Cr掺杂对Ti-Ni形状记忆合金相变和形变特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Ti-50.8Ni、Ti-50.8Ni-0.3Cr和Ti-51.1Ni形状记忆合金(SMA)为研究对象,用光学显微镜、热重分析仪、X射线衍射仪、示差扫描量热仪和拉伸实验,研究了Cr掺杂及热处理对Ti-Ni SMA组织、相变、低温形变和室温循环形变特性的影响规律。研究结果表明:
     三种合金室温相组成主要为母相B2(CsCl型晶体结构),且低温和中温退火后的形变组织呈纤维状,随退火温度(θ_a)升高,纤维组织逐渐演变为等轴晶粒,当θ_a超过600℃后,三合金氧化加剧。
     随θ_a升高,Ti-50.8Ni合金冷却/加热相变类型由A→R→M / M→R→A型向A→R→M / M→A型再向A→M / M→A型转变;Ti-50.8Ni-0.3Cr合金的相变类型由A→R / R→A型向A→R→M / M→R→A型向A→R→M / M→A型再向A→M / M→A型转变;而Ti-51.1Ni合金的相变类型由A→R / M→R→A型向A→R→M / M→R→A型再向A→M / M→A转变。三合金R相变温度和M相变热滞降低,M相变温度升高,R相变热滞变化不大,保持在4℃左右。此外,随θ_a升高,三合金应力-应变曲线上平台应力先降低后升高,抗拉强度降低,塑性和一次能耗(WD)增加。在较低温度(10℃)变形时,400-500℃退火态Ti-50.8Ni和Ti-51.1Ni合金呈形状记忆效应(SME)特性,550-650℃退火时呈SME+超弹性(SE)特性;400-650℃退火态Ti-50.8Ni-0.3Cr合金则呈SE特性。
     在室温和10℃循环变形时,随循环变形次数n增加,Ti-50.8Ni和Ti-51.1Ni合金由SME演变为线性SE,平台应力和积累残余应变(ε_r~*)迅速增加;Ti-50.8Ni-0.3Cr合金由非完全超弹性演变为完全超弹性,合金的超弹性应力-应变曲线形态较稳定。随n增加,Ti-50.8Ni和Ti-51.1Ni合金的超弹性残余应变(ε_r)减小,超弹性应变恢复率(η_s)增加;Ti-50.8Ni-0.3Cr合金的ε_r和η_s则分别稳定在较低和较高水平,显示出良好的超弹性稳定性。
     随n增加,Ti-50.8Ni和Ti-51.1Ni合金的当量刚度(k_(eq))先增加后趋于稳定,WD先快速增加后减小,当量阻尼系数(ξ_(eq))则迅速减小;Ti-50.8Ni-0.3Cr合金的k_(eq)和WD比较稳定,ξ_(eq)先减小后趋于稳定。
     随θ_a升高,Ti-50.8Ni和Ti-51.1Ni合金弹簧由SME过渡到SE,而Ti-50.8Ni-0.3Cr合金弹簧则始终呈现SE,且三合金弹簧的平台应力先降低后升高。
     提出了一种基于形状记忆合金弹簧驱动的温敏开关装置设计方法,为温敏新产品的开发设计提供了一种新思路。
The effects of adding Cr and heat treatment on the microstructure, transformation, low temperature deformation and room temperature cyclic deformation characteristics of Ti-Ni shape memory alloys (SMA) were investigated by optical microscope, thermo-gravimetric, X-ray diffraction, differential scanning calorimetry and tensile test using Ti-50.8Ni, Ti-50.8Ni-0.3Cr and Ti-51.1Ni SMAs as the samples in this paper. The results are as follows:
     The composition phases of Ti-50.8Ni, Ti-50.8Ni-0.3Cr and Ti-51.1Ni alloys are parent phase (B2) (CsCl structure), and the low and intermediate temperature annealed Ti-50.8Ni, Ti-50.8Ni-0.3Cr and Ti-51.1Ni alloys’deforming microstructures are fibrous. With increasing the annealing temperature (θ_a), the fibrous microstructure evolves gradually to equiaxed grain. The oxidation of this there alloys speeds up whenθ_a is over 600℃.
