植物叶片仿生伪装材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对高光谱成像探测的现实威胁以及当前伪装技术面临的巨大困境,开展了基于植物叶片仿生的新型伪装材料研究工作。首先提出一种能够实现与植被环境“同色同谱”的植物叶片仿生伪装材料的模型。然后依据此模型,依次研究了叶绿体色素的光谱性质、叶绿体仿生色素微胶囊的制备和叶肉组织仿生多孔纤维素膜的制备。为拓展植物叶片仿生伪装材料的电磁对抗性能,还进一步开展了纳米金与纤维素之间进行杂化的研究。本论文的研究工作和成果为能够对抗高光谱成像探测、且具有一体化、宽频域伪装效能的植物叶片仿生伪装材料的开发和应用奠定了关键的物质基础。研究工作和主要结果如下:
     提出了植物叶片仿生伪装材料的全新理念,建立了以植物色素、水分和疏松多孔结构模拟植物叶片的仿生伪装材料模型。巧妙地开展了该模型的原理验证性实验,制备的含水和植物色素的人工多孔材料与梧桐多叶片叠加时的反射光谱相似度高达0.97548。
     基于对植物叶片中叶绿体色素的提取与分离技术和叶绿素的化学改性技术研究,首次制备出一种以铜叶绿素和叶黄素的复配色素为溶质的植物油溶液,该全仿生色素体系与叶绿体色素的四氯化碳溶液的光谱特征较为接近,且具有较高的光稳定性。进一步以该色素体系为芯材,以三聚氰胺—甲醛树脂为壁材,研究了采用原位聚合法制备叶绿体仿生色素微胶囊的工艺方法,确定了一组能够制备尺寸、形貌和光谱特征与叶绿体相似的色素微胶囊的制备工艺参数。
     研究了NMMO溶剂法制备叶肉组织仿生多孔纤维素膜的工艺方法,分析了影响纤维素膜多孔性的主要工艺因素,研究表明:多孔纤维素膜的厚度、平均孔洞尺寸等形态结构及其光谱反射率可以通过调节纤维素溶液中的共溶剂DMSO含量和旋转涂膜速度来控制,多孔纤维素膜的结晶度等结晶结构可通过调整凝固浴的组分来控制。确定了一种能够制备高性能叶肉组织仿生多孔纤维素膜的工艺方法。
     开展了有关纳米金/纤维素杂化膜的制备研究,成功地实现Frens法制备的纳米金与再生纤维素的杂化,发现了杂化膜中纳米金的含量与反应时间的指数关系和与所使用的金溶胶的浓度的线性关系。基于对纳米金与纤维素之间的杂化机理研究,建立了杂化反应“冠醚效应”模型。第一次采用无硫工艺制备了具有独特电学性质的纳米金/纤维素杂化导电膜材料,当纳米金含量在11.6210%以上时,该种杂化膜具有比较稳定的、类似于半导体二极管的电学性质。
The study of a novel camouflage material based on the biomimetics of plant leaves was carried out as a countermeasure for the threat of hyperspectral imaging detecton and the dilemma of current camouflage technologies. At first, a model for the plant leaf biomimetic camouflage material having a potential property to be cocolor and cospectrum with plant enviroments was developed. Then, the studies of spectral characteristics of chloroplast pigments, the peparation of chloroplast biomimetic microcapsules of the pigment system and the preparation of mesophyll biomimetic porous cellulose fims were carried out in sequence. The conjugation of gold nanoparticles and cellulose was studied to explore the electromagnetic countermeasure ability of plant leaf biomimetic camouflage materials. The essential materials for the development and application of plant leaf biomimetic camouflage materials with integrated and broadly spectral camouflage abilities were supported by the research work and results in the dissertation. The research work and main results are shown below:
     The novel concept of plant leaf biomimetic camouflage materials was introduced at first. Then, the model of plant leaf biomimetic camouflage materials was developed by using plant pigments, water and porous structure to simulate plant leaves. The model validation was proved by using a well designed procedure, in which the reflectance spectrum of the porous material synthesized containing water and plant pigments exhibited a similarity index of 0.97548 with that of multiple leaves of the phonex tree.
     For the first time, a plant oil solution of the complex pigments of copper chlorophyll and lutein was prepared based on the technique studies of pigment extraction of chloroplasts in plant leaves and chemical modifications of chlorophyll. The completely biomimetic pigment solution showed similarly spectral characteristics with that of the carbon tetrachloride solution of chloroplast pigments and had a good stability under sunshine. Furthermore, the preparation of chloroplast biomimetic microcapsules of pigments was studied with the method of in situ polymerization by using the pigment solution as the core material and the resin of melamine-formaldehyde as the shell material. And one group of peparation parameters of the microcapsules of pigments was determined.
     The preparation of mesophyll biomimetic porous cellulose films was studied by using the NMMO solvent method, and influencing factors of the porous structures of cellulose films were analysized accordingly. The studies indicated that the structral properties, e.g., the thickness, the average size of pores, could be controlled by adjusting the concentration of dimethylsulfoxide and the rotating speed of coating, so did the spectral reflectance of the porous cellulose films. While, the crystalline properties, e.g., the crystalization index, of the porous cellulose films could be controlled by adjusting compositions of the coagulation bath. One preparation method of mesophyll biomimetic porous cellulose films with high performances was determined.
     The study about the hybrid films of gold nanoparticles and cellulose was carried out. The conjugation of gold nanoparticles prepared by using the Frens method and regenerated cellulose was achieved successfully. It was found that the concentration of gold nanoparticles in the hybrd films followed an exponential relationship with the reaction time and a linear relationship with the concentration of gold colloid used. The hybrid reaction model of crown ether effect was developed based on the miechanism study of the conjugation of gold nanoparticles and cellulose. For the first time, the conducting hybrid films of gold nanoparticles and cellulose with unique electronic properties were prepared by adopting an no―sulfur method, and they showed stable semiconducting diode electronic properites correspondingly with a concentration of gold nanoparticles above 11.6210%.
