Structures,1998(7):15-30P
    [98]谭湘强、钟映春、杨宜民. IPMC人工肌肉的特性及其应用.高技术通讯.2002(01):50-52页
    [99]唐运军,唐华平,殷陈锋.一种离子交换树脂金属复合材料(IPMC)的力学参数测定.高技术通讯.2007(5):508-511页
    [100]李丰富,张玉军,郑岩. EDS法分析离子交换膜金属复合材料的铂电极厚度.哈尔滨理工大学学报,2007(2):138-144页
    [101]马春秀,张玉军. Nafion/金属的制备及电变形性能研究.宇航材料工艺.2007(4):34-36页
    [102]沈辉,戴振东.人工肌肉(IPMC)的性能研究.南京航空航天大学硕士论文.2006
    [103]龚亚琦.IPMC电制动特性分析及其相关结构数值模拟.华中科技大学博士论文.2009
    [104]王振龙,杭观荣,李健,王扬威.面向水下无声推进的形状记忆合金丝驱动柔性鳍单元.机械工程学报.2009(4):127-131页
    [105]王扬威,王振龙,李健,杭观荣.形状记忆合金驱动仿生蝠鲼机器鱼的设计.机器人.2010(2):256-261页
    [106] Shahinpoor M, Kim K J, Mojarrad M. Artificial muscles: Applications of advancedpolymeric nanocomposites. Boca Raton,USA: Taylor&Francis,2007.
    [107]童秉刚庄礼贤,描述鱼类波状游动的流体力学模型及其应用,自然杂志.1998(01):1-7页
    [108]郭春钊.基于鱼体肌肉模型的虚拟仿鱼机器人优化设计与仿真研究.中国科技大学博士论文.2007:1-39页
    [109] M.J.Lighthill. Note on the swimming of slender fish. J.Fluid Mech.1960(9):305-317P
    [110] P.Lu and K.Lee. An alternative derivation of dynamic admittance matrix ofpiezoelectric cantilever bimorph. J.Sound Vib.2003(266):723-735P
    [111] Mohsen Shahinpoor and Kwang J Kim.Ionic polymer–metal composites:I.Fundamentals.Smart Materials and Structers.2001(10):819–833P
    [112] R.克拉夫,J.彭津著.王光远译.结构动力学(第2版).北京.高等教育出版社,2006
    [113] Reza Montazami, Sheng Liu, Yang Liu, Dong Wang, Qiming Zhang, and James R.Heflin. Thickness dependence of curvature, strain, and response time in ionicelectroactive polymer actuators fabricated via layer-by-layer assembly. JOURNAL OFAPPLIED PHYSICS(109).2011:104301-5P.
    [114] A. Punning, U. Johanson, M. Anton, M.Kruusmaa, A.Aabloo. A Distributed Model ofIPMC. Electroactive Polymer Actuators and Devices (EAPAD)2008(6927):69270G-1-10P
    [115] Hirohisa Tamagawaa,Wenyi Lina, Keiko Kikuchib, Minoru Sasakia. Bending controlof Nafion-based electroactive polymer actuator coated with multi-walled carbonnanotubes. Sensors and Actuators B (156),2011:375–382P
    [116] Qingsong He, Min Yu, Linlin Song, Haitao Ding, Xiaoqing Zhang, Zhendong Dai.Experimental Study and Model Analysis of the Performance of IPMC Membranes withVarious Thickness. Journal of Bionic Engineering(8),2011:77–85P
    [117] P. J. Costa Branco, B. Lopes, and J. A. Dente. Nonuniformly Charged IonicPolymer–Metal Composite Actuators: Electromechanical Modeling and Experimental.TRANSACTIONS ON INDUSTRIAL ELECTRONICS (59),2012:1105-1113P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700