     With increasingθ_a, the transformation types of Ti-50.8Ni alloy change from A→R→M / M→R→A to A→R→M / M→A to A→M / M→A (A-parent phase, R-R phase, M-martensite), and one of Ti-50.8Ni-0.3Cr alloy change from A→R / R→A to A→R→M / M→R→A to A→R→M / M→A to A→M / M→A upon cooling / heating, and the types of Ti-51.1Ni alloy change from A→R→M / M→R→A to A→R→M / M→A upon cooling / heating. With increasingθ_a, the R transformation temperatures and M temperature hysteresises decrease, the M transformation temperatures increase, and R temperature hysteresises are nearly not change as about 4℃for Ti-50.8Ni, Ti-50.8Ni-0.3Cr and Ti-51.1Ni alloys. With increasingθ_a, the platform-stress (σ_m) in the stress-strain curves decreases firstly and then increases, tensile strength decreases, ductility and energy loss per cycle (WD) increase for Ti-50.8Ni, Ti-50.8Ni-0.3Cr and Ti-51.1Ni alloys. When deforms at low temperature (10℃), the 400-500℃annealed Ti-50.8Ni and Ti-51.1Ni alloys show shape memory effect (SME), the 550-650℃annealed ones show SME + superelasticity (SE), while the 400-650℃annealed Ti-50.8Ni-0.3Cr alloy shows SE.
     When cyclic deformation at room temperature and low temperature (10℃), the characteristics of Ti-50.8Ni and Ti-51.1Ni alloys evolved from SME to linear SE, and the stress inducing martensitic critical stress and the accumulation residual strain (ε_r~*) increased rapidly with increasing cyclic deformation number n, while the characteristics of Ti-50.8Ni-0.3Cr alloy evolved from incomplete superelasticity to complete superelasticity, and the shape of stress-strain curve is stable. With increasing n, the superelastic residual strain (ε_r) decreased and the superelastic strain recovery ratio (η_s) increased in Ti-50.8Ni and Ti-51.1Ni alloys; while theε_r andη_s in Ti-50.8Ni-0.3Cr alloy kept at lower and higher values, respectively. The superelasticity of Ti-50.8-0.3Cr alloy was stable.
     With increasing n, the equivalent stiffness (k_(eq)) of Ti-50.8Ni and Ti-51.1Ni alloy increase firstly and then tend to constant, the WD increases firstly and then decreases, and the equivalent damping (ξ_(eq)) decreases. While the k_(eq) and WD of Ti-50.8-0.3Cr alloy turn to stable,ξ_(eq) decrease firstly and then turn to stable.
     With increasingθ_a, the characteristics of Ti-50.8Ni and Ti-51.1Ni alloy springs evolved from SME to SE, Ti-50.8Ni-0.3Cr alloy spring shows SE all through, and theσ_m of three alloy springs decrease firstly and then increase.
     A structure design method of a temperature sensitive switch device based on shape memory alloy spring is put forward, and a new idea for the exploiture and design of new product is provided.
