波动鳍仿生水下推进器及其控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下推进技术是决定水中航行器航程、航速和机动性的关键技术,研究新型仿生水下推进器具有重要的经济意义和军事价值。波动鳍仿生水下推进器是一种模仿鱼类中央鳍/对鳍模式(Median and/or Paired Fin,MPF)推进的新型仿生水下推进器,具有机构简单、控制灵活、流体载荷分布均匀等优点,自二十世纪初开始引起国内外研究机构的关注。
     本文围绕波动鳍仿生水下推进器开展了仿生学、机构设计、控制方法和实验等一系列研究工作,主要研究内容和成果如下:
     1深入开展了仿生对象——鱼类波动鳍生物推进器的仿生学研究,为波动鳍仿生水下推进器机构设计和控制方法研究提供了客观依据和科学指导。以弓鳍目鱼类“尼罗河魔鬼”的背鳍推进器为仿生对象,基于双视角同步成像观测系统进行实验,获取了仿生对象的形态学特征、内部构造和中枢神经系统控制机理,分析了起动、停止、机动和直线巡游运动过程的动力学特性,建立了波动鳍生物推进器在直线巡游状态下的运动学模型,通过对运动学模型中的波速、波幅、频率三个参数进行调节对鳍面运动形状进行了拟合。
     2成功设计了并联多关节、多参数可控的波动鳍仿生水下推进器实验装置,深入分析了仿生水下推进器的动力学特性。分析了波动鳍仿生水下推进器的设计原则,研制了多关节并联、直流伺服电机驱动和分层控制的波动鳍仿生水下推进器实验装置;建立了考虑鳍面弹性形变和流体作用的推进器动力学模型,分析了单关节和整个推进器系统的动力学特性,基于作动盘理论建立了波动鳍仿生推进器的简化推力模型。
     3基于新型神经元振荡器模型设计了一种仿生神经网络控制系统,实现了对波动鳍仿生水下推进器各种运动的有效控制。提出了一种有两个神经元构成、连接关系简单、易于工程应用的新型神经元振荡器模型,其振荡参数由动力学方程中三个系数独立控制。以新型振荡器为基本单元,设计了单个关节的仿生神经网络控制系统,研究了单关节起动、停止、等幅摆动等运动的控制方法。设计了控制波动鳍仿生水下推进器的仿生中枢模式发生器群(Central Pattern Generators,CPGs)神经网络控制系统,研究了推进器起动、停止和稳态游动的控制方法,在引入神经元估计器构成闭环后实现了对推进器波动幅度的稳定控制。实验结果表明:本文设计的仿生神经网络控制方法比传统的逆运动学控制方法更加有效,实现了对仿生对象从“形态相似”到“功能相似”的进步,可应用于类似的仿生机器人。
     4进行了波动鳍仿生水下推进器实验装置的水动力实验、运动实验和流场实验,分析了推进器运动过程中的推力、侧向力、推进速度和流场变化,对简化推力模型中的参数进行了辨识,分析了目前制约波动鳍仿生水下推进器性能的关键因素。
Underwater propulsion technology is an absolutely key component which determines the voyage, velocity and maneuverability of the underwater vehicles. It is full of economic and military significance to develop new-type bionic underwater propulsors for the requirements in better performance, higher efficiency, less disturbance, etc. The underwater bionic undulatory-fin propulsor, inspired by undulations of the median and/or paired fin (MPF) fish, has advantages in simplicity in structure, agility in control and uniformity in fluid load distribution. Such a new-type bionic propulsor has been paid more and more attention to by many related research institutes of the world since 2000s.
     In this thesis, the bionic inspirations, mechanical structure, control method and experiments of the undulatory-fin propulsor were investigated deepgoingly and systematically. The main research contents are listed as follows:
     1. Bionic inspirations from the Amiiform fish "Gymnarchus niloticus", which generally swims by undulations of the long dorsal fin, are extracted to answer why and how the mechanical structure and control system are designed for the undulatory-fin propulsor. We established a two-view synchronous imaging apparatus to observe the dorsal fin's outline as well as shape in the different movements, and to analyze its morphological characteristics, the inner structure as well as the central neural control mechanism, aided by the X-ray images. The swimming characteristics were analyzed during the starting, stopping, straight cruise and maneuvering motion. And furthermore, we set up a kinematical model to describe the line swimming motion of the undulatory-fin propulsor and we can construct several fin shapes by regulating kinematical parameters of the propulsive velocity, amplitude as well as frequency.