引文
[1]王家营,刘益民.高光谱遥感与陆基导弹阵地伪装[C].厦门:2004年全国光电技术学术交流会,2004: 255~258
    [2]童庆禧.我国高光谱遥感的发展[EB/OL]. http://www.sbsm.gov.cn/article/gzcy/ chlt/200804/20080400034207.shtml. 2008–04–18/2009–08–18
    [3]Summer Yarbrough , Thomas Caudill , Eric Kouba, et al. MightySat II.1 Hyperspectral Imager: Summary of On–Orbit Performance[C]. Seattle, Washington:Imaging Spectrometry VII,Proceedings of SPIE,2002,4480: 186~197
    [4]万余庆,谭克龙,周日平.高光谱遥感应用研究[M].北京:科学出版社,2006: 31
    [5]马玲,崔德琪,王瑞,等.成像光谱技术的研究与发展[J].光学技术,2006,32(增刊): 537~580
    [6]杨照金.空间光学仪器及其校准检测技术—第二讲成像光谱仪[J].应用光学,2008,29(5): 5~8
    [7]刘志明,胡碧茹,吴文健,等.高光谱探测绿色涂料伪装的光谱成像研究[J].光子学报,2009,38(4): 885~890
    [8]颜文俊,王同招.高光谱遥感影像地面伪装目标检测方法的研究[J].机电工程,2007,24(1): 4~6
    [9]张勇,吴文健,刘志明.仿生迷彩伪装设计[J].计算机工程,2009,35(6): 35~37,40
    [10]蒋晓军,卢言利,朱国荣.地面军用目标伪装涂料技术的应用与发展[J].涂料技术与文摘,2007,28(9): 1~5
    [11]宣兆龙,易建政.地面军事目标伪装材料的研究进展[J].兵器材抖科学与工程, 2000,23(2): 51~55
    [12]张朝阳,程海峰,王茜,等.多波段伪装涂料制备及性能表征[J].新技术新工艺,2005,12: 44~46
    [13]张亚梅.地物反射波谱特征及高光谱成像遥感[J].光电技术应用,2008,23(5): 6~21
    [14]William A Allen,Harold W Gausman,Arthur J Richardson,et al. Interaction of Isotropic Light with a Compact Plant Leaf[J]. Journal of the Optical Society of America,1969,59(10): 1376~1379
    [15]Compton J Tucker,Michael W Garratt. Leaf Optical System Modeled as a Stochastic Process[J]. Applied Optics,1977,16(3): 635~642
    [16]Yves M Govaerts , Stéphane Jacquemoud , Michel M Verstraete , et al. Three–Dimensional Radiation Transfer Modeling in a Dicotyledon leaf[J]. Applied Optics,1996,35(33): 6585~6598
    [17]Andrieu B,Baret F,Jacquemoud S,et al. Evaluation of an Improved Version of SAIL Model for Simulating Bidirectional Reflectance of Sugar Beet Canopies[J]. Remote Sensing of Environment,1997,60: 247~257
    [18]Terence P Dawson,Paul J Curran,Stephen E Plummer. LIBERTY–Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra[J]. Remote Sensing of Environment,1998,65: 50~60
    [19]Aber J D,Martin M,Wessman C. Calculated Leaf Carbon and Nitrogen,1992 (ACCP)[DB/OL]. http://daac.ornl.gov/ACCP/guides/plotchem.html#3. ,2008–05–15/2009–08–18
    [20]Yoder B,Johnson L. Seedling Canopy Chemistry,1992–1993 (ACCP)[DB/OL]. http://daac.ornl.gov/ACCP/guides/S_can_ch.html,2008–05–15/2009–08–18
    [21]Aber J D,Martin M E. Visible and Near–Infrared Leaf Reflectance Spectra, 1992–1993 (ACCP)[DB/OL]. http://daac.ornl.gov/ACCP/guides/leafspec.html ,2008–05–15/2009–08–18
    [22]Susan L Ustin,Dar A Roberts,Jorge Pinzón,et al. Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods[J]. Remote Sensing of Environment,1998,65: 280~291
    [23]Anatoly A Gitelson , Mark N Merzlyak. Remote Sensing of Chlorophyll Concentrration in Higer Plant Leaves[J]. Adv. Space Res.,1998,22(5): 689~692
    [24]Gregory P Asner,Carol A Wessman,David S Schimel,et al. Variability in Leaf and Litter Optical Properties:Implications for BRDF Model Inversions Using AVHRR,MODIS,and MISR[J]. Remote Sensing of Environment,1998,63: 243~257
    [25]George Alan Blackburn. Relationships between Spectral Reflectance and Pigment Concentrations in Stacks of Deciduous Broadleaves[J]. Remote Sensing of Environment,1999,70: 224~237
    [26]Pietro Ceccatoa,Stéphane Flasseb,Stefano Tarantola,et al. Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain[J]. Remote Sensing of Environment,2001,77: 22~33
    [27]Daniel A Sims,John A Gamon. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species,Leaf Structures and Developmental Stages[J]. Remote Sensing of Environment,2002,81: 337~354
    [28]Anatoly A Gitelson,Yuri Gritz,Mark N Merzlyak. Relationships between LeafChlorophyll Content and Spectral Reflectance and Algorithms for Non–Destructive Chlorophyll Assessment in Higher Plant Leaves[J]. J. Plant Physiol.,2003,160: 271~282
    [29]Aber J D,Ollinger S V,Driscoll C T,et al. PnET Models:Carbon,Nitrogen,Water Dynamics in Forest Ecosystems (Vers. 4 and 5)[DB/OL]. http://daac.ornl.gov/MODELS/guides/pnet_guide.html,2008–05–15/2009–08–18
    [30]Tobias D Wheeler,Abraham D Stroock. The Transpiration of Water at Negative Pressures in a Synthetic Tree[J]. Nature,2008,455: 208~212
