基于嗅觉神经网络的电子鼻仿生信息处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子鼻是模拟生物嗅觉原理的仿生检测仪器,通常由交叉敏感的化学传感器阵列和合适的模式识别算法组成,自动完成对气味的定性或定量辨识。与专业嗅觉师和现代分析化学仪器相比,其简单、客观和廉价的优点,已经在许多应用领域引起了广泛重视。而生物嗅觉基础研究的成果与计算神经科学交融,又进一步丰富了人工嗅觉理论,促进了电子鼻的发展。本论文介绍和研究了一种嗅觉神经网络——KⅢ网络,并尝试将其引入到电子鼻的仿生信息处理中。
     本文首先通过数值分析方法对KⅢ网络的数学模型进行仿真,结果显示其动力学特性与生物嗅觉实验中观察到的EEG信号在某些方面具有相似性;又通过小世界网络理论和小波分解方法对KⅢ网络的结构进行分析,发现其拓扑性质与复杂生物系统的小世界网络具有相似性。从而在功能和结构上展示了KⅢ网络的仿生性能。
     然后研究了KⅢ网络在气敏传感器漂移补偿和对气味浓度影响的鲁棒性等人工嗅觉理论问题上的应用。通过作者自制的电子鼻系统对6种有机挥发性气体进行分类,结果表明KⅢ网络对存在传感器漂移及较大浓度偏差的样本仍然具有很好的识别率。本文还提出了KⅢ网络的时空模式处理概念,通过KⅢ网络的可扩充并行结构与其时间依赖运算过程,和电子鼻的传感器阵列结构与其对气体的时间响应特性相结合,将KⅢ网络“无缝”融入电子鼻系统,进一步模拟了生物嗅觉系统信息处理过程。
     本文还发展了KⅢ网络的模式识别理论,将它与当前较为流行的支持向量机相结合,构造出不同的级联分类器和集群分类器。并通过对4种茶叶和6个品牌的鲜奶和还原奶的识别,进一步探索KⅢ网络在电子鼻实际应用中的表现。
Electronic nose is a kind of bionic instrument to mimic the mechanism of biological olfactory systems, which generally consists of an array of cross-sensitive chemsensors and an appropriate pattern recognition algorithm, capable of automatically detecting and discriminating odors. Due to the advantages of simply, objective and low-cost compared to human panels and conventional analytical instruments, electronic noses have been widely used in many areas. Moreover, resent basic research findings in biological olfaction combined with computational neuroscience promote its development both in methodology and application. This thesis studies an olfactory neural network entitled KⅢand introduces it to electronic nose community as a bionic information processing technique.
     Firstly, the numeral analysis of the KⅢnetwork is carried out. The simulation results show that the properties of its dynamics are much similar with that of EEG signals observed in biological experiments.The topological properties of the KⅢnetwork is also studied using the small-world network theory and wavelet decomposition method. The results show the KⅢnetwork with some small-world network characteristics, similar to which in complex biological systems.
     Then, the application of the KⅢnetwork to some theoretical problems in artificial olfaction is investigated, such as sensor drift counteraction and concentration influence elimination. Experimental data of six volatile organic compounds obtained through a home-made electronic nose set-up are processed by the KⅢnetwork. The results show that the KⅢhas good performances in classification of samples with sensor drift or concentration variation. In this thesis, a spatio-temporal pattern processing conception is proposed, which seamless integrating the KⅢnetwork into electronic nose system, making the electronic nose work more similar as a biological olfaction does.
     Furthermore, the pattern recognition method based on the KⅢnetwork is improved, through combining it with support vector machine to construct different series classifier and ensemble classifier. And their performances are explored in the case of classifying four kinds of teas and six different bands of fresh milk and constructed milk, respectively.
引文
1 路甬祥,仿生学的意义与发展.科学中国人,2004,4:22-24.