     2. An undulatory-fin experimental device was accomplished which is composed of multiple parallel joints and whose undulation parameters can be independently regulative. Hereby, the dynamic performance was in-depth studied. In detail, we presented three design principles of the bionic undulatory-fin propulsor, built a novel dynamic model with considerations of the elastic fin's deformation and the unsteady fluid action, and analyzed the dynamic performance of the single joint as well as the whole bionic undulatory device. Moreover, a simply thrust prediction model was set up based on the actuator-disc theory.
     3. The bionic neural network control system was established with the basis of a new-style neural oscillator, and the various motions of the undulatory-fin propulsor can be effectively controlled by this neural network. The new-style neural oscillator, which is composed of two neurons and whose oscillation parameters are independently controlled by three special coefficients in the dynamic equations, possesses advantages of simple connections and convenient engineering application. Taking the neural oscillator as the basic component, we designned a single-joint neural network control system, and studied its corresponding control algorithms for motions, such as starting, stopping and uniform-amplitude swimming. Furthermore, a bionic CPGs (central pattern generators) neural network control system is presented to control the movements of the undulatory-fin propulsor, and to design the control algorithms for starting, stopping and steady swimming for the undulatory-fin propulsor. What's more, we accomplished the close-loop control by introducing a neural estimator, and applied this method into controlling the undulatory amplitude. The results verify that the bionic neural network control method can be more effective than the traditional reverse-kinematics method, and can be adaptive to various bionic robots. From the view point of bionics, the work in this thesis may promote the undulatory-fin propulsor from "likeness in shape" to " similarity in spirit".
     4. We carried out several experiments on hydrodynamics, kinematics and fluid fields, to analyze the thrust, lateral force, swimming velocity and fluid field structure during the undulatory-fin propulsion. To be more meaningful, the parameters in the simply thrust prediction model are identified with the measurement data. And several key factors which have great influence on the undulatory-fin propulsor are proposed and analyzed.
引文
[1]封锡盛,刘永宽.自治水下机器人研究开发的现状与趋势.高技术通讯,1999:55-60.
    [2]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科技出版社,2000.
    [3]任福君,张岚,王殿君,孟庆鑫.水下机器人的研究现状.佳木斯大学学报,2000.18(4):317-320.
    [4]李一平.水下机器人—过去、现在和未来.自动化博览,2002(3):56-58.
    [5]李锡群,王志华.无人水下航行器(UUV)技术综述.船电技术,2003(6):12-15.
    [6]桑思方,庞永杰,卞红雨.水下机器人技术.机器人技术与应用,2003(3).
    [7]彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用,2004:43-47.
    [8]吴国盛.科学的历程.长沙:湖南科学技术出版社,1995.
    [9]李百齐.二十一世纪海洋高性能船.北京:国防工业出版社,2001.
    [10]聂延生,韩学胜,曾鸿,刘镇宇.对转螺旋桨的结构原理及特点分析.船电技术,2005(2):50-52.
    [11]迟冬祥,颜国正.仿生机器人的研究状况其未来发展.机器人,2001.23(5):476-480.
    [12]马光.仿生机器人的研究进展.机器人,2001.23(5):463-466.
    [13]许宏岩,王树国,付宜利,刘建国.仿生机器人体系结构的研究.机械工程师,2004:3-7.
    [14]吉爱红,戴振东,周来水.仿生机器人的研究进展.机器人,2005.27(3):284-288.
    [15]杨明,王硕,王德石.仿生机器人运动建模与控制研究进展.海军工程大学学报,2005.17(1):1-6.
    [16]张秀丽,郑浩峻,陈恳,段广洪.机器人仿生学研究综述.机器人,2002.24(2):188-192.