    [31]胡碧茹,吴文健,满亚辉,等.地面目标光电伪装防护难点及新技术分析[J].兵工学报,2007,28(9): 1103~1106
    [32]李晓霞,张胜虎.新型热红外伪装体系[J].红外技术,2002,21 (1): 42~46
    [33]张卫平,赵怀新,郭益民,等.日照时伪装网和植被的红外辐射亮度的差异[J].工兵装备研究,2002,21(1): 31~33
    [34]曹义,才鸿年,程海峰,等.林地型伪装网热红外发射率取值分析[J].激光与红外,2008,38(7): 671~675
    [35]Junhui He,Toyoki Kunitake,Aiko Nakao. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers[J]. Chem. Mater.,2003,15(23): 4401~4406
    [36]周金平,刘石林,张俐娜.纤维素/磁性纳米粒子复合膜的结构与性能[C].北京:2005年全国高分子学术论文报告会,2005,会议记录ID: 6336121
    [37]Aaron C Small , James H Johnston. Novel Hybrid Materials of Magnetic Nanoparticles and Cellulose Fibers[J]. Journal of Colloid and Interface Science,2009,331: 122~126
    [1]李焜章,李学真.裸子植物和被子植物的基本区别[J].生物学通报,1989,(3): 21~27
    [2]周云龙.植物生物学[M].北京:高等教育出版社,2004: 121
    [3]Preston B L,Snell T W,Kneisel R. UV–B Exposure Increases Acute Toxicity of Pentachlorophenol and Mercury to the Rotifer Brachionus Calyciflorus[J]. Environmental Pollution,1999,106(1): 23~31
    [4]William A Allen,Harold W Gausman,Arthur J Richardson,et al. Interaction of Isotropic Light with a Compact Plant Leaf[J]. Journal of the Optical Society of America,1969,59(10): 1376~1379
    [5]Compton J Tucker,Michael W Garratt. Leaf Optical System Modeled as a Stochastic Process[J]. Applied Optics,1977,16(3): 635~642
    [6]Yves M Govaerts , Stéphane Jacquemoud , Michel M Verstraete , et al. Three–Dimensional Radiation Transfer Modeling in a Dicotyledon leaf[J]. Applied Optics,1996,35(33): 6585~6598
    [7]Andrieu B,Baret F,Jacquemoud S,et al. Evaluation of an Improved Version of SAIL Model for Simulating Bidirectional Reflectance of Sugar Beet Canopies[J]. Remote Sensing of Environment,1997,60: 247~257
    [8]Terence P Dawson,Paul J Curran,Stephen E Plummer. LIBERTY–Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra[J]. Remote Sensing of Environment,1998,65: 50~60
    [9]Aber J D,Martin M,Wessman C. Calculated Leaf Carbon and Nitrogen,1992 (ACCP)[DB/OL]. http://daac.ornl.gov/ACCP/guides/plotchem.html#3. ,2008–05–15/2009–08–18
    [10]Yoder B,Johnson L. Seedling Canopy Chemistry,1992–1993 (ACCP)[DB/OL]. http://daac.ornl.gov/ACCP/guides/S_can_ch.html,2008–05–15/2009–08–18
    [11]Aber J D,Martin M E. Visible and Near–Infrared Leaf Reflectance Spectra,1992–1993 (ACCP)[DB/OL]. http://daac.ornl.gov/ACCP/guides/leafspec.html ,2008–05–15/2009–08–18
    [12]Susan L Ustin,Dar A Roberts,Jorge Pinzón,et al. Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods[J]. Remote Sensing of Environment,1998,65: 280~291
    [13]Anatoly A Gitelson , Mark N Merzlyak. Remote Sensing of ChlorophyllConcentrration in Higer Plant Leaves[J]. Adv. Space Res.,1998,22(5): 689~692
    [14]Gregory P Asner,Carol A Wessman,David S Schimel,et al. Variability in Leaf and Litter Optical Properties: Implications for BRDF Model Inversions Using AVHRR,MODIS,and MISR[J]. Remote Sensing of Environment,1998,63: 243~257
    [15]George Alan Blackburn. Relationships between Spectral Reflectance and Pigment Concentrations in Stacks of Deciduous Broadleaves[J]. Remote Sensing of Environment,1999,70: 224~237
    [16]Pietro Ceccatoa,Stéphane Flasseb,Stefano Tarantola,et al. Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain[J]. Remote Sensing of Environment,2001,77: 22~33
    [17]Daniel A Sims,John A Gamon. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species,Leaf Structures and Developmental Stages[J]. Remote Sensing of Environment,2002,81: 337~354
    [18]Anatoly A Gitelson,Yuri Gritz,Mark N Merzlyak. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non–Destructive Chlorophyll Assessment in Higher Plant Leaves[J]. J. Plant Physiol.,2003,160: 271~282
    [19]Aber J D,Ollinger S V,Driscoll C T,et al. PnET Models:Carbon,Nitrogen,Water Dynamics in Forest Ecosystems (Vers. 4 and 5)[DB/OL]. http://daac.ornl.gov/MODELS/guides/pnet_guide.html,2008–05–15/2009–08–18
    [20]Brian L Becker,David P Lusch,Jiaguo Qi. A Classification–Based Assessment of the Optimal Spectral and Spatial Resolutions for Great Lakes Coastal Wetland Imagery[J]. Remote Sensing of Environment,2007,108(1): 111~120