    2 Pearce T C, Schiffman S S, Nagle H T, et al., Handbook of Machine Olfaction:Electronic Nose Technology. Weinheim:Wiley-VCH.2003.
    3 Rock F, Barsan N, Weimar U, Electronic nose:current status and future trends. Chem Rev, 2008,108(2):705-725.
    4 James D, Scott S M, Ali Z, et al., Chemical sensors for electronic nose systems. Microchim Acta,2005,149(1-2):1-17.
    5 Albert K J, Lewis N S, Schauer C L, et al., Cross-reactive chemical sensor arrays. Chem Rev, 2000,100(7):2595-2626.
    6 Gutierrez-Osuna R, Pattern analysis for machine olfaction:a review. IEEE Sens J,2002,2(3): 189-202.
    7 Hines E L, Llobet E, Gardner J W, Electronic noses:a review of signal processing techniques. IEE Proc-Circuits Devices Syst,1999,146(6):297-310.
    8 Lledo P-M, Gheusi G, Vincent J-D, Information processing in the mammalian olfactory system. Physiol Rev,2005,85:281-317.
    9 Firestein S, How the olfactory system makes sense of scents. Nature,2001,413:211-218.
    10 Brennan P A, Keverne E B, Something in the air? New insights into mammalian pheromones. Curr Biol,2004,14(2):R81-R89.
    11 Buck L, Axel R, A novel multigene family may encode odorant receptors:a molecular basis for odor recognition. Cell,1991,65(1):175-187.
    12 Touhara K, Odor discrimination by G protein-coupled olfactory receptors. Microsc Res Tech, 2002,58(3):135-141.
    13 Mori K, Nagao H, Yoshihara Y, The olfactory bulb:coding and processing of odor molecule information. Science,1999,286:711-715.
    14 Zou Z H, Buck L B, Combinatorial effects of odorant mixes in olfactory cortex. Science,2006, 311:1477-1481.
    15 Craven M A, Gardner J W, Bartlett P N, Electronic noses-development and future prospects. Trac-Trends Anal Chem,1996,15(9):486-493.
    16 Pearce T C, Computational parallels between the biological olfactory pathway and its analogue'the electronic nose':Part II. Sen-sor-based machine olfaction. Biosy stems,1997, 41(2):69-90.
    17 Seiyama T, Kato A, Fujiishi K, et al., A new detector for gaseous components using semiconductive thin films. Anal Chem,1962,34(11):1502-1503.
    18 Lundstrom I, Shivaraman S, Svensson C, et al., A hydrogen-sensitive MOS field-effect transistor. Appl Phys Lett,1975,26(2):55-57.
    19 Park K C, Ochieng S A, Zhu J, et al., Odor discrimination using insect electroantennogram response from an insect antennal array. Chem Senses,2002,27:343-352.
    20 Schutz S, Weissbecher B, Hummel H E, et al., Insect antenna as a smoke detector. Nature, 1999,398:298-299.
    21 Schroth P, Schoning M J, Schutz S, et al., Coupling of insect antennae to field-effect transistors for biochemical sensing. Electrochimica Acta,1999,44:3821-3826.
    22 Schutz S, Schoning M J, Schroth P, et al., An insect-based BioFET as a bioelectronic nose. Sens Actuator B-Chem,2000,65:291-295.
    23 Pandya A S, Macy R B, Pattern Recognition with Neural Networks in C++. Florida:CRC Press.1996.
    24 Gardner J W, Bartlett P N, A brief history of electronic noses. Sens Actuator B-Chem,1994, 18(1-3):211-220.
    25 Shaffer R E, Rose-Pehrsson S L, McGill R A,A comparison study of chemical sensor array pattern recognition algorithms. Anal Chim Acta,1999,384:305-317.