    [17]Lighthill,M.J.Note on the swimming of slender fish.Fluid Mech.,1960.9: 305-320.
    [18]Wu,T.Y.Swimming of a waving plate.Journal of Fluid Mech.,1961.10:321-344.
    [19]Lighthill,M.J.Hydromechanics of aquatic animal propulsion.Ann.Rev.Fluid Mech.,1969.1:413-446.
    [20]Lighthill,M.J.Aquatic animal propulsion of high hydromechanical efficiency.J.Fluid Mech.,1970.44:265.
    [21]Lighthill,M.J.Large-amplitude elongated-body theory of fish locomotion.Proc.R.Soc.Long.B.,1971.179:125-138.
    [22]Wu,T.Y.Hydromechanics of swimming propulsion.Part 2.Some optimum shape problems.Journal of Fluid Mech.,1971.46(3):521-544.
    [23]Wu,T.Y.Hydromechanics of swimming propulsion.Part 1.Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid.Journal of Fluid Mech.,1971.46(2):337-355.
    [24]Wu,T.Y.Hydromechanics of swimming propulsion.Part 3:swimming and optimum movements of slender fish with side fins.Journal of Fluid Mech.,1971.46:545-568.
    [25]Newman,J.N.,Wu,T.Y.A generalized slender-body theory for fish-like forms.Fluid Mech.,1973.57(4):673-693.
    [26]Webb,P.W.Hydrodynamics and Energetics of Fish Propulsion.Bull.Fisheries Res.Board of Canada,1975.190:1-159.
    [27]程健宇,庄礼贤,童秉纲.鱼类鳗鲡模式推进的游动性能分析.水动力学研究与进展,1988.3(3):87-97.
    [28]童秉纲,庄礼贤,程健宇.鱼类波状摆动推进的流体力学研究.力学与实践,1991.13(3):17-26.
    [29]Cheng,J.Y.,Blickhan,R.Bending moment distribution along swimming fish.J.theory Biol.,1994.168:337-348.
    [30]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志,1998.20(1):1-7.
    [31]童秉纲.鱼类波状游动的推进机制.力学与实践,2000.22(3).
    [32]Wu,T.Y.Mathematical biofluiddynamics and mechanophysiology of fish locomotion.Math.Meth.App.Sci.,2001.24:1541-1564.
    [33]Wu,T.Y.On theoretical modeling of aquatic and aerial animal locomotion.Adv.Appl.Mech.,2001.38(291-353).
    [34]刘军考,陈在礼,陈维山,王力刚.水下机器人新型仿鱼鳍推进器.机器人,2000.22(5):427-432.
    [35]Triantafyllou,M.S.,Triantafyllou,G.S.,Yue,K.P.Hydrodynamics of fishlike swimming.Fluid Mech.,2000.32:33-53.
    [36]谭湘强,钟映春,杨宜民.液体中泳动微动机器人的现状与分析.机器人,2001.23(5):167-170.
    [37]张向明,李玉江.水下柔性鱼形机构原理及单尾鳍板水动力试验研究.海洋工程,2002.20(1):84-90.
    [38]喻俊志,陈尔奎,王硕,谭民.仿生机器鱼研究的进展与分析.控制理论与应用,2003.20(4):485-491.
    [39]梁建宏,王田苗,魏宏兴.仿生机器鱼技术研究进展及关键问题探讨.机器人技术与应用,2003(3):14-19.
    [40]王龙,喻俊志,胡永辉.机器海豚的机构设计与运动控制.北京大学学报(自然科学版),2006.42(3):294-301.
    [41]Michael,S.,Triantafyllou,M.S.,Techet,A.H.,Hover,F.S.Review of Experimental Work in Biomimetic Foils.IEEE JOURNAL OF OCEANIC ENGINEERING,2004.29(3).
    [42]Yu,J.Z.,Liu,L.Z.,Wang,L.Dynamic Modeling of Robotic Fish Using Schiehlen's Method.Proceeding of the IEEE International Conference on Robotic and Biomemitics.Kunming,China,2006.457-462.
