人体颈椎有限元建模及仿生颈椎椎间融合器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当代社会,人们生活方式的改变导致颈椎病呈现高发病率、职业化、年轻化的趋势;车辆交通事故频发也使得颈部损伤成为一种常见的损伤形式。颈椎生物力学研究有助于提高对颈椎伤病发病机制的认识和理解,为颈椎伤病的预防和治疗提供理论基础。其中,有限元方法以其可重复性、便于参数化研究、成本低等优点成为比较理想的研究手段,已在颈椎发病及损伤机制、临床术式、颈椎人工假体设计等方面得到广泛应用。同时,颈椎椎间融合器常用于前路融合手术中,具有实现术后即刻稳定、撑开和维持椎间隙高度、促进融合等优点,因而在颈椎前路手术中得到了快速发展。但与之伴随的下沉、移位、不融合等相关并发症也越来越引起人们的重视。
     本文基于人体头颈部运动生物力学试验测试、头颈部医学图像及逆向工程技术对人体颈椎运动进行了有限元建模研究,并利用仿生学理念设计了具有仿生表面形态的颈椎椎间融合器;结合生物耦合及耦合仿生理论对耦合仿生颈椎椎间融合器进行了研究。
     基于运动生物力学试验测试方法,设计了7个Marker反光标记点对头部及颈椎棘突点进行标记。利用三维运动分析系统,对受试对象的头颈部在前屈、左/右侧弯及左/右旋转5种正常生理运动状态下的运动学特性进行试验研究。结果表明,任意测试运动状态下,上颈椎(C2)的运动范围均明显大于下颈椎(C6、C7)的运动范围;与头部运动特性类似,棘突运动在左右侧弯和左右旋转运动中也体现出了一定的对称性。
     基于CT扫描得到的头颈部医学图像,建立了正常人体头颈部三维动态有限元模型,包括颅骨、7节颈椎骨、第一胸椎骨骼、6个椎间盘以及连接颅骨与颈椎、连接颈椎之间的13条韧带。利用三维运动分析系统测试得到的同一受试对象的运动学数据对模型进行验证,主要包括前屈、左/右侧弯及左/右旋转5种正常的生理运动。仿真结果与试验测试数据的对比分析表明,计算仿真结果与试验测试吻合较好,所建模型合理、有效,可用于相关生物力学研究。基于均方根误差和相对均方根误差分析方法,对模型的皮质骨、松质骨、后部结构、纤维环及韧带进行的材料敏感性分析结果表明,材料弹性模量的变化对于侧弯运动的影响可以忽略,对旋转运动影响较大,而前屈运动则受到韧带弹性模量变化轻微的影响。
     借助核磁成像技术,对正常生理运动状态下的颈部皮肤滑移进行了评估,包括前屈及左右侧弯运动。结果表明,前屈运动时,X方向与Y方向上最大的皮肤位移发生在C2节段,分别是8.5mm和7.2mm,在Z方向C6节段最大,为9mm;侧弯运动时,X,Y,Z方向上最大的皮肤滑移均发生在C2节段上,分别为20.5mm,11mm及9.5mm。
     从预防融合器下沉、移位及不融合等并发症出发,确定了评估融合器防止下沉性能的主要指标为终板、融合器、皮质骨与松质骨的最大Von-Mises应力,植骨融合性能的主要指标为植骨应力。设计了5种形状的颈椎椎间融合器,基于所建立的C5-C6节段颈椎有限元模型,通过仿真其在轴向压缩、前屈、后伸、侧弯以及旋转载荷下的运动,分析了运动模式及融合器形状变化对融合器植入力学性能的影响。运动模式研究表明,轴向压缩载荷时发生下沉的风险最低,后伸运动是最有利于植骨融合的运动模式;形状研究结果表明,12-叶融合器防止下沉性能较优,而促进植骨融合器能力较优的形状则为肾形和4-叶形。
     基于人体颈椎椎间盘的结构力学特性,设计了具有凹槽结构的颈椎椎间融合器。通过凹槽结构的二次旋转设计,得到了防止下沉性能评价指标(终板应力、C5松质骨应力及C6松质骨应力)关于凹槽结构中心距融合器中心的位置s,凹槽结构的宽度b,以及凹槽结构的深度h的回归方程,利用该回归方程进行最优化分析得到的最优凹槽尺寸可实现降低应力22.58%~26.04%,这大大地提高了融合器防止下沉的性能,其中,开槽宽度b和深度h对植骨融合性能的影响较为显著。
     受马腿第三掌骨滋养小孔力学特性的启发,设计了仿生凹坑表面形态,并分别置于融合器侧面或上下表面进行融合器性能的研究。通过凹坑表面形态置于融合器侧面的正交试验设计,结果表明:防止下沉性能的最优化水平分别为,凹坑中心所在的平面与融合器中心的距离a=-2mm(+/-代表凹坑中心所在平面位于融合器中心的上/下方),凹坑的半径r=0.1mm,凹坑深径比p=1;植骨融合性能的最优化水平分别为:a=+2mm,r=0.3mm,p=1.5。通过凹坑表面形态置于融合器的上下表面的正交试验设计,得到了防止下沉性能与植骨融合性能的最优化水平为,凹坑数量12,凹坑半径0.5mm,凹坑深径比1.5。
     在颈椎椎间融合器的单因素(结构和表面形态)仿生研究结果基础上,运用耦合仿生原理与试验优化理论,设计了二元耦合仿生颈椎椎间融合器。仿真试验表明,凹坑表面形态置于融合器侧面的耦合仿生融合器,其防止下沉性能及植骨融合性能均较结构单元仿生显著提高;但当凹坑表面形态置于融合器的上下表面时,耦合仿生融合器的防止下沉性能及植骨融合性能却有所下降。
Currently, the cervical diseases show a high incidence, professionally andyounger with the changing of people’s lifestyle; and the popularity of the vehicle alsomakes neck injury becoming a frequent injury pattern among the vehicle accidentdamage. The cervical spine biomechanical study contributes to a better understandingof the pathogenesis of cervical spine injuries, and provides a theoretical basis for theprevention and treatment of cervical spine injuries. Among of them, finite element(FE) method is optimal because of its advantages including repeatability, convenienceto perform parametric study, and cost reduction, and are increasingly applied in thehuman cervical spine biomechanics, such as cervical disease and injury mechanism,cervical surgery and internal fixation ways, the artificial prosthesis design. Becausecervical interbody fusion has the advantages of achieving immediate postoperativestability, maintaining and distracting disc height, and promoting fusion, etc., it hasbeen developed rapidly during anterior cervical surgery. But with the widespread useof it, the related complications are increasingly attracted people’s attention, such assubsidence, shift and non-fusion.