    26 Haugen J-E, Kvaal K, Electronic nose and artificial neural network. Meat Sci,1998, 49(Suppl):S273-S286.
    27 Haykin S, Neural Networks:A Comprehensive Foundation (2nd Ed.). Englewood Cliffs NJ: Prentice-Hall.1999.
    28 顾凡及,章惠明,汪云九等,神经系统中的非线性动力学问题.国外医学生物医学工程分册,1995,18(4):187-194.
    29 吕正东,阎平凡,在人工神经网络中引入混沌的必要性.北京生物医学工程,2002,21(3):207-211.
    30 Persaud K, Dodd G H, Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature,1982,299:352-355.
    31 Holmberg M, Eriksson M, Krantz-Rulcker C, et al.,2nd workshop of the second network on artificial olfactory sensing (NOSE II). Sens Actuator B-Chem,2004,101:213-223.
    32 Freeman W J, Mass Action in the Nervous System. New York:Academic Press.1975.
    33 Freeman W J, Neurodynamics:An Exploration of Mesoscopic Brain Dynamics. London: Springer-Verlag.2000.
    34 Li Z, Hopfield J J, Modeling the olfactory bulb and its neural oscillatory processing. Biol Cybern,1989,61:379-391.
    35 Meredith M, Neural circuit computation:complex patterns in the olfactory bulb. Brain Res, 1992,19:111-117.
    36 Schild D, Riedel H, Significance of glomerular compartimentalization for olfactory coding. Biophys J,1992,61:704-715.
    37 White J, Hamilton K A, Neff S R, et al., Emergent properties of odor information coding in a representational model of the salamander olfactory bulb. J Neurosci,1992,12(5):1772-1780.
    38 Hopfield J J, Pattern recognition computation using action potential timing for stimulus representation. Nature,1995,376:33-36.
    39 White J, Dickinson T A, Walt D R, et al., An olfactory neural network for vapor recognition in an artificial nose. Biol Cybern,1998,78(4):245-251.
    40 White J, Kauer J S, Odor recognition in an artificial nose by spatio-temporal processing using an olfactory neuronal network. Neurocomputing,1999,26-27:919-924.
    41 Ambros-Ingerson J, Granger R, Lynch G, Simulation of paleocortex performs hierarchical clustering. Science,1990,247:1344-1348.
    42 Liljenstrom H, Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture. Int J Neural Syst,1991,2(1-2):1-15.
    43 Liljenstrom H, Wu XB, Noise-enhanced performance in a cortical associative memory model. Int J Neural Syst,1995,6(1):19-29.
    44 Aronsson P, Liljenstrom H, Non-synaptic modulation of cortical network dynamics. Neurocomputing,2000,32-33:285-290.
    45 Hoshino O, Kashimori Y, Kambara T, An olfactory recognition model based on spatio-temporal encoding of odor quality in the olfactory bulb. Biol Cybern,1998,79: 109-120.
    46 Oyamada T, Kashimori Y, Hoshino O, et al., A neural mechanism of hierarchical discrimination of odors in the olfactory cortex based on spatiotemporal encoding of odor information. Biol Cybern,2000,83:21-33.
    47 Hasselmo M E, Anderson B P, Bower J M, Cholinergic modulation of cortical associative memory function. J Neurophysiol,1992,67:1230-1246.
    48 Barkai E, Hasselmo M E, Modulation of input/output function of rat piriform cortex pyramidal cells. J Neurophysiol,1994,72:644-658.
    49 Brody C D, Hopfield J J, Simple networks for spike-timing-based computation, with application to olfactory system. Neuron,2003,37:843-852.
    50 Wilson M, Bower J, Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J Neurophysiol,1992,67:881-995.
    51 Vanier M, Realistic modeling of the mammalian olfactory cortex [PhD Thesis]. Pasadena: California Institute of Technology,2001.
    52 Ramanathan M, Statistical model of an electronic olfactory, [MS Thesis]. America:Oklahoma State University,1995.
    53 Ratton L, Kunt T, McAvoy T, et al., A comparative study of signal processing techniques for clustering microsensor data (a first step towards an artificial nose). Sens Actuator B-Chem, 1997,41(1-3):105-120.