    [43]Willy,A.,Low,K.H.Development and Initial Experiment of Modular Undulating Fin for Untethered Biorobotic AUVs.the IEEE International Conference on Robotics and Biomimetics.Hong Kong,China,2005.
    [44]Willy,A.,Low,K.H.Initial Experimental Investigation of Undulating Fin.the IEEE International Conference on Intelligent Robots and Systems.Edmonton,Canada,2005.
    [45]Low,K.H.,Willy,A.Development and Initial Investigation of NTU Robotic Fish with Modular Flexible Fins.the IEEE International Conference on Mechatronics & Automation.Niagara Falls,Canada,2005.
    [46]Liu,J.,Dukes,I.,Hu,H.Novel Mechatronics Design for a Robotic Fish.IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:2077-2082.
    [47]Kobayashi,S.,Ozaki,T.,Nakabayashi,M.,Morikawa,H.,Itoh,A.Bioinspired Aquatic Propulsion Mechanisms with Real Time Variable Apparent Stiffness Fins.Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics.Kunming,China,2006.463-467.
    [48]Kato,N.Median and paired fin controllers for biomimetic marine vehicles.Transaction of ASME,2005.58:238-254.
    [49]Liu,H.,Kawachi,K.A Numerical Study of Undulatory Swimming.Journal of Computational Physics.,1999(155):223-247.
    [50]Cheng,J.Y.,Chahine,G.L.Computational hydrodynamics of animal swimming:boundary element method and three-dimensional vortex wake structure.Comparative Biochemistry and Physiology Part A,2001.131:51-60.
    [51]Wang,L.,Wu,C.J.,Adaptive Optimal Control of the Swimming Rule of a Fish,in Eighth International Symposium on Fluid Control,Measurement and Visualization.2005:Chengdu,China.
    [52]胡文蓉,童秉纲,马晖扬.鱼类机动运动机理初探.2003空气动力学前沿研究论文集,2003:228-236.
    [53]胡文蓉,童秉纲.鳕鱼单向自由游动的数值模拟.第十二届全国计算流体力学会议,2004:587-592.
    [54]杨焱,童秉纲.鱼类转弯机动运动机制初探.第十二届全国计算流体力学会议,2004:605-610.
    [55]夏全新,鲁传敬,吴磊.鱼类波状摆动推进的数值模拟.水动力学研究与进展,2005.20(12):921-928.
    [56]谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模与控制.博士.长沙:国防科技大学博士学位论文,2006.
    [57]Sfakiotakis,M.,Lane,D.M.,Bruce,J.,Davies,C.Review of Fish Swimming Modes for Aquatic Locomotion.IEEE Journal Of Oceanic Engineering,1999.24(2):237-252.
    [58]Webb,P.W.Form and function in fish swimming.Science American,1984.251:58-68.
    [59]Harris,J.E.The role of the fins in the equilibrium of the swimming fish,Ⅰ:Wind-tunnel tests on a model of mustelus canis(Mitchill).J.Exp.Biol.,1938.13:476-493.
    [60]Sparenberg,J.A.Survey of the mathematical theory of fish locomotion.Journal of Engineering Mathematics,2002.44(4):395.
    [61]J.Edward Colgate,a.K.M.L.Mechanics and Control of Swimming:A Review.IEEE JOURNAL OF OCEANIC ENGINEERING,2004.VOL.29,NO.3.
    [62]Liang WANG,C.-J.W.Adaptive Optimal Control of the Swimming Rule of a Fish.Eighth International Symposium on Fluid Control,Measurement and Visualization,2005.August 22-25,2005,Chengdu,China.
    [63]Breder,C.M.The locomotion of fishs.Zoologica,1926.4(2):159-296.
    [64]Lindsey,C.C.Form,Function and Locomotory Habits in Fish.Fish Physiology,1978.7:1-100.
    [65]Shadwick,R.E.,Rapoport,H.S.,Fenger,J.M.Structure and function of tuna tail tendons.Comparative biochemistry and physiology:Part A,2002.133:1109-1125.
    [66]Altringham,J.D.,Ellerby,D.J.Fish swimming:Patterns in muscle function.Experimental Biology,1999.202:3397-3403.