    [21]Jinnian Wang,Lanfen Zheng,Qingxi Tong. Derivative Spectra Matching for Wetland Vegetation Identification and by Hyperspectral Image[J]. Proc. SPIE,Hyperspectral Remote Sensing and Application,1998,3502: 280~288
    [22]梁继,王建,王建华.基于光谱角分类器遥感影像的自动分类和精度分析研究[J].遥感技术与应用,2002,17(6): 299~303
    [23]李庆波,李响,张广军.一种基于光谱奇异值检测的高光谱遥感小目标探测方法[J].光谱学与光谱分析,2008,28(8): 1832~1836
    [24]陈亮,刘代志,黄世奇.基于光谱角匹配预测的高光谱图像无损压缩[J].地球物理学报,2007,50(6): 1894~1898
    [25]陈亮,刘希,张元.结合光谱角的最大似然法遥感影像分类[J].测绘工程,2007,16(3): 40~42,47
    [26]唐宏,方涛,施鹏飞.基于完全波形的反射和吸收特征的非线性光谱相似性度量与检索—非线性光谱角制图[J].光谱学与光谱分析,2005,25(2): 307~310
    [27]Joseph T Woolley. Reflectance and Transmittance of Light by Leaves[J]. Journal of Plant Physiology,1971,47: 656~662
    [28]Jacquemoud S,Ustin S L,Verdebout J, et al. Estimating Leaf Biochemistry Using the PROSPECT Leaf Optical Properties Model[J]. Remote Sensing of Environment,1996,56: 194~202
    [29]Broge N H,Mortensen J V. Deriving Green Crop Area Index and Canopy Chlorophyll Density of Winter Wheat from Spectral Reflectance Data [J]. Remote Sensing of Environment,2002,81: 45~57
    [30]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000: 82
    [31]Compton J Tucker,Michael W Garratt. Leaf Optical System Modeled as a Stochastic Process[J]. Applied Optics,1977,16(3): 635~642
    [32]张良培,张立福.高光谱遥感[M].武汉:武汉大学出版社,2005: 31
    [33]孙星和.宇航遥感物理基础[M].北京:地震出版社,1999: 102
    [34]邓绍林.广西甜茶叶片的营养成分及开发利用价值研究[J].中国林副特产, 2008,54: 18~19
    [35]张春牛.植物花瓣的起源及其演化[J].丽水师范专科学校学报,2001,23(2): 51~52
    [36]项斌,高建荣.天然色素[M].北京:化学工业出版社,2004: 8
    [1]GB/T 5009.83–2003,食品中胡萝卜素的测定[S]
    [2]马迎杰,周宝利,程孙亮,等.超声波提取番茄果实中类胡萝卜素条件的优化[J].植物生理学通讯,2005,41(5): 659~661
    [3]惠伯棣.胡萝卜素、叶黄素和叶绿素在反相超临界色谱中的分离初探[J].食品科学,2005,26(8): 162~166
    [4]李好样,冯轶雪.菠菜色素的提取与分离[J].太原师范学院学报,2004,3(3): 64~66
    [5]王尊本.综合化学实验[M].北京:科学出版社,2003: 1~16
    [6]张新申,刘福华,等.竹叶中有效成分的分离研究[J].四川大学学报,2002,34(6): 116~118
    [7]项斌,高建荣.天然色素[M].北京:化学工业出版社,2004: 104~106
    [8]包维楷,冷俐.苔藓植物光合色素含量测定方法—以暖地大叶藓为例[J].应用与环境生物学报,2005,11(2): 236
    [9]杨建虹,陶冶.大量分离叶绿素a和b的方法[J].植物生物学通讯,2002,38: 156~158
    [10]阴金香,杨楷林,胡东馨,等.基础化学实验研究—去镁叶绿素的分离和鉴定[J].实验技术与管理,2005,22(11): 101~148
    [11]Tatsuo Omata,Norio Murata. Preparation of Chlorophyll a,Chlorophyll b and Bacteriochlorophyll a by Column Chromatography with DEAE Sepharose CL–6B and Sepharose CL–6B[J]. Plant Cell Physiol,1983,24(6): 1093~1100
    [12]王敏,姜莉,张为民.冬青叶绿素稳定性的试验研究[J].安徽农业大学学报, 2003,30(4): 455~458
    [13]刘爱文,陈忻,高永辉,等.萝卜樱叶绿素铜钠盐的制备和性质研究[J].广东化工,2004,7: 11~14
    [14]姜莉,刘邻渭,何玉君.女贞叶中叶绿素锌钠制备及其稳定性的研究[J].西北农业学报,2005,14(6): 186~190
    [15]王晓,张红侠,袁清昌.桑叶制取叶绿素铜钠盐的工艺研究[J].山东轻工业学院学报,2002,16(1): 16~20
    [16]黄森科.水浮莲叶制取叶绿素铜钠盐的工艺研究[J].工艺技术,2002,23(6): 37~38
    [17]吴贻群,卢景顺,邓素英,等.水葫芦叶制取叶绿素锌钠的新工艺研究[J]. 2005, (4): 91~93
    [18]李新岗,黄蕴慧,刘毅,等.银杏叶中提取叶绿素铜钠盐的方法[J].南京军医学院学报,2001,23(1): 43
    [19]INOUE H,FURUYA K,WATANABE K,et al. Separation and Determination of Copper(II) Chlorophylls by Reversed–Phase High Performance Liquid Chromatography[J]. Analytical Sciences,1988,4(6): 599~603
    [20]LI S , INOUE H. Separation and Characterization of Manganese (II , III) Chlorophylls[J]. Analytical Sciences,1991,7(1): 121~124
    [21]Thakur R S. Use of Copper Chlorophyll Complex in Coloring Foodstuffs, Including Hydrogenated Vegetable Oils[J]. Journal of the American Oil Chemists' Society,1969,46(9): 506
    [22]Giovine L Del,Fabietti F. Copper Chlorophyll in Olive Oils:Identification and Determination by LIF Capillary Electrophoresis[J]. Food Control,2005,16(3): 267~272
    [23]郭玉婷,周源荣,章德润.一种新型油溶性色素护色剂护色效果的初步研究[J].江西食品工业,2003,(4): 16~18
    [24]汤婕,唐有根,刘东任.钴卟啉的合成及其对氧还原的电催化性能[J].催化学报,2006,27(6): 501~505
    [25]阳卫军,郭灿城,毛彦利,等.金属卟啉的电化学性质与其催化氧化α蒎烯性能的关系[J].催化学报,2005,26(5): 360~364
    [26]金星龙,朱琨,房彦军,等.高分子金属卟啉光催化氧化处理废水[J].催化学报,2001,22(2): 189~192
    [27]蒋金芝,刘东任,唐有根,等.铁卟啉的合成及其对氧还原电催化性能[J]. 2005, 36(2): 257~261
    [28]张武昌,王荣.光和温度对叶绿素a和脱镁叶绿酸a降解的影响[J].海洋科学, 2000,24(4): 50~52
    [29]杨继生,何学志.叶绿素铜钠盐的性质、制备工艺及其应用[J].广州食品工业科技,2002,18(2): 33~35
    [30]蔡成翔,苏仕林,黎远成,等.草坪草制取叶绿素铜钠盐工艺研究[J].广西右江民族师专学报,2005,18(6): 44~48
    [31]王立娟,李坚,张丽君.松针叶绿素锌纳的制备及稳定性[J].东北林业大学学报. 2004,32(1): 50~51
    [32]丁利君,周燕芳,谢晓玲.芥蓝叶制叶绿素铜钠盐的工艺参数及其性质研究[J].现代食品科技,2005,21(1): 36~38