    54 Pearce T C, Verschure P F M J, White J, et al., Robust stimulus encoding in olfactory processing:hyperacuity and efficient signal transmission, In Emergent Neural Computation Architectures Based on Neuroscience, Wermter S, et al., Eds.2001, Berlin:Springer-Verlag. 461-479.
    55 Koickal T J, Hamilton A, Tan S L, et al., Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans Circuits Syst I-Regul Pap,2007,54(1):60-73.
    56 Raman B, Yamanaka T, Gutierrez-Osuna R, Contrast enhancement of gas sensor array patterns with a neurodynamics model of the olfactory bulb. Sens Actuator B-Chem,2006, 119(2):547-555.
    57 Raman B, Gutierrez-Galvez A, Perera-Lluna A, et al., Sensor-based machine olfaction with a neurodynamics model of the olfactory bulb. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems.2004 Sep 28-Oct 2, Sendai. New York:Institute of Electrical and Electronics Engineers Inc.319-324.
    58 Raman B, Gutierrez-Osuna R, Concentration normalization with a model of gain control in the olfactory bulb. Sens Actuator B-Chem,2006,116(1-2):36-42.
    59 Raman B, Gutierrez-Osuna R, Chemosensory processing in a spiking model of the olfactory bulb:chemotopic convergence and center surround inhibition. Advances in Neural Information Processing Systems,2004,17(2004-12-13):http://books.nips.cc/nips17.html.
    60 Freeman W J, Yao Y, Burke B, Central pattern generating and recognizing in olfactory bulb: A correlation learning rule. Neural Netw,1988,1:277-288.
    61 Freeman W J, Grajski K A, Relation of olfactory EEG to behavior:Factor analysis. Behav Neurosci,1987,101(6):766-777.
    62 Kozma R, Freeman W J, Erdi P, The KIV model-nonlinear spatio-temporal dynamics of the primordial vertebrate forebrain. Neurocomputing,2003,52(4):819-826.
    63 Freeman W J, Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern, 1979,33(4):237-247.
    64 Eeckman F H, Freeman W J, Asymmetric sigmoid non-linearity in the rat olfactory system. Brain Res,1991,557(1-2):13-21.
    65 Freeman W J, Chang H J, Burke B C, et al., Taming chaos:stabilization of aperiodic attractors by noise. IEEE Trans Circuits Syst I-Regul Pap,1997,44(10):989-996.
    66 Yao Y, Freeman W J, Model of biological pattern recognition with spatially chaotic dynamics. Neural Netw,1990,3(2):153-170.
    67 Kozma R, Freeman W J, Chaotic resonance-methods and applications for robust classification of noise and variable patterns. Int J Bifurcation Chaos,2001,11(6):1607-1629.
    68 Chang H J, Freeman W J, Burke B C, Biologically modeled noise stabilizing neurodynamics for pattern recognition. Int J Bifurcation Chaos,1998,8(2):321-345.
    69 Yao Y, Freeman W J. Pattern recognition in olfactory systems:modeling and simulation. In Proceedings of the 1989 International Joint Conference on Neural Networks(IJCNN'89).1989. Piscataway NJ:IEEE Press.699-704.
    70 欧阳楷,高军涛,孟欣,兔嗅觉系统的动力学研究-混沌状态.北京生物医学工程,1997,16(2):85-92.
    71 欧阳楷,王筝,贾文艳等,兔嗅觉系统非线性动力学研究-混沌仿真的数学基础.北京生物医学工程,2002,21(2):119-121.
    72 杨如乃,胡志忠,卢健,生物嗅觉神经系统模型的模拟与分析.生物医学工程研究,2006,3:131-136.
    73 金一庆,陈越编著,数值方法.北京:机械工业出版社.2000,p.199.