     In this paper, biomechanical tests of human head and neck kinematic, medicalimages of head and neck, and reverse engineering techniques were applied to studythe human cervical spine kinematic modeling. Also the bionic structure and surfacemorphology of cervical interbody fusion cage were designed, and the dual-coupledbionic cervical interbody fusion cage coupled the optimal structure and surfacemorphology was designed.
     Seven reflective Markers located on the human head and cervical spine weredesigned based on sports biomechanics testing methods. The motion analysis system was applied to measure5motion patterns of subject 's head and neck under normalphysiological states including flexion, left/right lateral bending, and left/rightrotation.
     A three-dimensional FE model of normal human head and neck was established,containing skull,7cervical vertebrae, the first thoracic vertebra,6intervertebral disc,and13ligaments. The model was validated using the head and neck kinematic dataobtained by motion analysis device based on the same subject. Based on the rootmean square error and relative root mean square error analysis method, the predictionaccuracy of the FE head and neck model was quantified, and the material sensitivitywas also conducted to investigate the effect of material properties, including corticalbones, cancellous bones, posterior structures, fibrous annulus and ligaments underflexion, unilateral (left) lateral bending and axial rotation. Results showed that forlateral bending, there was nearly no change in model prediction results; In flexionmotion, the Young’s modulus variations of cortical bones and posterior structures alsohave nearly negligible effect on the cervical kinematics simulation results; In axialrotation, the Young’s modulus variations of cortical bones and posterior structuresalso have great impact on the cervical kinematics simulation results.
     In order to avoid subsidence, and improve the fusion rate, the indicators used toevaluate the interbody fusion cage performance were determined. Different shapes ofinterbody fusion cage were designed, implanted into the FE model of C5-C6segments,and simulated under several loading conditions, including axial compression, flexion,extension, lateral bending and axial rotation. Those indicators were obtained,including Von-Mises stress of the endplates, cage, adjacent vertebrae, and bone graft.The effects of different loading patterns and cage shapes on the interbody fusion cageperformances were researched by the analysis of the indicators. In the scope of thestudy, the cage of12-leaf shape has been demonstrated as the optimal one.
     Based on the structural characteristics of human cervical intervertebral disc, thecervical intervertebral fusion with bionic structure has been designed. Three structuralsized factors were determined, which were the distance between the center of groovestructure and the center of cage, the width of the groove structure, and the depth of the groove structure, respectively. The quadratic general spinning design was used tooptimize the bionic structural size. The regression equations between those threestructural sizes and the indicators of subsidence resistance (the stresses of endplateand cancellous bones of fifth and the sixth cervical spine) were obtained through thequadratic regression analysis method and the optimization size parameters wereobtained, respectively. The results showed that the optimized parameters for the stressof endplate and cancellous bone of fifth cervical spine were the same, also they weredifferent from which for the stress of cancellous bone of sixth cervical spine. Incontrast, the former was better.
     Inspired by the mechanical properties of the third metacarpal nourish of horse leg,the bionic concave surface morphology was designed and placed on the side or bothon the top and bottom of cage. Three concave size factors were determined andoptimized through the orthogonal experiment design. When the pits distributed on thecage side, the size factors was determined, which were the distance between the planepits located and the center of cage(a), the radius of pits(r), and the ratio of pit-depth topit-radius(p), respectively. For optimal subsidence resistance, the optimumcombination was the a=-2mm(+/-represented the pits located above/below the thecenter of cage), r=0.1mm,p=1; for optimal fusion rate performance, the optimumcombination was a=+2mm,r=0.3mm,p=1.5. When the pits distributed on both the topand bottom surfaces of the cage, the size factors were determined, which were thenumber of pits, the radius of pits, and the ratio of pit-depth to pit-radius, respectively.For optimal subsidence resistance and fusion rate performance of the cage, theoptimum combination was the pits’ number of12, radius of0.5mm, and ratio ofpit-depth to pit-radius of1.5.
     With the single-factor bionic results of cervical fusion cage, based on thecoupling bionic theory, the dual-coupled bionic cervical interbody fusion cage wasdesigned. The results showed, the subsidence resistance and fusion rate performanceof the coupling bionic fusion cage have been improved when the pits distributed onthe cage side. While, the subsidence resistance and fusion rate performance of thecoupling bionic fusion cage have been decreased when the pits distributed on both thetop and bottom of the cage.
引文
[1]孙宇,李贵存.第二届颈椎病专题座谈会纪要[J].解放军医学杂志,1994,19(2):156-158.
    [2]尚天裕,董福慧.实用中西医结合骨伤科学[M].北京医科大学,中国协和医科大学联合出版社,1998.
    [3]赵元礼,胡湘峰.颈椎病的早期X线表现[J].中国社区医师:医学专业,2009,1(5):186-187.
    [4]沈尔安.关注青少年颈椎病[J].妇幼保健杂志,2005,12(12):18.