    [33]王立娟,钱学仁.竹叶叶绿素铁钠盐的制备及性质研究[J].林产化学与工业.2005,25(3): 89~92
    [34]陈小全,左之利.苦瓜的微量元素及其叶绿素铜钠盐的制备[J].微量元素与健康研究,2004,21(6): 34~35
    [35]李新岗,黄蕴慧.银杏叶中提取叶绿素铜钠盐的方法[J].南京军医学院学报,2001,23(1): 43
    [36]王正平,单旭峰.叶绿素铜钠盐的制备及稳定性研究[J].化学工程师,2004,108(9): 50~51
    [37]郭平.叶绿素铜钠与分子有序组合体的相互作用[D].扬州:扬州大学,2006
    [38]王晓,侯元夕,马小来,等.大叶黄杨叶制备叶绿素铜钠盐的工艺研究[J].山东科学,2001,14(4): 14~17
    [39]吴光旭,陈东海,俞胜.绞股蓝叶绿素铜钠盐的制备和理化性质研究[J].食品研究与开发,27(7): 203~205
    [40]李颖,郑荣儿,苗洪利,等.叶绿素a和类胡萝卜素仿生膜研究[J].激光生物学报,2004,13(4): 262~264
    [41]Harbour J R.,Bolton J R. The Involvement of the Hydroxyl Radical in the Structural Photooxidation of Chlorophylls in Vivo and in Vitro[J]. Photochem Photobiol,1978,28: 231
    [42]Takeshi Sakaki,Noriaki Kondo,Kiyoshi Sugahara. Breakdown of Photosynthetic Pigments and Lipids in Spinach Leaves with Ozone Fumigation: Role of Active Oxygens [J]. Physiologia Plantarum,1983,59: 28~34
    [1]Stern T,Lamas M C,Benita S. Design and Characterization of Protein–Based Microcapsules as A Novel Catamenial Absorbent System[J]. International Journal of Pharmaceutics,2002,242(1–2): 185~190
    [2]Bohlmann J T,Schneider C,Andresen H,et al. Optimized Production of Sodium Cellulose Sulfate (NaCS) for Microencapsulation of Cell Cultures[J]. Chemical Engineering Technology 2,2002,(12): 384~388
    [3]Zlotkin S , Arthur P , Antwi K Y , et al. Treatment of Anemia with Microencapsulated Ferrous Fumarate Plus Ascorbic Acid Supplied as Sprinkles to Complementary (Weaning) Foods[J]. American Journal of Clinical Nutrition,2001,74(6): 791~795
    [4]宋健,刘东志,张天永.微胶囊及微胶囊化技术的研究进展[J].化工进展,1999,(1): 42~44
    [5]Sebastien Gouin. Microencapsulation:Industrial Appraisal of Existing Technologies and Trends[J]. Trends in Food Science & Technology,2004,15: 330~347
    [6]黄可龙.精细化学品技术手册[M].长沙:中南工业大学出版社,1993: 111~112
    [7]Simon B,Christopher A,Geoffre M. An Atomic Force Microscopy Study of Weathering of Polyester/Melamine Paint Surfaces[J]. Materials Chemistry and Physics,2001,42: 49~58
    [8]Hong K,Park S. Melamine Resin Microcapsules Containing Fragrant Oil Synthesis and Characterization[J]. Materials Chemistry and Physics,1999,58: 128~131
    [9]陈建山,周钢,吴宇雄.微胶囊制备技术及其应用[J].精细化工中间体,2003,33(6): 17~19
    [10]王立新,苏峻峰,任丽.相变储热微胶囊的研制[J].高分子材料科学与工程,2005,21(1): 276~279
    [11]甄朝晖,陈中豪.保护胶体对三聚氰胺甲醛树脂微胶囊成囊性影响的研究[J].陕西科技大学学报(自然科学版),2005,23(5): 12~18
    [12]王学晨,张兴祥,张晓春,等. pH值对正十八烷微胶囊合成与性能的影响[J].应用化学,2005,22(9): 942~945
    [13]袁文辉,刘都树,李莉.微胶囊相变材料的制备与表征[J].华南理工大学学报(自然科学版),2007,35(7): 46~51
    [14]方雷,石光,李国明,等.原位聚合法制备环氧树脂微胶囊[J].华南师范大学学报(自然科学版),2006,(1): 82~86
    [15]任晓亮,王立新,任丽,等.原位聚合法制备相变储热微胶囊[J].功能材料,2005,11(36): 1722~1727
    [16]袁青梅,杨红卫,张广发,等.原位聚合法制备鱼藤酮微胶囊[J].应用化学, 2006,23(4): 382~385
    [17]刘星,汪树军,刘红研.原位聚合制备三聚氰胺脲醛树脂石蜡微胶囊及性能[J].化工学报,2006,57(12): 2991~2996
    [18]胡湧东,徐光卫.阻燃剂微胶囊技术的研究[J].聚氨酯工业,2002,17(4): 17~19
    [19]王允韬,郭慧林,王建平,等.脲甲醛缩聚物制备电子墨水微胶囊研究[J].高分子学报,2004,2: 268~272
    [20]Sawada K , Urakawa H. Preparation of Photosensitive Color–Producing Microcapsules Utilizing in situ Polymerization Method[J]. Dyes and Pigments,2005,65(1): 45~49
    [21]李立,薛敏钊,王伟,等.原位聚合法制备分散染料微胶囊[J].精细化工,2004,21(1): 76~80
    [22]李小江.原位聚合法制备镉系颜料色母粒的研究[J].湘潭大学自然科学学报,2003,25(2): 58~61
    [23]冯薇.原位聚合法制备酞菁绿G颜料微胶囊[J].精细化工,2002,19(9): 538~540
    [24]徐成安.原位聚合法制备压敏显色微胶囊[J].精细与专用化学品,2004,12(10): 21~23
    [25]刘亚青,赵贵哲.原位聚合法制备阻燃剂红磷微胶囊的研究[J].应用基础与工程科学学报,2001,9(2): 178
    [26]甄朝晖,陈中豪.压敏型脲醛树脂微胶囊的研制[J]. China Pulp & Paper,2006,25(7): 18~22
    [27]大津隆行著,陈久顺,方向东译.高分子合成化学[Z].哈尔滨:黑龙江科学技术出版社,1982: 274~276
    [28]张留城,李佐邦.缩合聚合[M].北京:化学工业出版社,1986: 370~371
    [29]荀育军,刘又年,舒万艮,等.原位聚合法制备颜料耐晒黄–G微胶囊的研究[J].涂料工业,2003,33(7): 15~18
    [30]荀育军,刘又年,舒万艮,等.原位聚合法制备颜料耐晒黄–G微胶囊的研究[J].印染助剂,2003,20(6): 15~18
    [31]湛雪辉,荀育军,甘均良,等.影响密胺树脂包覆耐晒黄G的条件研究[J].湖南师范大学自然科学学报,2007,30(1): 60~63,92
    [1]Simon J,Muller H P,Koch R,et al. Thermoplastic and Biodegradable Polymers of Cellulose[J]. Polymer Degradation and Stability,1998,59(1): 107~115
    [2]维基百科.纤维素[EB/OL]. http://zh.wikipedia.org/w/index.php?title=%E7% BA%A4 %E7%BB%B4%E7%B4%A0&variant=zh–cn. 2009–08–09/2009–08–23
    [3]李翠珍,胡开堂.多孔纤维素产品的研制[J].纤维素科学与技术,2003,11(1): 29~33
    [4]韩增强,汪少朋,武志云,等.基于絮凝工艺的Lyocell纺丝溶剂NMMO的纯化回收[J].纺织学报,2008,29(2): 29~32