    74 Chang H J, Freeman W J, Parameter optimization in models of the olfactory neural system. Neural Netw,1996,9(1):1-14.
    75 Chang H J, Freeman W J, Burke B C, Optimization of olfactory model in software to give 1/f power spectra reveals numerical insta-bilities in solutions governed by aperiodic (chaotic) attractors. Neural Netw,1998,11(3):449-466.
    76 Chang H J, Freeman W J, Burke B C, Local homeostasis stabilizes a model of the olfactory system globally in respect to perturbations by input during pattern classification. Int J Bifurcation Chaos,1998,8(11):2107-2123.
    77 Musha T, Yamamoto M,1/f fluctuations in biological systems, In Proceedings of the 1997 IEEE Engineering in Medicine and Biology 19h Annual International Conference.1997. 2692-2697.
    78 Freeman W J, Kozma R, Werbos P J, Biocomplexity:adaptive behavior in complex stochastic dynamical systems. Biosystems,2001,59(2):109-123.
    79 吴彤,复杂网络研究及其意义.哲学研究,2004,8:58-63.
    80 Watts D J, Strogatz S H, Collective dynamics of small-world'networks:Nature,1998, 393(6684):440-442.
    81 Milgram S, The small-world problem. Psychol Today,1967,1(1):61-67.
    82 Fan J, Wang X F, A wavelet view of small-world networks. IEEE Trans Circuits Syst Ⅱ-Express Briefs,2005,52(5):238-241
    83 Zhang J, Li G, Fu J, et al. Analysis bionic olfactory neural networks based on small-world networks view. In 两岸三地博士生 NBIC学术论坛论文集.2007,杭州.
    84 汪小帆,李翔,陈关荣,复杂网络理论及其应用.北京:清华大学出版社.2006.
    85 Gutierrez-Galvez A, Gutierrez-Osuna R, Increasing the separability of chemosensor array patterns with Hebbian/anti-Hebbian learning. Sens Actuator B-Chem,2006,116(1-2):29-35.
    86 Gutierrez-Galvez A, Gutierrez-Osuna R, Contrast enhancement and background suppression of chemosensor array patterns with the KⅢ model. Int J Intell Syst,2006,21(9):937-953.
    87 Gutierrez-Osuna R, Gutierrez-Galvez A, Habituation in the KⅢ olfactory model with chemical sensor arrays. IEEE Trans Neural Netw,2003,14(6):1565-1568.
    88 Shimoide K, Freeman W J, Dynamic neural network derived from the olfactory system with examples of applications. IEICE Trans Fundam Electron Commun Comput Sci,1995, E78-A(7):869-884.
    89 Quarder S, Clauβnitzer U, Otto M, Using singular-value decompositions to classify spatial patterns generated by a nonlinear dynamic model of the olfactory system. Chemometrics Intell Lab Syst,2001,59(1-2):45-51.
    90 Otto M, Quarder S, Clauβnitzer U, et al., A nonlinear dynamic system for recognizing chemicals based on chemical sensors and optical spectra. In Proceedings of the 4th World Multiconference on Systemics, Cybernetics and Informatics.2000 July 23-26, Orlando. Orlando:International Institute of Informatics and Systemics.413-418.
    91 ClauBnitzer U, Quarder S, Otto M, Interpretation of analytical patterns from the output of chaotic dynamical memories. Fresen J Anal Chem,2001,369(7-8):698-703.
    92 Gutierrez-Galvez A, Gutierrez-Osuna R, Pattern completion through phase coding in population neurodynamics. Neural Netw,2003,16(5-6):649-656.
    93 Schacter D L, Searching for Memory:The Brain, the Mind, and the Past. New York:Basic Books.1996.
    94 Duda R O, Hart P E, Stork D G, Pattern Classification (2nd Ed). New York:John Wiley& Sons, Inc.2001.
    95 Ding H, Liu J H, Shen Z R, Drift reduction of gas sensor by wavelet and principal component analysis. Sens Actuator B-Chem,2003,96(1-2):354-363.