    [5] Von Koch M, Nygren A, Tingvall C. Impairment pattern in passenger carcrashes, a follow-up of injuries resulting in long-term consequences[C].Proceedings of the Fourteenth International Technical Conference on EnhancedSafety of Vehicles.1995(94-S5-O-02).
    [6] O’Neill B. Head restraints—the neglected countermeasure[J]. Accident Analysis&Prevention,2000,32(2):143-150.
    [7]李娜.汽车碰撞中人体头颈部损伤有限元模型研究[D].中南大学,2010.
    [8] Nerlich A G, Schleicher E D, Boos N.1997Volvo Award Winner in BasicScience Studies: Immunohistologic Markers for Age-Related Changes ofHuman Lumbar Intervertebral Discs[J]. Spine,1997,22(24):2781-2795.
    [9]施杞.要重视对颈椎病的研究[J].中国中医骨伤科,1999,7(1):1-3.
    [10] Uschold T D, Fusco D, Germain R, et al. Cervical and lumbar spinalarthroplasty: clinical review[J]. American Journal of Neuroradiology,2012,33(9):1631-1641.
    [11] Hacker R J. Threaded cages for degenerative cervical disease[J]. ClinicalOrthopaedics and Related Research,2002,394:39-46.
    [12] Chiles B W, Leonard M A, Choudhri H F, et al. Cervical spondyloticmyelopathy: patterns of neurological deficit and recovery after anterior cervicaldecompression[J]. Neurosurgery,1999,44(4):762-769.
    [13] Bohlman H H, Emery S E, Goodfellow D B, et al. Robinson anterior cervicaldiscectomy and arthrodesis for cervical radiculopathy. Long-term follow-up ofone hundred and twenty-two patients[J]. The Journal of Bone&Joint Surgery,1993,75(9):1298-1307.
    [14] Malloy K M, Hilibrand A S. Autograft versus allograft in degenerative cervicaldisease[J]. Clinical Orthopaedics and Related Research,2002,394:27-38.
    [15]钱邦平,唐天驷,王东来.颈椎椎间融合器临床应用的失误及并发症分析[J].中国脊柱脊髓杂志,2003,13(4):231-234.
    [16] Wilke H J, Kettler A, Goetz C, et al. Subsidence resulting from simulatedpostoperative neck movements: an in vitro investigation with a new cervicalfusion cage[J]. Spine,2000,25(21):2762-2770.
    [17]毛志国,袁文,贾连顺,等.钛质网笼内植物加前路带锁钢板对颈椎稳定性的生物力学评价[J].中国脊柱脊髓杂志,2001,11(6):355-357.
    [18] Kim P, Wakai S, Matsuo S, et al. Bisegmental cervical interbody fusion usinghydroxyapatite implants: surgical results and long-term observation in70cases[J]. Journal of neurosurgery,1998,88(1):21-27.
    [19] Thalgott J S, Fritts K, Giuffre J M, et al. Anterior interbody fusion of thecervical spine with coralline hydroxyapatite[J]. Spine,1999,24(13):1295.
    [20]彭宝淦,施杞.颈椎病发病机制的研究概况[J].中医正骨,1997,9(3):55.
    [21]姜宏.颈段脊柱的解剖与生物力学特性[J].中医正骨,1998,10(6):57-58.
    [22] Yoganandan N, Kumaresan S, Voo L. Finite element applications in humancervical spine modeling[J]. Spine,1996,21(15): l824-l834.
    [23]郝永强,施杞.大鼠颈椎病实验模型的设计与建立[J].中国矫形外科杂志,1999,6(4):282-283.
    [24]余家阔,吴毅文,戴先进,等.颈椎病生物力学发病机制实验研究[J].安徽医科大学学报,1990,25(1):47-50.
    [25] Deng Y C, Goldsmith W. Response of a human head/neck/upper-torso replica todynamic loading—II. Analytical/numerical model[J]. Journal of Biomechanics,1987,20(5):487-497.
    [26] Hosey R R, Liu Y K. A homeomorphic finite element model of the human headand neck[J]. Finite Elements in Biomechanics,1982:379-401.
    [27] Williams J L, Belytschko T B. A three-dimensional model of the human cervicalspine for impact simulation[J]. Journal of Biomechanical Engineering,1983,105(4):321-331.
    [28]崔红新,程方荣,王健智.有限元法及其在生物力学中的应用[J].中医正骨,2005,17(1):53-55.
    [29]陈锡栋,杨婕,赵晓栋,等.有限元法的发展现状及应用[J].中国制造业信息化:学术版,2010,6:6-8.
    [30]钱志辉.人体足部运动的有限元建模及其生物力学功能耦合分析[D].吉林大学,2010.
    [31] Brekelmans W A, Poort H W, Slooff T J. A new method to analyse themechanical behaviour of skeletal parts [J]. Acta Orthopaedica Scandinavica.1972,43(5):301-317.
    [32] Belytschko T, Kulak R F, Schultz A B, et al. Finite element stress analysis of anintervertebral disc[J]. Journal of Biomechanics,1974,7(3):277-285.
    [33]张昊,白净.颈椎有限元模型的建立方法及进展[J].国外医学:生物医学工程分册,2005,28(4):198-200.
    [34] Mercer S, Bogduk N. The ligaments and anulus fibrosus of human adultcervical intervertebral discs[J]. Spine,1999,24(7):619-626.
    [35] Przybylski G J, Patel P R, Carlin G J, et al. Quantitative anthropometry of thesubatlantal cervical longitudinal ligaments[J]. Spine,1998,23(8):893-898.
    [36] An H S, Wise J J, Xu R. Anatomy of the cervicothoracic junction: a study ofcadaveric dissection, cryomicrotomy, and magnetic resonance imaging[J].Journal of Spinal Disorders&Techniques,1999,12(6):519-525.