引文
[1]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社, 2002, 45-85
    [2] Otsuka K, Wayman C M. Shape memory materials [M]. Cambridge: Cambridge University Press, 1998: 220-238
    [3] Humbeeck J V. Damping capacity of thermoelastic martensite in shape memory alloys [J]. J Alloys Compd, 2003, 355: 58-64
    [4] Liu W, Zheng Y G, Liu C S, et al. Research progress on wear behavior and application of Ni-Ti alloy [J]. Tribology, 2002, 22(2): 157-158
    [5] Pelletier H, Muller D, Mille P, et al. Structural and mechanical characterisation of boron and nitrogen implanted NiTi shape memory alloy[J]. Surf Coat Techn, 2002, 158: 309-317
    [6]徐祖耀,江伯鸿,杨大智,等.形状记忆材料[M].上海:上海交通大学出版社, 2000, 2-12
    [7]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社, 1993, 5-45
    [8] Otsuka K, Ren X. Martensitic transformations in nonferrous shape memory alloys [J]. Mater Sci Eng, 1999, A273-275: 89-105
    [9] Lin H C, Wu S K. The tensile behavior of a cold-rolled and reverse-transformed equiatomic TiNi alloy [J]. Acta metall mater, 1994, 42(5): 1623-1630
    [10]贺志荣. Ti-Ni形状记忆合金的工程应用研究现状和展望[J].材料导报, 2005,19(4): 50-53
    [11]尚泽进,王忠民,冯振宇.含形状记忆合金的智能材料结构的应用[J].稀有金属材料与工程, 2007,36(3): 163-167
    [12]陶宝祺,熊克,袁慎芳,等.智能材料结构[M].北京:国防工业出版社, 1997, 22-52
    [13]贺志荣,王芳,周敬恩. TiNi合金的超弹性及其工程应用研究进展[J].钛工业进展, 2005, 22(2): 10-16
    [14]贺志荣,王芳. Ti-Ni-Co(Cr,V)超弹性合金的相变与形变特性[J].金属热处理,2008,33(5): 16-18
    [15]李启全,祁珊. Ti-Ni形状记忆合金超弹性的研究进展[J].国外金属热处理, 2003, 24(4): 5-9
    [16]贺志荣,王芳,周敬恩. Ni含量和热处理对Ti-Ni形状记忆合金相变和形变行为的影响[J].金属热处理, 2006, 31(9): 17-21
    [17]司乃潮,张志敏.冷变形对NiTiCr形状记忆合金超弹性的影响[J].稀有金属材料与工程, 2008, 37(1): 185-188
    [18]司乃潮,张志敏,司松海,等.冷变形对NiTiCr形状记忆合金超弹性和组织的影响[J].特种铸造及有色合金, 2007, 27(12): 979-981
    [19]刘书芹,袁志山,王江波.热变形对TiNi形状记忆合金丝材力学性能以及超弹性的影响[J].材料热处理, 2007, 26(22): 21-23
    [20]黄兵民,蔡伟,赵蔚,等.热处理和冷变形对Ti-Ni合金非线形超弹性的影响[J].宇航工艺材料,1997(5): 24-28
    [21] Mohamed E Mitwally, Mahmoud Farag. Effect of cold work and annealing on the structure and characteristics of NiTi alloy [J]. Materials Science and Engineering A. 2009, 519: 155-166
    [22]左晓宝,李爱群,倪立峰,等.超弹性形状记忆合金丝(NiTi)力学性能的试验研究[J].土木工程学报, 2004, 37(12): 10-16
    [23]邓宗才,刘春国. SMA超弹性及减隔震器的研究与发展[J].工程建设, 2006, 38(5): 1-6
    [24]罗子文,薛伟辰,李杰.形状记忆合金的驱动性能研究进展[J].测控技术, 2006, 25(8): 1-4
    [25] Xue Qun-ji, Yang Jun, La Pei-qing, et al. Progress in Research on Tribology of Intermetallic Materials [J]. Materials Review, 2001, 15(7): 12-14
    [26] Liu Wei, Zheng Yu-Gui, Rao Guang-bin, et al. Effect of Phase Transformation Pseudoelasticity on Resistance of Ni-Ti Alloy to Cavitation-Abrasion Erosion in Multiphase Flow [J]. Acta Metallurgica Sinica, 2002, 38(2): 185-188
    [27] Jin Jia-ling, Wang Hong-liang. Research on Wear Resistance of NiTi Alloy [J]. Acta Metallurgica Sinica, 1988, 24(1): A66-69