    96 Zuppa M, Distante C, Persaud K C, et al., Recovery of drifting sensor responses by means of DWT analysis. Sens Actuator B-Chem,2007,120(2):411-416.
    97 Di Natale C, Martinellia E, D'Amicoa A, Counteraction of environmental disturbances of electronic nose data by independent component analysis. Sens Actuator B-Chem,2002, 82(2-3):158-165.
    98 Artursson T, Eklov T, Lundstrom I, et al., Drift correction for gas sensors using multivariate methods. J Chemometr,2000,14(5-6):711-723.
    99 Haugen J E, Tomic O, Kvaal K, A calibration method for handling the temporal drift of solid state gas-sensors Anal Chim Acta 2000,407(1-2):23-39.
    100 Holmberg M, Davide F, Di Natale C, et al., Drift counteraction in odour recognition applications-lifelong calibration method. Sens Actuator B-Chem,1997,42:185-194.
    101 Tomic O, Eklov T, Kvaal K, et al., Recalibration of a gas-sensor array system related to sensor replacement. Anal Chim Acta,2004,512(2):199-206.
    102 Chen T L, You R Z, A novel fault-tolerant sensor system for sensor drift compensation Sens Actuator A-Phys,2008 147(2):623-632.
    103 Gopel W, Schierbaum K D, SnO2 sensors:current status and future prospects. Sens Actuator B-Chem,1995,26(1-3):1-12.
    104 Di Natale C, Davide F A M, D'Amico A, A self-organizing system for pattern classification: time varying statistics and sensor drift effects. Sens Actuator B-Chem,1995,27(1-3): 237-241.
    105 Davide F A M, Di Natale C, D'Amico A, Self-organizing multisensor systems for odour classification:internal categorization, adaptation and drift rejection. Sens Actuator B-Chem, 1994,18(1-3):244-258.
    106 Marco S, Ortega A, Pardo A, et al., Gas identification with tin oxide sensor array and self-organizing maps:adaptive correction of sensor drifts. IEEE Trans Instrum Meas,1998, 47(1):316-321.
    107 Vlachos D S, Fragoulis D K, Avaritsiotis J N, An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors. Sens Actuator B-Chem,1997, 45(3):223-228.
    108 Zuppa M, Distante C, Siciliano P, et al., Drift counteraction with multiple self-organising maps for an electronic nose. Sens Actuator B-Chem,2004,98(2-3):305-317.
    109 Holmberg M, Winquist F, Lundstrom I, et al., Drift counteraction for an electronic nose. Sens Actuator B-Chem,1996,35-36:528-535.
    110 Fu J, Li G, Qin Y, et al., A pattern recognition method for electronic noses based on an olfactory neural network. Sens Actuator B-Chem,2007,125(2):489-497.
    111 Bicego M, Tessari G, Tecchiolli G, et al., A comparative analysis of basic pattern recognition techniques for the development of small size electronic nose. Sens Actuator B-Chem,2002,85: 137-144.
    112 葛哲学,孙志强,神经网络理论与MATLAB7实现.北京:电子工业出版社.2007.
    113 Gray C M, Singer W, Stimulus-specific neuronal oscillations in orientation columns of cat visual-cortex. Proc Natl Acad Sci USA,1989 86(5):1698-1702
    114 Gray C M, Synchronous oscillations in neuronal systems:mechanisms and functions. J Comput Neurosci,1994,1(1-2):11-38.
    115 Von der Malsburg C, Schneider W, A neural cocktail-party processor. Biol Cybern,1986, 54(1):29-40.
    116 Kashiwadani H, Sasaki Y F, Uchida N, et al., Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J Neurophysiol,1999,82(4):1786-1792.