    [37] Carter D R, Hayes W C. The compressive behavior of bone as a two-phaseporous structure[J]. The Journal of Bone and Joint Surgery. American Volume,1977,59(7):954-962.
    [38]赵国如.基于多刚体逆向运动学原理的人体运动测试技术及运动耦合特性研究[D].吉林大学,2009.
    [39]任露泉,梁云虹.耦合仿生学[M].北京:科学出版社,2011.
    [40] Saito T, Yamamuro T, Shikata J, et al. Analysis and prevention of spinal columndeformity following cervical laminectomy I: Pathogenetic analysis ofpostlaminectomy deformities[J]. Spine,1991,16(5):494-502.
    [41] Kleinberger M. Application of finite element techniques to the study of cervicalspine mechanics[R]. SAE Technical Paper,1993.
    [42] Teo E C, Paul J P, Evans J H. Finite element stress analysis of a cadaver secondcervical vertebra[J]. Medical and Biological Engineering and Computing,1994,32(2):236-238.
    [43] Bozic K J, Keyak J H, Skinner H B, et al. Three-dimensional finite elementmodeling of a cervical vertebra: an investigation of burst fracture mechanism[J].Journal of Spinal Disorders&Techniques,1994,7(2):102-110.
    [44] Yoganandan N, Kumaresan S C, Voo L, et al. Finite element modeling of theC4–C6cervical spine unit[J]. Medical Engineering&Physics,1996,18(7):569-574.
    [45] Maurel N, Lavaste F, Skalli W. A three-dimensional parameterized finiteelement model of the lower cervical spine, study of the influence of theposterior articular facets[J]. Journal of Biomechanics,1997,30(9):921-931.
    [46] Voo L M, Kumaresan S, Yoganandan N, et al. Finite element analysis of cervicalfacetectomy[J]. Spine,1997,22(9):964-969.
    [47] Goel V K, Clausen J D. Prediction of load sharing among spinal components ofa c5-c6moment segment using the finite element approach[J]. Spine,1998,23(6):684-691.
    [48] Yang K H. Development of a finite element model of the human neck[C].Arizona: SAE Publication,1998.
    [49]陈伯华,孙鹏, Natarajan N.颈椎三维有限元模型的建立及意义[J].中国脊柱脊髓杂志,2002,12(2):105-108.
    [50] Brolin K, Halldin P. Development of a finite element model of the uppercervical spine and a parameter study of ligament characteristics[J]. Spine,2004,29(4):376-385.
    [51] Greaves C Y, Gadala M S, Oxland T R. A three-dimensional finite elementmodel of the cervical spine with spinal cord: An investigation of three injurymechanisms[J].Annals of Biomedical Engineering,2008,36(3):396-405.
    [52] Sasa T, Yoshizumi Y, Imada K, et al. Cervical spondylolysis in a judo player: acase report and biomechanical analysis[J]. Archives of orthopaedic and traumasurgery,2009,129(4):559-567.
    [53] del Palomar A P, Calvo B, Doblaré M. An accurate finite element model of thecervical spine under quasi-static loading[J]. Journal of Biomechanics,2008,41(3):523-531.
    [54] Kallemeyn N, Gandhi A, Kode S, et al. Validation of a C2–C7cervical spinefinite element model using specimen-specific flexibility data[J]. Medicalengineering&physics,2010,32(5):482-489.
    [55]孟庆华,鲍春雨,刘晋浩.人体脊柱全颈椎三维有限元模型研究与应用[J].医用生物力学,2009,24(3):178-182.
    [56]肖捷,张朝跃,李昱甍,等.构建寰枢椎前路融合后三维有限元模型及生物力学分析[J].中国组织工程研究与临床康复,2009,13(30):5823-5826.
    [57]李斌,赵文志,陈秉智,等.全颈椎有限元模型的建立与验证[J].中国组织工程研究与临床康复,2010.
    [58] Wang H, Hu B, Bai J. Computational analysis of two atlantoaxial fixationmethods[J].5th IFAC Sym Model Cont Biomed Syst. England: Pergamon Pr,2003,16(2):175-178.
    [59] Ng H W, Teo E C, Zhang Q H. Prediction of inter-segment stability andosteophyte formation on the multi-segment c2-c7after unilateral and bilateralfacetectomy[J]. Proceedings of the Institution of Mechanical Engineers Part H,Journal of Engineering in Medicine,2004,218(3):183-191.
    [60]刘宗亮,叶铭,王冬梅,等.基于冷冻切片的下颈椎C4~C7段有限元建模及验证[J].上海交通大学学报,2009(007):1052-1056.
    [61] Ng H W, Teo E C, Lee V S. Statistical factorial analysis on the material propertysensitivity of the mechanical responses of the c4-c6under compression, anteriorand posterior shear[J]. Journal of Biomechanics,2004,37(5):771-777.
    [62] Brolin K, Halldin P. Development of a finite element model of the uppercervical spine and a parameter study of ligament characteristics[J]. Spine,2004,29(4):376-385.
    [63]杨济匡,姚剑峰.人体颈部动力学响应分析有限元模型的建立和验证[J].湖南大学学报(自然科学版),2003,30(4):40-46.
    [64]杨济匡,许伟,万鑫铭.研究汽车碰撞中头颈部动态响应的有限元模型的建立和验证[J].湖南大学学报(自然科学版),2005,32(2):6-12.
    [65] Zhang Q H, Teo E C, Ng H W. Development and validation of a c0–c7fecomplex for biomechanical study[J]. Journal of Biomechanical Engineering,2005,127(5):729.
    [66]卢畅,韩珂,李晶.基于CT图像全颈椎三维有限元模型的建立及验证[J].中南大学学报,2008,33(5):410-414.