    [5]介兴明,刘健辉,曹义鸣,等.纤维素中空纤维素膜气体加湿性能的研究[J].高分子学报,2005,(5): 704~708
    [6]张宇瑶,王建清. NMMO法纤维素抗菌保鲜膜对鲜猪肉的保鲜效果研究[J].包装工程,2007,28(12): 20~22
    [7]吴翠玲. NMMO工艺纤维素膜成膜性能的研究[J].纤维素科学与技术,2005,13(3): 29~34
    [8]吴翠玲. N–甲基氧化吗啉纤维素溶液特性及成膜性能的研究[D].西安:陕西科技大学,2005: 12~13
    [9]刘洁,张玉忠,高培基.天然纤维素超显微结构的扫描隧道显微镜研究[J].自然科学进展,1997,16(6): 72~73
    [10]Goto T,Harada H,Saiki H. Fine Structure of Cellulose Microfibrils in Poplar Gelatinous Layer and Valonia[J]. Wood Sci. Technol.,1978,12(3): 223~231
    [11]Chanzy H,Dube M,Marchessault R H. Crystallization of Cellulose with N–Methylmorpholine N–oxide: A New Method of Texturing Cellulose[J]. Journal of Polymer Science:Polymer Letters Edition,1979,17(4): 219~226
    [12]RAJAI H ATALLA,DAVID L VANDERHART. Native Cellulose:A Composite of Two Distinct Crystalline Forms[J]. Science,1984,223(4633): 283~285
    [13]林治助,末冈明伯,渡边贞良.ヤルロ-ス结晶变态间の相互转移[J].日本化学会志,1973,(1): 153
    [14]Akira Isogai,Makoto Usuda. Solid–State CP/MAS 13C NMR Study of Cellulose Polymorphs[J]. Macromolecules,1989,22(7): 3168~3172
    [15]贺连萍,胡开堂.天然纤维素的溶解技术及其进展[J].天津化工,2006,20(1): 7~10
    [16]王之德.溶剂法制人造纤维技术进展[J].现代化工,1992,(2): 25~28
    [17]韩增强,武志云,汪少朋,等. Lyocell纤维纺丝溶剂NMMO及回收工艺的研究[J].山东纺织科技,2007,48(3): 7~9
    [18]Fink H P,Weigel P,Purz H J,et al. Structure Fromation of Regenerated Cellulose Materials from NMMO–Solutions[J]. Progress in Polymer Science,2001,26(9): 1473~1524
    [19]孟卿君,李新平.刮膜速度对NMMO法纤维素包装膜结构的影响[J].包装工程,2008,29(3): 1~3,38
    [20]李新平,孟卿君.成膜条件对NMMO工艺纤维素膜拉伸强度的影响[J].包装工程,2008,29(2): 21~23
    [21]周金盛,陈观文. CA/CTA共混不对称纳滤膜制备过程中的影响因素探讨[J].膜科学与技术,1999,19(2): 23~26,37
    [22]俞三传,高从.浸入沉淀相转化法制膜[J].膜科学与技术,2000,20(5): 36~41
    [23]赵晓勇,曾一鸣,施艳荞,等.相转化法制备超滤和微滤膜的孔结构控制[J].功能高分子学报,2002,15(4): 487~495
    [24]吕阳成,吴影新.凝固浴组成对NMMO法纤维素膜形貌的影响[J].高等化学工程学报,2007,21(3): 398~403
    [25]Vivek P Khare,Alan R Greenberg,Stephen S Kelley,et al. Synthesis and Characterization of Dense and Porous Cellulose Films[J]. Journal of Applied Polymer Science,2007,105(3): 1228~1236
    [25]吴翠玲,李新平,秦胜利,等. NMMO工艺纤维素膜结构与性能的研究[J].包装工程,2005,26(2): 4~6,9
    [26]张耀鹏.凝固浴和铸膜液对新型纤维素超滤膜的影响[J].中国纺织大学学报,2000,26(4): 90~92
    [27]杨振生,李凭力,常贺英,等.扩散致相转化法制备结晶性聚合物多孔膜[J].高分子通报,2005,(3): 123~127
    [28]方红霞,孙金余,潘健,等. NMMO工艺竹基纤维素膜的制备和表征[J].竹子研究汇刊,2007,26(3): 32~36
    [29]吴翠玲,李新平,秦胜利,等. NMMO工艺纤维素膜成膜性能的研究[J].纤维素科学与技术,2005,13(3): 29~34
    [30]李新平,孟卿君. NMMO工艺纤维素膜的制备及其强度性能研究[J].陕西科技大学学报,2008,26(1): 30~33
    [31]刑铁铃,陈国强. NMMO溶剂溶解丝素、纤维素及其混合膜的制备[J].纺织学报,2003,24(6): 519~521
    [32]成培芳,王建清.制造绿色纤维素包装膜的NMMO工艺研究及应用[J].绿色包装,2006,(2): 32~34
    [33]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001: 40
    [34]张耀鹏,邵惠丽,沈新元,等. NMMO法纤维素膜的结构与性能[J].膜科学与技术,2002,22(4): 13~20,25
    [35]陆茵.关干湿法相转换成膜机理的探讨[J].膜科学与技术,1999,19(5): 38~43
    [36]胡学超,GilbertFornes.由溶致液晶制备高强高模纤维素纤维[J].中国纺织大学学报,1996,22(1): 17~23
    [37]李新平,孟卿君. NMMO工艺纤维素膜结晶度与强度性能初探[J].纤维素科学与技术,2008,16(2): 33~36,42
    [38]吴翠玲,李新平,秦胜利,等. NMMO工艺纤维素膜结晶结构[J].江南大学学报(自然科学半版),2006,5(3): 352~355
    [39]邵慧丽,段菊兰,胡学超.凝固浴条件对Lyocell纤维结晶结构的影响[J].合成纤维,2000,29(3): 3~5
    [40]Runying Chen,Kathryn A Jakes,Dennis W Foreman. Peak–Fitting Analysis of Cotton Fiber Powder X–ray Diffraction Spectra[J]. Journal of Applied Polymer Science,2004,93(5): 2019~2024
    [41]Haibo Zhao,Ja Hun Kwak,Yong Wang,et al. Effects of Crystallinity on Dilute Acid Hydrolysis of Cellulose by Cellulose Ball–Milling Study[J]. Energy & Fuels,2006,20: 807~811
    [42]魏孟媛,杨革生,田耀鑫,等.初生Lyocell纤维结晶结构的形成过程[J].东华大学学报(自然科学版),2008,34(5): 517~533
    [1]胡碧茹,吴文健,满亚辉,等.地面目标光电伪装防护难点及新技术分析[J].兵工学报,2007,28(9): 1103~1106
    [2]Sayo K,Deki S, Hayashi S. A Novel Method of Preparing Nano–Sized Gold and Palladium Particles Dispersed in Composites that Uses the Thermal Relaxation Technique[J]. THE EUROPEAN PHYSICAL JOURNAL D,1999,9: 429~432
    [3]Koichi Sayo,Shigehito Deki,Shigehiko Hayashi. Supported Gold Catalysts Prepared by Using Nano–Sized Gold Particles Dispersed in Nylon–11 Oligomer[J]. J. Mater. Chem.,1999,9: 937~942
    [4]Junhui He,Toyoki Kunitake,Aiko Nakao. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers[J]. Chem. Mater.,2003,15(23): 4401~4406