    117 Li X, Li G, Wang L, et al., A study on a bionic pattern classifier based on olfactory neural system. Int J Bifurcation Chaos,2006,16(8):2425-2434.
    118 Fu J, Yang X L, Yang X L, et al. Application of biologically modeled chaotic neural network to pattern recognition in artificial olfaction. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual International Conference.2005 Sep 1-4, Shanghai. Piscataway:Institute of Electrical and Electronics Engineers Inc.4666-4669.
    119 Vapnik V N, The Nature of Statistical Learning Theory. New York:Springer-Verlag.1995.
    120 Vapnik V N. The support vector method of function estimation. In Generalization in Neural Network and Machine Learning.1998. New York:Springer-Verlag. p.239-268.
    121 Distante C, Ancona N, Siciliano P, Support vector machines for olfactory signals recognition. Sens Actuator B-Chem,200388(1):30-39.
    122 Burges C J C, A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov,1998,2(2):121-167.
    123 Dietterich T G, Ensemble methods in machine learning, In 1st International Workshop on Multiple Classifier Systems (MCS 2000).2000, Cagliari, taly:Springer-Verlag Berlin Heidelberg.1-15.
    124 Li G, Zhang J, Freeman W J, Engineering applications of olfactory model from pattern recognition to artificial olfaction, In Neurodynamics of Cognition and Consciousness, Perlovsky LI and Kozma R, Eds.2007, New York:Springer-Verlag.255-276.
    125 Yang X L, Fu J, Lou Z G, et al., Tea classification based on artificial olfaction using bionic olfactory neural networks, In LNCS-Advances in Neural Networks, Wang J, et al., Eds.2006: New York:Springer-Verlag.343-348.
    126 Ding N, Li G, Fu J. Application of a bionic neurodynamic model and SVM in aroma based milk classification. In Proceedings of 14th International Conference on Neural Information Processing (ICONIP2007).2007, Kitakyushu, Japan. WAE-3:p105.
    127 于欣洋,岳文杰,李金辉等,茶叶香气研究进展.茶叶科学技术,2008,3:9-13.
    128 吕连梅,董尚胜,茶叶香气的研究进展.茶叶,2002,28(4):181-184.
    129 Dutta R, Hines E L, Gardner J W, et al., Tea quality prediction using a tin oxide-based electronic nose:an artificial intelligence approach. Sens Actuator B-Chem,2003,94(2): 228-237.
    130 Dutta R, Kashwan K R, Bhuyan M, et al., Electronic nose based tea quality standardization. Neural Netw,2003,16(5-6):847-853.
    131 于慧春,王俊,张红梅等,龙井茶叶品质的电子鼻检测方法.农业机械学报,2007,38(7):103-106.
    132 Yu.H C, Wang J, Discrimination of LongJing green-tea grade by electronic nose. Sens Actuator B-Chem,2007,122(1):134-140.
    133 Yu H C, Wang J, Zhang HM, et al., Identification of green tea grade using different feature of response signal from E-nose sensors. Sens Actuator B-Chem,2008,128(2):455-461.
    134 Yu H C, Wang J, Yao C, et al., Quality grade identification of green tea using E-nose by CA and ANN. LWT-Food Sci Technol,2008,41(7):1268-1273.
    135 于慧春,王俊,电子鼻技术在茶叶品质检测中的应用研究.传感技术学报,2008,21(5):748-752.
    136 Bhattacharyya N, Seth S, Tudu B, et al., Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sens Actuator B-Chem,2007,122:627-634.
    137 Bhattacharyya N, Seth S, Tudu B, et al., Monitoring of black tea fermentation process using electronic nose. J Food Eng,2007,80(4):1146-1156.
    138 Tudu B, Das B, Bhaffacharyya N, et al. Smell peak prediction during black tea fermentation process using time-delay neural network on electronic nose data. In Proceedings of the International Conference on Computing:Theory and Appllcatlons (ICCTA'07).2007, Kolkata. 257-260.