    [67]张建国,王芳,薛强.用于冲击动力学响应分析的人体颈部有限元模型建立和验证[J].生物医学工程学杂志,2009,26(2):318-322.
    [68]张建国,王芳,薛强.后碰撞中人体颈部动力学响应的有限元分析[J].工程力学,2010,27(4):208-211.
    [69]王芳,张建国,薛强.后碰撞中人体颈椎骨的有限元分析[J].生物医学工程学杂志,2009,28(5):788-791.
    [70]王方,肖志,万鑫铭,等.汽车低速碰撞中的人体颈部有限元模型验证[J].汽车安全与节能学报,2010,1(003):214-218.
    [71] Kumaresan S, Yoganandan N, Pintar F A, et al. Finite element modeling of thecervical spine: role of intervertebral disc under axial and eccentric loads[J].Medical engineering&physics,1999,21(10):689-700.
    [72] Kumaresan S, Yoganandan N, Pintar F A, et al. Contribution of discdegeneration to osteophyte formation in the cervical spine: a biomechanicalinvestigation[J]. Journal of Orthopaedic Research,2001,19(5):977-984.
    [73] Teo E C, Ng H W. Evaluation of the role of ligaments, facets and disc nucleus inlower cervical spine under compression and sagittal moments using finiteelement method[J]. Medical Engineering&Physics,2001,23(3):155-164.
    [74] Bozkus H, Karakas A, Hanc M, et al. Finite element model of the Jeffersonfracture: comparison with a cadaver model[J]. European Spine Journal,2001,10(3):257-263.
    [75] Teo E C, Ng H W. First cervical vertebra (atlas) fracture mechanism studiesusing finite element method[J]. Journal of Biomechanics,2001,34(1):13-21.
    [76] Ng H W, Teo E C, Lee K K, et al. Finite element analysis of cervical spinalinstability under physiologic loading[J]. Journal of spinal disorders&techniques,2003,16(1):55-65.
    [77] Tchako A, Sadegh A. A cervical spine model to predict injury scenarios andclinical instability[J]. Sports Biomechanics,2009,8(1):78-95.
    [78] Li X F, Dai L Y. Three-dimensional finite element model of the cervical spinalcord: Preliminary results of injury mechanism analysis[J]. Spine,2009,34(11):1140-1147.
    [79] Puttlitz C M, Goel V K, Clark C R, et al. Pathomechanisms of failures of theodontoid[J]. Spine,2000,25(22):2868-2876.
    [80] Kumaresan S, Yoganandan N, Pintar F A. Finite element analysis of anteriorcervical spine interbody fusion[J]. Bio-Medical Materials and Engineering,1997,7(4):221-230.
    [81] Kumaresan S, Yoganandan N, Pintar F A, et al. Finite element modeling ofcervical laminectomy with graded facetectomy[J]. Journal of Spinal Disorders&Techniques,1997,10(1):40-46.
    [82] Maiman D J, Kumaresan S, Yoganandan N, et al. Biomechanical effect ofanterior cervical spine fusion on adjacent segments[J]. Bio-medical materialsand engineering,1999,9(1):27-38.
    [83] Lim T H, Kwon H, Jeon C H, et al. Effect of endplate conditions and bonemineral density on the compressive strength of the graft-endplate interface inanterior cervical spine fusion[J]. Spine,2001,26(8):951-956.
    [84]程黎明,贾连顺,蔡宣松.颈椎前路椎管扩大的三维有限元研究[J].第二军医大学学报,2003,24(4):418-419.
    [85] Ng H W, Teo E C, Zhang Q G. Influence of cervical disc degeneration afterposterior surgical techniques in combined flexion-extension-a nonlinearanalytical study[J]. Journal of Biomechanical Engineering-Transactions of theASME,2005,127(1):186-192.
    [86] Lim T H, Eck J C, An H S, et al. Biomechanics of transfixation in pedicle screwinstrumentation[J]. Spine,1996,21(19):2224-2229.
    [87] Kim Y. Prediction of mechanical behaviors at interfaces between bone and twointerbody cages of lumbar spine segments[J], Spine.2001,26(13):1437-1442.
    [88]张美超,黄文华,王柏川.应用有限元评价颈前路蝶形钢板的力学性能[J].第一军医大学学报,2001,21(10):740-742.
    [89] Galbusera F, Bellini C M, Raimondi M T, et al. Cervical spine biomechanicsfollowing implantation of a disc prosthesis[J]. Medical engineering&physics,2008,30(9):1127-1133.
    [90] Hsu C C. Shape optimization for the subsidence resistance of an interbodydevice using simulation‐based genetic algorithms and experimentalvalidation[J]. Journal of Orthopaedic Research,2013,31(7):1158-1163.
    [91] Zhong Z C, Wei S H, Wang J P, et al. Finite element analysis of the lumbarspine with a new cage using a topology optimization method[J]. Medicalengineering&physics,2006,28(1):90-98.
    [92] Fan C Y, Chao C K, Hsu C C, et al. The Optimum Cage Position andOrientation on the ALIF with Facet Screw Fixation: A Finite Element Analysisand the Taguchi Method[J]. Journal of Mechanics,2011,27(3):309-320.
    [93]李雪迎,王春明,殷秀珍.颈椎牵引过程的三维有限元分析[J].中华理疗杂志,1999,22(6):350-383.
    [94]李晶,陈禾丽,苏先基.颈椎牵引的力学实验及临床应用[J].中华理疗杂志,1992,22(15):133-135.
    [95]姜宏,施杞,王以进.牵引对颈椎生物力学影响的实验研究[J].中华实验外科,1999,16(5):468-469.
    [96] Smith G W, Robinson R A. The treatment of certain cervical-spine disorders byanterior removal of the intervertebral disc and interbody fusion[J]. The Journalof Bone&Joint Surgery,1958,40(3):607-624.