    [28] Zhang C, Farhat Z N. Sliding wear of superelastic TiNi alloy [J]. Wear, 2009, 267: 394-400
    [29] Falk F. One-dimensional model of shape memory alloys [J]. Archives of Mechanics, 1983, 35(1): 63-84
    [30] Tanaka K, Nagaki S. A thermomechanical description of materials with internal variables in the process of phase transitions [J]. Ingenieur-Archiv, 1982, 51(5): 287-299
    [31] Graesser E J, Cozzarelli F A. Shape-memory alloys as new materials for aseismic isolation [J]. Journal of Engineering Mechanics, 1991, 117(11): 2590-2608
    [32] Liang C, Rogers C A. One-dimensional thermomechanical constitutive relations for shape memory materials [J]. Journal of Intelligent Material Systems and Structures, 1990, 1(2): 207-234
    [33] Muller I, Xu H B. On the pseudo-elastic hysteresis [J]. Acta Metallurgica et Materialia, 1991, 39(3): 263-271
    [34] Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-I: Derivation of general relations [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 1-17
    [35] Brinson L C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable [J]. Journal of Intelligent Material Systems and Structures, 1993, 4(2): 229-242
    [36] Boy J G, Lagoudas D C. Thermodynamical constitutive model for the shape memory effect due to transformation and reorientation [C]// Vijay K Varadan. Proceedings of SPIE-Smart Materials, USA: SPIE, 1994, 2189: 276-288
    [37]任文杰,李宏男,宋钢兵.一种新的形状记忆合金本构模型[J].大连理工大学学报, 2006, (12): 157-160
    [38]赵海燕,阎石,王伟.形状记忆合金的一维连续超弹性滞回模型[J].华中科技大学学报, 2008, 25(4): 209-312
    [39] Yoneyama T, Doi H, Kobayashi E, Hamanaka H. Effect of heat treatment with the mould on the super-elastic property of Ti-Ni alloy castings for dental application[J]. J Mater Sci: Mater in Medicine, 2002, 13: 947-951
    [40] Adharapurapu R R, Vecchio K S. Superelasticity in a new bioImplant material: Ni-rich 55NiTi alloy [J]. Experimental Mechanics, 2007, 47: 365-371
    [41]薛素铎,石光磊,庄鹏. SMA复合摩擦阻尼器性能的试验研究[J].地震工程与工程振动, 2007, 27(2): 145-151
    [42] Mauro D, Donatello C. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension [J]. Journal of Intermational Mechanical Sciences, 2001, 43: 2657-2677
    [43]沈英明,李俊良,杜彦良.形状记忆合金在螺栓联接防断中应用[J].机械设计与制造, 2005, 10: 107-109
    [44]李明高,孙大谦,邱小明,等. TiNi形状记忆合金连接技术的研究进展[J].材料导报, 2006, 20(2): 121-125
    [45]刘克勇,蔡伟,赵连城,等.封隔器用钛镍形状记忆合金超弹性实验研究[J].石油机械, 2007, 35(6): 4-7
    [46]李运良,陈威,孙长青,等. Ni-Ti形状记忆合金在装甲车辆冷却系统上的应用[J].机械工程师, 2004, 12: 42-45
    [47]张小勇,阎晓军,杨巧龙.形状记忆合金分瓣螺母空间解锁机构的设计与试验研究[J].机械工程学报, 2010, 46(17):145-150
    [48] Wax S, Fischer G, Sands R. The past、present and future of DARPAs investment strategy in smart materials [J]. Journal of the Minerals, Metals, and Materials Society, 2003, 55(12): 17-23