    139 Bhattacharya N, Tudu B, Jana A, et al., Preemptive identification of optimum fermentation time for black tea using electronic nose. Sens Actuator B-Chem,2008,131(1):110-116.
    140 Bhattacharya N, Tudu B, Jana A, et al., Illumination heating and physical raking for increasing sensitivity of electronic nose measurements with black tea. Sens Actuator B-Chem, 2008,131(1):37-42.
    141 杨新令,嗅觉系统神经网络模型研究及其在人工嗅觉与虹膜识别中的应用,[硕士学位论文].杭州:浙江大学,2006.
    142 Ampuero S, Zesiger T, Gustafsson V, et al., Determination of trimethylamine in milk using an MS based electronic Nose. Eur Food Res Technol,2002,214(2):163-167.
    143 Collier W A, Baird D B, Park-Ng Z A, et al., Discrimination among milks and cultured dairy products using screen-printed electrochemical arrays and an electronic nose. Sens Actuator B-Chem,2003,92(1-2):232-239.
    144 Brudzewski K, Osowski S, Markiewicz T, Classification of milk by means of an electronic nose and SVM neural network. Sens Actuator B-Chem,2004,98(2-3):291-298.
    145 Eriksson A, Wallerb K P, Svennersten-Sjaunja K, et al., Detection of mastitic milk using a gas-sensor array system (electronic nose). Int Dairy J,2005,15(12):1193-1201.
    146 Biolatto A, Grigioni G, Irurueta M, et al., Seasonal variation in the odour characteristics of whole milk powder. Food Chem,2007,103(3):960-967.
    147 Marsili R T, Shelf-life prediction of processed milk by solid-phase microextraction, mass spectrometry, and multivariate analysis. J Agric Food Chem,2000,48(8):3470-3475.
    148 Magan N, Pavlou A, Chrysanthakis I, Milk-sense:a volatile sensing system recognises spoilage bacteria and yeasts in milk. Sens Actuator B-Chem,2001,72(1):28-34.
    149 Capone S, Siciliano P, Quaranta F, et al., Analysis of vapours and foods by means of an electronic nose based on a sol-gel metal oxide sensors array. Sens Actuator B-Chem,2000,69 (3):230-235.
    150 Capone S, Epifani M, Quaranta F, et al., Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis. Sens Actuator B-Chem,2001,78(1-3):174-179.
    151 Ali Z, O'Hare W T, Theaker B J, Detection of bacterial contaminated milk by means of a quart:crystal microbalance based electronic nose J Therm Anal Calorim,2003,71(1): 155-161.
    152 Labreche S, Bazzo S, Cade S, et al., Shelf life determination by electronic nose:application to milk. Sens Actuator B-Chem,2005,106(1):199-206.
    153 徐亚丹,王俊,赵国军,基于电子鼻的对掺假的“伊利”牛奶的检测.中国食品学报,2006,6(5):111-118.
    154 姜天纬,林然,陈星等,电子鼻牛奶质量检测的研究.传感技术学报,2007,20(8):1727-1731.
    155 孙香丽,殷勇,乳制品电子鼻分类中传感器阵列的一种优化方法.传感技术学报,2008,21(7):1124-1127.
    156 吴逸飞译,Marques de Sa J P著,模式识别——原理、方法及应用(Pattern Recognition: Concepts, Methods, and Applications).北京:清华大学出版社.2002.
    157 Eisenberg J, Freeman W J, Burke B, Hardware architecture of a neural network model simulating pattern recognition by the olfactory bulb. Neural Netw,1989,2:315-325.
    158 Principe J C, Tavaes V G, Harris J G, et al., Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proc IEEE,2001,89(7):1030-1051.
    159 李光,傅均,郑增荣等,用于现场检测的低功耗手持式电子鼻系统.中国发明专利,2008,公开号:CN 101226166A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700