    [97] Bailey R W, Badgley C E. Stabilization of the cervical spine by anteriorfusion[J]. The Journal of Bone&Joint Surgery,1960,42(4):565-624.
    [98] Robinson R A. The problem of neck pain: Its alleviation by anterior removal ofintervertebral disc with interbody fusion in the cervical spine[J]. The MedicalAssociation of the State ofAlabama,1963,33:1-14.
    [99] Cloward R B. Vertebral body fusion for ruptured cervical discs: description ofinstruments and operative technic[J]. The American Journal of Surgery,1959,98(5):722-727.
    [100]Sawin P D, Traynelis V C, Menezes A H. A comparative analysis of fusion ratesand donor-site morbidity for autogeneic rib and iliac crest bone grafts inposterior cervical fusions[J]. Journal of Neurosurgery,1998,88(2):255-265.
    [101]Bagby G W. Arthrodesis by the distraction-compression method using astainless steel implant[J]. Orthopedics,1988,11(6):931-934.
    [102]Kuslich S D, Ulstrom C L, Griffith S L, et al. The Bagby and Kuslich Method ofLumbar Interbody Fusion: History, Techniques, and2‐Year Follow‐upResults of a United States Prospective, Multicenter Trial[J]. Spine,1998,23(11):1267-1278.
    [103]Brantigan J W, Steffee A D, Lewis M L, et al. Lumbar interbody fusion usingthe Brantigan I/F cage for posterior lumbar interbody fusion and the variablepedicle screw placement system: two-year results from a Food and DrugAdministration investigational device exemption clinical trial[J]. Spine,2000,25(11):1437-1446.
    [104]Kandziora F, Pflugmacher R, Sch fer J, et al. Biomechanical comparison ofcervical spine interbody fusion cages[J]. Spine,2001,26(17):1850-1857.
    [105]Matge G. Anterior interbody fusion with the bak-cage in cervical spondylosis[J].Acta Neurochir (Wien),1998,140(1):1-8.
    [106]Samandouras G, Shafafy M, Hamlyn P J. A new anterior cervicalinstrumentation system combining an intradiscal cage with an integrated plate:An early technical report[J]. Spine,2001,26(10):1188-1192.
    [107]Hacker R J, Cauthen J C, Gilbert T J, et al. A prospective randomizedmulticenter clinical evaluation of an anterior cervical fusion cage[J]. Spine,2000,25(20):2646-2655.
    [108]唐天驷,俞杭平.务实、创新,努力提高我国脊柱外科的诊疗水平[J].中华骨科杂志,2002,22(1):526.
    [109]Kandziora F, Schollmeier G, Scholz M, et al. Influence of cage design oninterbody fusion in a sheep cervical spine model[J]. Journal of Neurosurgery:Spine,2002,96(3):321-332.
    [110] Kandziora F, Pflugmacher R, Scholz M, et al. Bioabsorbable interbody cages ina sheep cervical spine fusion model[J]. Spine,2004,29(17):1845-1855.
    [111] Kettler A, Wilke H J, Claes L. Effects of neck movements on stability andsubsidence in cervical interbody fusion: An in vitro study[J]. Journal ofNeurosurgery,2001,94(1Suppl):97-107.
    [112] Tan J S, Bailey C S, Dvorak M F, et al. Interbody device shape and size areimportant to strengthen the vertebra–implant interface[J]. Spine,2005,30(6):638-644.
    [113] Yang K, Teo E C, Fuss F K. Application of taguchi method in optimization ofcervical ring cage[J]. Journal of Biomechanics,2007,40(14):3251-3256.
    [114] Vavruch L, Hedlund R, Javid D, et al. A prospective randomized comparisonbetween the cloward procedure and a carbon fiber cage in the cervical spine: aclinical and radiologic study[J]. Spine,2002,27(16):1694-1701.
    [115]吴广森,靳安民,张辉,等.可降解生物活性颈椎椎间融合器的研制与评价[J].颈腰痛杂志,2004,25(2):79-81.
    [116]钱邦平.可吸收解剖型颈椎椎间融合器的研制及临床应用[D].苏州大学,2003.
    [117]李家顺,贾连顺.当代颈椎外科学[M].上海科学技术文献出版社,1997.
    [118]刘庆发,尹庆水.临床颈椎外科学[M].人民军医出版社,2005.
    [119] Wu G, Cavanagh P R. Isb recommendations for standardization in the reportingdata[J]. Journal of Biomechanics,1995,28(10):1257-1261.
    [120]Cappozzo A, Catani F, Della Croce U, et al. Position and orientation in space ofbones during movement: anatomical frame definition and determination[J].Clinical biomechanics,1995,10(4):171-178.
    [121]Ferrario V F, Sforza C, Serrao G, et al. Active range of motion of the head andcervical spine: a three‐dimensional investigation in healthy young adults[J].Journal of orthopaedic research,2002,20(1):122-129.
    [122]Boccagni C, Carpaneto J, Micera S, et al. Motion analysis in cervicaldystonia[J]. Neurological Sciences,2008,29(6):375-381.
    [123]Sforza C, Grassi G P, Fragnito N, et al. Three-dimensional analysis of activehead and cervical spine range of motion: effect of age in healthy malesubjects[J]. Clinical Biomechanics,2002,17(8):611-614.
    [124]吴永强.精通UG NX5+Imageware逆向工程设计[M].电子工业出版社,2008.
    [125]金涛,童永光.逆向工程技术[J].北京:机械工业出版社,2003.
    [126]杨加,吴祈耀,田捷,杨弊.几种图像分割算法在CT图像分割上的实现和比较[J].北京理工大学学报,2000,20(6):720-723.
    [127]李久权,王平,王永强. CT图像分割几种算法[J].微计算机信息(测控自动化),2006,22(2-1):240-242.