    [67]Consl,T.R.,Selfert,P.A.,Triantafyllou,M.S.,Edelman,E.R.The Dorsal Fin Engine of the Seahorse(Hippocampus sp.).Journal of Morphology,2001.248:80-97.
    [68]Satterlie,R.A.Neuronal Control of Swimming in Jellyfish:a Comparative Story.Can.J.Zool.,2002:1654-1669.
    [69]Muller,U.K.,Stamhuis,E.J.,Videler,J.J.Riding the Waves:the Role of the Body Wave in Undulatory Fish Swimming.Integr.Comp.Biol.,2002(42):981-987.
    [70]V.Georage,Lauder,E.,Tytell.Hydrodynamics of undulatory propulsion.Fish Physiology,2005.23.
    [71]童秉纲,陆夕云.关于飞行和游动的生物力学研究.力学进展,2004.34(1):1-8.
    [72]普朗特,L.,奥斯瓦提奇,K.,维格哈特,K.流体力学概论.北京:科学出版 社,1981.
    [73]张也影.流体力学(第二版).北京:高等教育出版社,2000.
    [74]张亮,李云波.流体力学.哈尔滨:哈尔滨工程大学出版社,2001.
    [75]吴靖.鱼类摆动推进的双涡模型及实验研究.北京航空航天大学学报,1994.20(2):158-163.
    [76]陶祖莱.生物流体力学.北京:科学出版社,1984.
    [77]Gray,J.Animal's Locomotion:Weidenfeld and Nicolson,1968.
    [78]Taylor,G.I.Analysis of the swimming of microscopic oranisms.Proc.R.Soc.Lond.A,1951(209):447-461.
    [79]Taylor,G.I.The Action of Waving Cylindrical Tails in Propelling Microscopic Roganisms.Proc.R.Soc.Lond.A,1952(211):225-239.
    [80]Taylor,G.I.Analysis of Swimming of Long Narrow Animals.Proc.R.Soc.Lond.A,1952(214):158-183.
    [81]谭湘强.液体中微机器人的运动机理与实验研究.广东工业大学博士学位论文.2002.
    [82]Munk,M.M.The Aerodynamic Forceson Airship Hulls.Nat.Adv.Com.Aero.,1924.Rep.no.184.
    [83]Lighthill,M.J.,Higher approximations in aerodynamic theory,in Princeton aeronautical paperbacks,Press,P.U.,Editor.1960.
    [84]苏玉民,黄胜,庞永杰,徐玉如,吴强.仿鱼尾潜器推进系统的水动力分析.海洋工程,2002.22(2):54-59.
    [85]俞经虎,竺长安,程刚,陈宏.弹性装置提高机器鱼推进效率的研究.机器人,2004.26(5):416-420.
    [86]Triantafyllou,M.S.,Triantafyllou,G.S.,Yue,D.K.P.Hydrodynamics of fishlike swimming.Annual Review of Fluid Mechanics,2000.32:33-53.
    [87]Triantafyllou,M.S.,Hover,F.S.,Techet,A.H.,Yue,D.K.P.Review of hydrodynamic scaling laws in aquatic locomotion and fishlike swimming.Transactions of the ASME,2005.58:226-237.
    [88]Liao,J.C.,Beal,D.N.,Lauder,G.V.,Triantafyllou,M.S.The Karman gait:novel body kinematics of rainbow trout swimming in a voxtex street,the Journal of Experimental Biology,2003(206):1059-1073.
    [89]Jian Yu,C.,Blickhan,R.Bending moment distribution along swimming fish.J.theory Biol.,1994.168:337-348.
    [90]Jian-Yu,C.,Chahine,G.L.Computational hydrodynamics of animal swimming:boundary element method and three-dimensional vortex wake structure.Comparative Biochemistry and Physiology Part A,2001.131:51-60.
    [91]童秉纲,孙茂,尹协振.飞行和游动生物流体力学的国内研究进展概述.自然杂志,2005.27(4):191-199.
    [92]Grillner,S.Neural Networks for Vertebrate Locomotion.Scientific American,1996:64-69.