    [5]Junhui He,Toyoki Kunitake,Takeshi Watanabe. Porous and Nonporous Ag Nanostructures Fabricated Using Cellulose Fiber as a Template[J]. Chem. Commun.,2005,795~796
    [6]Lei Zhai,Richard D McCullough. Regioregular Polythiophene/Gold Nanoparticle Hybrid Materials[J]. J. Mater. Chem.,2004,14: 141~143
    [7]Bumsu Kim , Wolfgang M Sigmund. Functionalized Multiwall Carbon Nanotube/Gold Nanoparticle Composites[J]. Langmuir,2004,20: 8239~8242
    [8]David S dos Santos. Gold Nanoparticle Embedded,Self–Sustained Chitosan Films as Substrates for Surface–Enhanced Raman Scattering[J]. Langmuir,2004,20(23): 10273~10277
    [9]Mauro Epifani. Synthesis of Gold Nanocrystals in Concurrently Polymerizing Organic–Inorganic Hybrid Films[J]. J. Mater. Res.,2005,20(5): 1287~1294
    [10]Xiuli Zhao,Xiaobin Ding,Zhenghua Deng,et al. Thermoswitchable Electronic Properties of a Gold Nanoparticle/Hydrogel Composite[J]. Macromol. Rapid Commun.,2005,26: 1784~1787
    [11]Carl Matthias Intelmann,Hartmut Dietz,Waldfried Plieth. Preparation of Gold Nanoparticles on Ultrathin Films of Polythiophene and Polythiophene Derivatives[J]. Eur. J. Inorg. Chem.,2005,3711~3716
    [12]Rama Ranjan Bhattacharjee,Mukut Chakraborty,Tarun K Mandal. Reversible Association of Thermoresponsive Gold Nanoparticles:Polyelectrolyte Effect on the Lower Critical Solution Temperature of Poly(vinylmethylether)[J]. J. Phys. Chem. B,2006,110: 6768~6775
    [13]Andrzej Z Ernst,Sylwia Zoladek,Kamila Wiaderek,et al. Network Films of Conducting Polymer–Linked Polyoxometalate–Modified Gold Nanoparticles:Preparation and electrochemical characterization[J]. Electrochimica Acta,2008,53: 3924~3931
    [14]Jennifer M Pringle,Orawan Winther–Jensen,Carol Lynam,et al. One–Step Synthesis of Conducting Polymer–Noble Metal Nanoparticle Composites using an Ionic Liquid[J]. Adv. Funct. Mater.,2008,18: 2031~2040
    [15]Kamil Rahme,Julian Oberdisse,Ralf Schweins,et al. Pluronics–Stabilized Gold Nanoparticles:Investigation of the Structure of the Polymer–Particle Hybrid[J]. ChemPhysChem,2008,9: 2230~2236
    [16]Shingo Yokota,Takuya Kitaoka,Martina Opietnik,et al. Synthesis of Gold Nanoparticles for In Situ Conjugation with Structural Carbohydrates[J]. Angew. Chem.,2008,120: 10014―10017
    [17]Jiwen Zheng,Zihua Zhu,Haifeng Chen,et al. Nanopatterned Assembling of Colloidal Gold Nanoparticles on Silicon[J]. Langmuir,2000,16(10): 4409~4412
    [18]Demen?eva O V,Kartseva M E, Bo?shakova A V,et al. Metal Nanoparticles on Polymer Surfaces:4. Preparation and Structure of Colloidal Gold Films[J]. Colloid Journal,2005,67(2): 123~133
    [19]Jun Shan , Heikki Tenhu. Recent Advances in Polymer Protected Gold Nanoparticles:Synthesis,Properties and Applications[J]. Chem. Commun.,2007,4580~4598
    [20]KURDAK ?,KIM J,FARINA L A,et al. Au Nanoparticle Clusters:A New System to Model Hopping Conduction[J]. Turk. J. Phys.,2003,27: 419~426
    [21]Hemtanon B,Thanachayanont C,Das D,et al. Diode Fabricated by Layer by Layer Deposition of Semiconductor Nanoparticles[J]. TENCON 2005–2005 IEEE Region 10 Conference,2005,1~6
    [22]Francis P Zamborini,Michael C Leopold,Jocelyn F Hicks,et al. Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles[J]. J. AM. CHEM. SOC.,2002,124: 8958~8964
    [23]Michael D Musick,Christine D Keating,L Andrew Lyon,et al. Metal Films Prepared by Stepwise Assembly. 2. Construction and Characterization of Colloidal Au and Ag Multilayers[J]. Chem. Mater.,2000,12: 2869~2881
    [24]Boettcher S W,Strandwitz N C,Schierhorn M,et al. Tunable Electronic Interfaces between Bulk Semiconductors and Ligand–Stabilized Nanoparticle Assemblies[J]. Nature Materials,2007,6: 592~596
    [25]Mathias Brust,Donald Bethell,David J Schffrin,et al. Novel Gold–Dithiol Nano–Networks with Non–Metallic Electronic Properties[J]. Adv. Mater.,1995,7(9): 795~797
    [26]Jurina M Wessels,Heinz–Georg Nothofer,William E Ford,et al. Optical and Electrical Properties of Three–Dimensional Interlinked Gold Nanoparticle Assemblies[J]. J. AM. CHEM. SOC.,2004,126: 3349~3356
    [27]Mathias Brust,Donald Bethell,Christopher J Kiely,et al. Self–Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties[J]. Langmuir,1998,14: 5425~5429