    [128]张胜兰,郑冬黎,郝琪.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2007.
    [129]Clauser C E, McConville J T, Young J W. Weight, volume, and center of mass ofsegments of the human body[R].Antioch Coll Yellow Springs Oh,1969.
    [130]Zhang Q H, Teo E C, Ng H W, et al. Finite element analysis of moment-rotationrelationships for human cervical spine[J]. Journal of Biomechanics,2006,39(1):189-193.
    [131]Ha S K. Finite element modeling of multi-level cervical spinal segments(C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc[J].Medical Engineering&Physics,2006,28(6):534-541.
    [132]Ng H W, Teo E C. Nonlinear finite-element analysis of the lower cervical spine(C4–C6) under axial loading[J]. Journal of Spinal Disorders&Techniques,2001,14(3):201-210.
    [133]Buckwalter J A, Einhorn TA, Simon S R.骨科基础科学:骨关节肌肉系统生物学和生物力学[M].北京:人民卫生出版社,2003.
    [134]Panzer M B, Cronin D S. C4–C5segment finite element model development,validation, and load-sharing investigation[J]. Journal of Biomechanics,2009,42(4):480-490.
    [135]Cahou t V, Luc M, David A. Static optimal estimation of joint accelerations forinverse dynamics problem solution [J]. Journal of Biomechanics,2002,35(11):1507-1513.
    [136]Kuo A D. A least-squares estimation approach to improving the precision ofinverse dynamics computations [J]. Journal of Biomechanical Engineering,1998,120(1):148-159.
    [137]Wu S K, Lan H H C, Kuo L C, et al. The feasibility of a video-based motionanalysis system in measuring the segmental movements between upper andlower cervical spine[J]. Gait&posture,2007,26(1):161-166.
    [138]Leardini A, Chiari L, Croce U D, et al. Human movement analysis usingstereophotogrammetry: Part3. Soft tissue artifact assessment and compensation[J]. Gait&posture,2005,21(2):212-225.
    [139]Andriacchi T P, Alexander E J. Studies of human locomotion: past, present andfuture [J]. Journal of Biomechanics,2000,33(10):1217-1224.
    [140]Cutti A G, Paolini G, Troncossi M, et al. Soft tissue artefact assessment inhumeral axial rotation [J]. Gait&posture,2005,21(3):341-349.
    [141]Sangeux M, Marin F, Charleux F, et al. Quantification of the3D relativemovement of external marker sets vs. bones based on magnetic resonanceimaging[J]. Clinical Biomechanics,2006,21(9):984-991.
    [142]Ryu T, Choi H S, Chung M K. Soft tissue artifact compensation usingdisplacement dependency between anatomical landmarks and skin markers–apreliminary study[J]. International Journal of Industrial Ergonomics,2009,39(1):152-158.
    [143]Stagni R, Fantozzi S, Cappello A, et al. Quantification of soft tissue artefact inmotion analysis by combining3D fluoroscopy and stereophotogrammetry: astudy on two subjects [J]. Clinical Biomechanics,2005,20(3):320-329.
    [144]Fuller J, Liu L J, Murphy M C, et al. A comparison of lower-extremity skeletalkinematics measured using skin-and pin-mounted markers [J]. HumanMovement Science,1997,16(2):219-242.
    [145]Akbarshahi M, Schache A G, Fernandez J W, et al. Non-invasive assessment ofsoft-tissue artifact and its effect on knee joint kinematics during functionalactivity[J]. Journal of Biomechanics,2010,43(7):1292-1301.
    [146]Gao B, Zheng N N. Investigation of soft tissue movement during level walking:translations and rotations of skin markers [J]. Journal of Biomechanics,2008,41(15):3189-3195.
    [147]Reinschmidt C, Van Den Bogert A J, Lundberg A, et al. Tibiofemoral andtibiocalcaneal motion during walking: external vs. skeletal markers[J]. Gait&Posture,1997,6(2):98-109.
    [148]Benoit D L, Ramsey D K, Lamontagne M, et al. Effect of skin movementartifact on knee kinematics during gait and cutting motions measured in vivo[J].Gait&Posture,2006,24(2):152-164.
    [149]M rl F, Blickhan R. Three-dimensional relation of skin markers to lumbarvertebrae of healthy subjects in different postures measured by open MRI[J].European Spine Journal,2006,15(6):742-751.
    [150]Hashemirad F, Hatef B, Jaberzadeh S, et al. Validity and reliability of skinmarkers for measurement of intersegmental mobility at L2–3and L3–4duringlateral bending in healthy individuals: A fluoroscopy study[J]. Journal ofBodywork and Movement Therapies,2013,17(1):46-52.
    [151]Descarreaux M, Blouin J S, Teasdale N. A non-invasive technique formeasurement of cervical vertebral angle: report of a preliminary study[J].European Spine Journal,2003,12(3):314-319.
    [152]Zhang X, Xiong J. Model-guided derivation of lumbar vertebral kinematics invivo reveals the difference between external marker-defined and internalsegmental rotations[J]. Journal of Biomechanics,2003,36(1):9-17.
    [153]Reinschmidt C, Van Den Bogert A J, Nigg B M, et al. Effect of skin movementon the analysis of skeletal knee joint motion during running[J]. Journal ofBiomechanics,1997,30(7):729-732.
    [154]Cappozzo A, Catani F, Leardini A, et al. Position and orientation in space ofbones during movement: experimental artefacts[J]. Clinical Biomechanics,1996,11(2):90-100.
    [155]Holden J P, Orsini J A, Siegel K L, et al. Surface movement errors in shankkinematics and knee kinetics during gait[J]. Gait&Posture,1997,5(3):217-227.
    [156]Manal K, McClay I, Stanhope S, et al. Comparison of surface mounted markersand attachment methods in estimating tibial rotations during walking: an in vivostudy[J]. Gait&Posture,2000,11(1):38-45.