    [93]Finnemore,E.J.,Franzini,J.B.流体力学及其工程应用.北京:机械工业出版社,2006.
    [94]Blake,R.W.On seahorse locomotion.J.Marine Biol.Assoc.,1976.58:939-949.
    [95]Blake,R.W.On balistiform locomotion.J.Marine Biol.Assoc.,1978.58:73-80.
    [96]Blake,R.W.The swimming of the mandarin fish Synchropus picturatus(Callionyiidae:Teleostei).J.Marine Biol.Assoc.,1979.59:421-428.
    [97]Blake,R.W.Undulatory median fin propulsion of two teleosts with different modes of life.Can.J.Zool.,1980.58:2116-2119.
    [98]Blake,R.W.Median and pairedfin propulsion.Fish Biomechanics.New York:Praeger,1983.
    [99]Blake,R.W.Swimming in the electric ells and knifefishes.Can.J.Zool.,1983.61:1432-1441.
    [100]王光明,沈林成.水下仿鱼推进器的分析 兵工自动化,2006.25(5):7-9.
    [101]Triantafyllou,M.S.,Triantafyllou,G.S.An Efficient Swimming Machine.Scientific American,1995:64-70.
    [102]Barrett,D.,Grosenbaugh,M.,Tdantafyllou,M.S.The Optimal Control of a Flexible Hull Robotic Undersea Vehicle Propelled by an Oscillating Foil.1996IEEE AUV Symp.1996.1-9.
    [103]Barrett,D.S.Propulsive Efficiency of a Flexible Hull Underwater Vehicle.Ph.D.Cambridge:Massachusetts Inst.,1996.
    [104]Anderson,J.M.,Kerrebrock,P.A.The Vorticity Control Unmanned Undersea Vehicle(VCUUV)-An Autonomous Vehicle Employing Fish Swimming Propulsion and Maneuvering.10th Int.Symp.Unmanned Untethered Submersible Technology.1997.189-195.
    [105]Nakshima,M.Experimental Study ofa Self-Propellerd Twp-joint Dolphin Robot.Ninth International Offsore and Polar Engineering Conference.1994.419-424.
    [106]Liu,J.D.A 3D Simulator for Autonomous Robotic Fish.International Journal of Automation and Computing,2004:42-50.
    [107]梁建宏,王田苗,魏宏兴.水下仿生机器鱼的研究进展Ⅰ—鱼类推进机理.机器人,2002.24(2):107-111.
    [108]梁建宏,王田苗,魏洪兴.水下仿生机器鱼研究进展Ⅱ—小型实验机器鱼研制.机器人,2002.24(3):234-238.
    [109]梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展Ⅲ—水动力学实验研究.机器人,2002.24(4):304-308.
    [110]王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估计.机械工程学报,2005.41(8):18-22.
    [111]王田苗,张丽,黄毓瑜,梁建宏.仿生机器鱼艏向摆动动力学仿真及分析.计算机仿真,2006.23(2):133-136.
    [112]魏洪兴,王田苗,梁建宏.多仿生机器鱼群体定位控制.中国造船,2003.44(4):80-85.
    [113]魏洪兴,王田苗,梁建宏.基于网格算法的多仿生机器鱼协调游动控制.中国造船,2004.45(1):33-38.
    [114]梁建宏,邹丹,王松,王野.SPC-Ⅱ机器鱼平台及其自主航行实验.北京航空航天大学学报,2005.31(7):709-713.
    [115]王松,王田苗,梁建宏,孙键,林果.机器鱼辅助水下考古实验研究.机器人,2005.27(2):147-151.
    [116]王硕,谭民.机器鱼.北京:北京邮电大学出版社,2006.
    [117]Zhang,Z.G.,Wang,S.,Tan,M.3-D Locomotion control for a biomimetic robot fish.Journal of Control Theory and Applications,2004(2):169-174.
    [118]刘军考,陈维山,陈在礼.仿生机器鱼的运动学参数及试验研究.中国机械工程,2002.13(16):1354-1357.