    [28]Michael D Musick,Christine D Keating,Melinda H Keefe,et al. Stepwise Construction of Conductive Au Colloid Multilayers from Solution[J]. Chem. Mater.,1997,9: 1499~1501
    [29]Pelka J B,Brust M,Gier?owski P,et al. Structure and Conductivity of Self–Assembled Films of Gold Nanoparticles[J]. APPLIED PHYSICS LETTERS,2006,89: 063110
    [30]Hardy N J,Hanwell M D,Richardson T H. Temperature Effects on the Electrical Conductivity of Thiol Encapsulated Gold Nanoparticle Thin Films[J]. J Mater Sci: Mater Electron,2007,18: 943~949
    [31]Dykman L A,Bogatyrev V A. Gold Nanoparticles:Preparation,Functionalisation and Applications in Biochemistry and Immunochemistry[J]. Russian Chemical Reviews,2007,76(2): 181~194
    [32]John Turkevich,Peter Cooper Stevenson,James Hillier. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold[J]. Discussions of the Faraday Society,1951,11: 55~75
    [33]John Turkevich , Peter C Stevenson , J Hillier. THE FORMATION OF COLLOIDAL GOLD[J]. J. Phys. Chem.,1953,57(7): 670~673
    [34]Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions[J]. Nature Phy Sci,1973,241: 20~22
    [35]Sandra Magalh?es Saraiva,JoséFarias de Oliveira. Control of Particle Size in the Preparation of Colloidal Gold[J]. Journal of Dispersion Science and Technology, 2002,23(6): 837~844
    [36]Mathias Brust,Merry Walker,Donald Bethell,et al. Synthesis of Thiol–Derivatised Gold Nanoparticles in a Two–phase Liquid–Liquid System[J]. CHEM. COMMUN.,1994,801~802
    [37]David I Gittins,Frank Caruso. Spontaneous Phase Transfer of NanoparticulateMetals from Organic to Aqueous Media[J]. Angew. Chem. Int. Ed.,2001,40(16): 3001~3004
    [38]Lokhande H T,Salvi A S. Eleetrokinetie Studies of Cellulosic Fibres I. Zeta Potential of Fibres Dyed with Reactive Dyes[J]. Colloid & Polymer Sci.,1976,254: 1030~1041
    [39]Bellmann C,A Caspari,T T Loan Doan,et al. Electrokinetic Properties of Natural Fibres[J]. Environmental Electrokinetics,Pittsburgh,PA,2004,1~14
    [40]Karin Stana–Kleinschek,Tatjana Kreze,Volker Ribitsch,et al. Reactivity and Electrokinetical Properties of Different Types of Regenerated Cellulose Fibres[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,195: 275~284
    [41]Wulandari Priastuti,Li Xinheng,Tamada Kaoru,et al. Conformational Study of Citrates Adsorbed on Gold Nanoparticles Using Fourier Transform Infrared Spectroscopy[J]. Journal of Nonlinear Optical Physics & Materials,2008,17(2): 185~192
    [42]Yonglan Luo. Preparation of Single–Crystalline Gold Nanoparticles through a Thermal Process[J]. Materials Letters,2006,60: 3361~3363
    [43]Sandroff C J,Herschbach D R. Kinetics of Displacement and Charge–Transfer Reactions Probed by SERS:Evidence for Distinct Donor and Acceptor Sites on Colloidal Gold Surfaces[J]. Langmuir,1985,1: 131~135
    [44]Weitz D A,Lin M Y,Sandroff C J. Colloidal Aggregation Revisited:New Insights Based on Fractal Structure and Surface–Enhanced Raman Scattering[J]. Surface Science,1985,158: 147~164
    [45]Hishikawa Y,Togawa E,Kataoka Y,Kondo T. Characterization of Amorphous Domains in Cellulosic Materials Using a FTIR Deuteration Monitoring Analysis[J]. Polymer,1999,40: 7117~7124
    [46]TETSUO KONDO. The Assignment of IR Absorption Bands Due to Free Hydroxyl Groups in Cellulose[J]. CELLULOSE,1997,4: 281~292
    [47]Karin Johnson,Jonathan W Steed. Oxonium–Ion Crown Ether Complexes from Aqua Regia[J]. Chem. Commun.,1998,1479~1480
    [48]Cristina T CAMAGONG,Takaharu HONJO. Separation of Gold (III) as Its Ion pair Complex with 18–Crown–6 from Hydrochloric Acid Media by Means of Solvent Extraction[J]. ANALYTICAL SCIENCES,2001,17: i725~i728
    [49]Hideko KOSHIMA , Hiroshi ONISHI. Adsorption of Iron(III) , Gold(III) ,Gallium(III),Thallium(III) and Antimony(V) on Crown Ether Polymer fromHydrochloric Acid Solution[J]. Analytical Sciences,1987,3(5): 417~421
    [50]Jiang Z,Liu S,Gao Z. Structure Induced Ion Recognition of Self–Assembled Monolayers on Gold[J]. NSTI–Nanotech 2004,2004,3: 334~337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700