    [49] Mabe J H, Calkins F T, Alkislar M B. Variable area jet nozzle using shape memory alloy actuators in an antagonistic design. in: Industrial and Commercial Applications of Smart Structures Technologies, San Diego California, 2008, pp. 1-20
    [50] Mabe J H, Cabell R, Butler G. Design and control of a morphing chevron for takeoff and cruise noise reduction. in: Proceedings of the 26th Annual AIAA Aeroacoustics Conference, Monterey, CA, 2005, pp. 1-15
    [51] Mabe J H, Calkins F T, Butler G. Boeing’s variable geometry chevron, morphing aerostructure for jet noise reduction. in: 47th AIAA/ ASME/ ASCE/ AHS/ ASCStructures, Structural Dynamics and Materials Conference, Newport, Rhode Island, 2006, pp. 1-19
    [52]姜左.形状记忆合金的非线性与医学应用研究[J].金属功能材料, 2001, 8(4): 13-14
    [53]赵军法.形状记忆合金环抱器内固定治疗锁骨骨折临床应用[J].临床研究, 2009, 2(17): 75-76
    [54] Stoeckel D, Pelton A, Duerig T. Self-expanding nitinol stents: material and design considerations [J]. Eur Radiol, 2004, 14: 292-301
    [55] Henryk Z M, Zdzislaw H L, Kazimierz F K, et al. Superelasticity of NiTi Ring-Shaped Springs Induced by Aging for Cranioplasty Applications[J]. Journal of Materials Engineering and Performance, 2009, 18: 818-823
    [56]王璐,杨洋,孙繁新,等.基于形状记忆合金的角膜缝合钉的设计[J].机械工程学报, 2010, 46(23):161-165
    [57]付宜利,李显凌,梁兆光.基于形状记忆合金的自主导管导向机器人设计[J].机械工程学报, 2008, 44(9): 76-82
    [58] Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering 1999, 24(2):237-252
    [59]王振龙,杭观荣,李健,等.面向水下无声推进的形状记忆合金丝驱动柔性鳍单元[J].机械工程学报, 2009, 45(2):126-131
    [60]王扬威,王振龙,李健等.形状记忆合金驱动仿生蝠鲼机器鱼的设计[J].机器人, 2010, 32(2): 256-261
    [61]章永华,何建慧,张世武,等. NiTi形状记忆合金驱动的仿生鱼鳍的研究[J].机器人, 2007, 29(3):207-213
    [62]大井聪子,何永勇,褚福磊.基于形状记忆合金的转子系统振动控制[J].机械科学与技术, 2003, 22(4): 569-572
    [63]王洪礼,李强,孙景.用形状记忆合金弹簧主动控制转子振动[J].机械强度, 2002, 24(1): 029-031
    [64]于东,张博明,金龙学,等.形状记忆合金旋转驱动器结构设计方法[J].机械工程学报, 2010, 46(14):91-100
    [65] Adharapurapu R R, Vecchio K S. Superelasticity in a New BioImplant Material:Ni-rich 55NiTi Alloy [J]. Experimental Mechanics, 2007, 47: 365-371
    [67] Tadaki T, Nakata Y, Shimizu K. Occupancy Sites of Constituent Atoms and their Effects on the Martensitic Transformations in some Cu-Based and Ti-Ni-Based Ternary Alloys [J]. Journal de Physique IV, 1995, 5(8): 81-90
    [68]严文. ALCHEMI技术测定Cr原子在Fe3Al合金中所占位置的研究[J].西安工业学院学报, 1995, 15(1): 1-9
    [69]贺志荣,王芳,王永善,等. V和Cr对Ti-Ni超弹性合金相变和形变特性的影响[J].金属学报, 2007, 43(12): 1293-1296
    [70]贺志荣. Ti-50.8Ni-0.3Cr超弹性合金的相变与形变特性[J].金属学报, 2008, 44(9): 1076-1080
    [71] Favier D, Liu Y, McCormick P G. Three stage transformation behavior in aged NiTi [J]. Scripta Metall Mater, 1993, 28 (6): 669-672