    [157]Maslen B A, Ackland T R. Radiographic study of skin displacement errors inthe foot and ankle during standing[J]. Clinical Biomechanics,1994,9(5):291-296.
    [158]Tranberg R, Karlsson D. The relative skin movement of the foot: a2-D roentgenphotogrammetry study[J]. Clinical Biomechanics,1998,13(1):71-76.
    [159]Sati M, De Guise J A, Larouche S, et al. Quantitative assessment of skin-bonemovement at the knee[J]. The Knee,1996,3(3):121-138.
    [160]Tashman S, Anderst W. Skin motion artifacts at the knee during impactmovements[J]. Gait&Posture,2002,16:11-12.
    [161]Lysell E. Motion in the cervical spine. An experimental study on autopsyspecimens[J]. Acta Orthopaedica Scandinavica,1969: Suppl123:1+.
    [162]Friedenberg Z B, Edeiken J, Spencer H N, et al. Degenerative changes in thecervical spine[J]. The Journal of Bone&Joint Surgery,1959,41(1):61-102.
    [163]J ger H J, Gordon-Harris L, Mehring U M, et al. Degenerative change in thecervical spine and load-carrying on the head[J]. Skeletal Radiology,1997,26(8):475-481.
    [164]Abdulkarim J A, Dhingsa R, Finlay D B L. Magnetic resonance imaging of thecervical spine: frequency of degenerative changes in the intervertebral disc withrelation to age[J]. Clinical Radiology,2003,58(12):980-984.
    [165]Arana E, Martí-Bonmatí L, Mollá E, et al. Upper thoracic-spine discdegeneration in patients with cervical pain[J]. Skeletal Radiology,2004,33(1):29-33.
    [166]Matsumoto M, Fujimura Y, Suzuki N, et al. MRI of cervical intervertebral discsin asymptomatic subjects[J]. Journal of Bone&Joint Surgery, British Volume,1998,80(1):19-24.
    [167]Obisesan K A, Obajimi M O. Radiological ageing process in the cervical spineof Nigerian women[J]. African Journal of Medicine and Medical Sciences,1998,28(3-4):189-191.
    [168]Nishizawa S, Yokoyama T, Yokota N, et al. High cervical disc lesions in elderlypatients–presentation and surgical approach[J]. Acta Neurochirurgica,1999,141(2):119-126.
    [169]Shea M, Edwards W T, White A A, et al. Variations of stiffness and strengthalong the human cervical spine[J]. Journal of Biomechanics,1991,24(2):95-107.
    [170]Heitplatz F, Hartle S L, Gentle C R. A3-dimensional large deformation FEA ofa ligamentous C4-C7spine unit[J]. Computer Methods in Biomechanics andBiomedical Engineering2,1999,2:387.
    [171]Teo E C, Yang K, Fuss F K, et al. Effects of cervical cages on load distributionof cancellous core-a finite element analysis[J]. Journal of Spinal Disorders&Techniques,2004,17(3):226-231.
    [172]Majd M E, Vadhva M, Holt R T. Anterior cervical reconstruction using titaniumcages with anterior plating[J]. Spine,1999,24(15):1604-1610.
    [173]Das K, Couldwell W T, Sava G, et al. Use of cylindrical titanium mesh andlocking plates in anterior cervical fusion-technical note[J]. Journal ofNeurosurgery,2001,94(1):174-178.
    [174]陈雷.新型国人颈椎前路内固定系统初步设计与相关实验研究[D].吉林大学,2012.
    [175]Closkey R F, Parsons J R, Lee C K, et al. Mechanics of interbody spinal fusion.Analysis of critical bone graft area[J]. Spine,1993,18(8):1011-1015.
    [176]Pearcy M J, Evans J H, O'Brien J P. The load bearing capacity of vertebralcancellous bone in interbody fusion of the lumbar spine[J]. Engineering inMedicine,1983,12(4):183-184.
    [177]Natarajan R N, Chen B H, An H S, et al. Anterior cervical fusion: A finiteelement model study on motion segment stability including the effect ofosteoporosis[J]. Spine,2000,25(8):955-961.
    [178]Roberts S, McCall I W, Menage J, et al. Does the thickness of the vertebralsubchondral bone reflect the composition of the intervertebral disc?[J].European Spine Journal,1997,6(6):385-389.
    [179]Oxland T R, Grant J P, Dvorak M F, et al. Effects of endplate removal on thestructural properties of the lower lumbar vertebral bodies[J]. Spine,2003,28(8):771-777.
    [180]Chiang M F, Teng J M, Huang C H, et al. Finite element analysis of cagesubsidence in cervical interbody fusion[J]. Journal of Medical and BiologicalEngineering,2004,24(4):201-208.
    [181]任露泉.回归设计及其优化[M].北京:科学出版社,2009.
    [182]田丽梅,任露泉,韩志武,等.仿生非光滑表面脱附与减阻技术在工程上的应用[J].农业机械学报,2005,36(3):138-142.
    [183]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学: E辑,2009,38(9):1353-1364.
    [184]戈超.离心风机叶片抗冲蚀磨损仿生研究[D].吉林大学,2011.
    [185]高峰.沙漠蜥蜴耐冲蚀磨损耦合特性的研究[D].吉林大学,2008.
    [186]陆丹,刘毅.马骨滋养孔力学特征及其在飞行器结构中的应用前景[J].航空科学技术,2007(1):39-42.
    [187]G tzen N, Cross A R, Ifju P G, et al. Understanding stress concentration about anutrient foramen[J]. Journal of biomechanics,2003,36(10):1511-1521.
    [188]Grundei H. Ball joint or cap implant for an artificial hip joint: U.S. Patent7,771,485[P].2010-8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700