    [72] Khalil Allafi J, Ren X, Eggeler G. The mechanism of multistage martensitic transformations in aged Ni-rich TiNi shape memory alloys [J]. Acta mater, 2002, 50: 793-803
    [73] Kim J I, Liu Y, Miyazaki S. Ageing-induced two-stage R-phase transformation in Ti-50.9 at%Ni [J]. Acta mater, 2004, 52: 487-499
    [74]贺志荣,周敬恩,宫崎修一.固溶时效态TiNi合金的相变行为与Ni含量的关系[J].金属学报, 2003, 39 (6): 617-622
    [75]贺志荣,张永宏,王永善,周敬恩. Ti49.4Ni50.6超弹性弹簧的相变和形变特性[J].金属学报, 2004, 40 (1): 46-50
    [76] Fukuda T, Saburi T, Chihara T, Tsuzuki Y. Mechanism of B2-B19-B19′transformation in shape memory Ti-Ni-Cu alloys [J]. Mater Trans JIM, 1995, 36 (10): 1244-1248
    [77] Liu Y, Kim J I, Miyazaki S. Thermodynamic analysis of aging-induced multiple-stage transformtion behavior of NiTi [J]. Phil Mag A, 2004, 84: 2083-2102
    [78] Chrobak D, Stroz D. Two-stage R phase transformation in a cold-rolled and annealed Ti-50.6at.%Ni alloy [J]. Scripta Mater, 2005, 52: 757-760
    [79] Tang W. Thermodynamic study of the low temperature phase B19’and themartensitic transformation in near-equiatomic Ti-Ni shape memory alloy [J]. Metall Trans A, 1997, 28:537-544
    [80]杨军,贺志荣,王芳,等.添加Cr对Ti-Ni形状记忆合金氧化行为和相变特性的影响[J].材料热处理学报, 2011, 32(2): 43-47
    [81] Nam T H, Chung D W, Lee H W, KIM J H, Chol M S. Effect of the surface oxide layer on transformation behavior and shape memory characteristics of Ti-Ni and Ti-Ni-Mo alloys[J]. J Mater Science, 2003, 38: 1333-1338
    [82] Firstov G S, Vitchev R G, Kumar H, Blanpain B, Humbeeck J V. Surface oxidation of NiTi shape memory alloy [J]. Biomaterials, 2002, 23(24): 4863-4871
    [83] Wu S K, Lin H C. Recent development of TiNi-based shape memory alloys in Taiwan [J]. Mater Chem Phys, 2000, 64 (2): 81-92
    [84] Coluzzi B, Biscarini A, Campanella R, Mazzolai G, Trotta L, Mazzolai F M. Effect of thermal cycling through the martensitic transition on the internal friction and Young’s modulus of a Ni50.8Ti49.2alloy [J]. J Alloys Compd, 2000, 310: 300-305
    [85]刘书芹,袁志山,王江波.热变形对TiNi形状记忆合金丝材力学性能以及超弹性的影响[J].热加工工艺, 2007, 36(22): 21-23
    [86]张志敏,司乃潮,白高鹏,等.热处理对TiNiCr形状记忆合金超弹性的影响[J].金属功能材料, 2007, 14(5): 4-7
    [87] Saburi T, Tatsumi T, Nenno S. Effect of Heat Treatment on Mechanical Behavior of Ti-Ni Alloys. J. de Phys. 1982, 43(C4): 249-253
    [88]高智勇,吴博森,鲁玺丽,等. Ti3Ni4析出相对富镍TiNi合金阻尼行为的影响[J].稀有金属材料与工程, 2007, 36(9): 1534-1538
    [89]贺志荣,王芳.热处理对Ti-50.8Ni-0.3Cr低温超弹性合金相变行为的影响[J].金属学报, 2010, 46(3): 329-333
    [90] Kim J I, Miyazaki S. Comparison of shape memory characteristics of a Ti-50.9Ni alloy aged at 473and 673K [J]. Metall Mater Trans, 2005, 36A: 3301-3310
    [91] Liu A L, Sui J H, Lei Y C, Cai W, Gao Z Y, Zhao L C. Effect of Y addition on microstructure and martensitic transformation of a Ni-rich Ti-Ni shape memory alloy [J]. J Mater Sci, 2007, 42: 5791-5794
    [92] Soga Y, Doi H, Yoneyama T. Tensile properties and transformation temperatures ofPd added Ti-Ni alloy dental castings [J]. Mater in Medicine, 2000, 11: 695-700
    [93]陈芳.循环加载下热处理对NiTi记忆合金丝超弹性变形行为和寿命的影响[J].机械工程师, 2009,10: 21-22
    [94]商泽进,王忠民,尹冠生,等.超弹性TiNi形状记忆合金棒材力学行为[J].稀有金属材料与工程, 2009, 3(38): 460-464
    [95] Zhang X P, Liu H Y, Yuan B, Zhang Y P. Superelasticity decay of porous NiTi shape memory alloys under cyclic strain-controlled fatigue conditions [J]. Materials Science and Engineering A, 2008, 481(482): 170-173
    [96] Carl P F, Alicia M O, Jeffrey T, Ken G, Hans J M. Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape memory alloys [J]. Metall and Materape memory alloy [J]. Biomaterials, 2002, 23(24): 4863-4871
    [97] Cho G B, Kim Y H, Hur S G, Yu C A, Nam T H. Transformation behavior and mechanical properties of a nanostructured Ti-50.0Ni (at.%) alloy [J]. Met and Mater International, 2006, 12(2): 181-187
    [98] Nam T H, Chung D W, Noh J P, Lee H W. Phase transformation behavior and wire drawing properties of Ti-Ni-Mo shape memory alloys [J]. J Mater Sci, 2001, 36: 4181-4188
    [99] Tahara M, Kim H Y, Hosoda H, Miyazaki S. Cyclic deformation behavior of a Ti-26at.% Nb alloy [J]. Acta Mater, 2009, 57: 2461-2469
    [100]杨军,贺志荣,王芳,等. Cr掺杂对Ti-Ni形状记忆合金相变和循环形变特性的影响[J].金属学报, 2011, 47(2): 157-162
    [101] Miyazaki S, Imai T, Igo Y, Otsuka K. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloy [J]. Metall Trans, 1986, 17A: 115-120
    [102] Eucken S, Duering T W. The effects of pseudoelastic prestraining on the tensile behavior and two-way shape memory effect in aged NiTi [J]. Acta Metall, 1989, 37: 2245-2252
    [103] Yong Liu, Zeliang Xie, Jan Van Humbeeck. Cyclic deformation of NiTi shape memory alloys [J]. Materials Science and Engineering A, 1999, 673-678
    [104] Toshio Sakuma, Akihiko Suzuki. Superelastic Behavior under Cyclic Loading for Coil Spring of Ti-Ni Shape Memory Alloy [J]. Materials Transactions, 2007, 48(3): 422-427
    [105] Zhong Z W, Chan S Y. Investigation of a gripping device actuated by SMA wire [J]. Sensors and Actuators A, 2007, 136(1): 335-338
    [106]王金辉,徐峰,阎邵泽,等. SMA弹簧驱动机理及实验[J].清华大学学报(自然科学版), 2003, 43(2): 188-191
    [107]张增猛,高院安,周华.记忆合金驱动的感温自动闭门器的研制[J].工程设计学报, 2008, 15(6): 431-434
    [108]董元源,刘永刚,孙宝辉,等.自动温控阀形状记忆合金弹簧设计[J].机械研究与应用, 2000, 13(4): 27-29
    [109]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社, 1997, 210-211
    [110]杨军,贺志荣,王芳,等. Ti-Ni记忆合金驱动的感温自动控制器设计[J].机械设计与研究, 2010, 26(4):58-60
    [111]贺志荣.影响Ti-Ni合金弹簧疲劳寿命的因素[J].金属热处理, 2000, (9): 10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700