    [119]成巍,孙俊岭,戴杰,袁剑平,徐玉如.仿生水下机器人运动仿真技术研究.系统仿真学报,2005.17(1):11-15.
    [120]成巍,苏玉民,秦再白,万磊,徐玉如.一种仿生水下机器人的研究进展.船舶工程,2004.26(1):5-8.
    [121]Sfakiotakis,M.,Lane,D.M.,Davies,B.C.An experimental undulating-fin device using the Parallel Bellows Actuator.Proceedings of the 2001 IEEE International Conference on Robotics & Automation,2001:2356-2362.
    [122]Robinson,G.,Davies,J.B.C.The Parallel Bellows Actuator.Proc.Robotica '98.Brasov,Romania,1998.195-200.
    [123]Davies,J.B.C.,Lane,D.M.,Robinson,G.C.,Obrien,D.J.,Pickett,M.,Sfakiotakis,M.,Deacon,B.Subsea Applications of Continuum Robots.Proc.International Symposium on Underwater Technology.Tokyo,Japan,1998.363-369.
    [124]Toda,Y.,Hieda,S.,Sugiguchi,T.Laminar Flow Computation Around a Plate with Two Undulating Side Fins.Journal of Kansai Society of Naval Architects,Japan,2002(237):71-78.
    [125]Toda,Y.,Fukui,K.,Sugiguchi,T.Fundamental Study on Propulsion of a Fish-like Body with Two Undulating Side.Proc.of Asia Pacific Workshop on Marine Hydronamics,Kobe,Japan,2002:227-232.
    [126]Toda,Y.,Suzuki,T.,Uto,S.,Tanaka,N.Fundamental Study on a Fish-Like Body with Two Undulating Side Fins.Second International Symposium on Aqua Bio-Mechanism.Japan,2003.
    [127]Maclver,M.A.,Fontaine,E.,Burdick,J.W.Designing Future Underwater Vehicles:Principles and Mechanisms of the Weakly Electric Fish.IEEE Journal of Oceanic Engineering,2004.29(3).
    [128]Low,K.H.,Willy,A.Development and Initial Investigation of NTU Robotic Fish with Modular Flexible Fins.Proceedings of the IEEE International Conference of Mechatronics & Automation.Niagara,Canada,2005.958-963.
    [129]谢海斌,张代兵,沈林成.基于柔性长鳍波动推进的仿生水下机器人设计与实现.机器人,2006.28(5):525-529.
    [130]徐海军,潘存云,谢海斌.仿鱼柔性长背鳍波动运动机构的设计与仿真.机械制造,2005.43(493):21-23.
    [131]谢海斌,沈林成,张代兵.柔性长鳍波动推进动力学分析.力学与实践,2006.28(4).
    [132]谢海斌,沈林成,胡天江.“尼罗河魔鬼”柔性长鳍运动曲面建模与仿真.国防科技大学学报,2005.27(5):62-66.
    [133]沈林成,王光明.仿鱼长鳍波动推进器研究的进展与分析.国防科技大学学报,2005.27(4):96-100.
    [134]胡天江,李非,沈林成.“尼罗河魔鬼”长背鳍波动包络线的提取算法.国防科技大学学报,2005.27(5):67-72.
    [135]谢海斌,沈林成,胡天江.柔丝长鳍仿生装置波动控制技术研究.国防科技大学学报,2006.28(3):99-103.
    [136]王光明,沈林成,胡天江,李非.柔性长鳍波动推进试验及分析.国防科技大学学报,2006.28(1).
    [137]王光明,沈林成.仿鱼长鳍波动推进器研究的进展与分析 国防科技大学学报,2005.27(2).
    [138]Wang,G.M.,Shen,L.C.,Ye,Y.Y.,Hu,T.J.New Underwater Robot Propelled by Undulations of Long-based Fin.International Conference on Mechanical Engineering and Mechanics.Nanjing,2005.475-478.
    [139]王光明,胡天江,李非,沈林成.长背鳍波动推进游动研究.机械工程学报,2006.42(3):88-92.
    [140]Wang,G.M.,Shen,L.C.,Hu,T.J.Kinematic Modelling and Dynamic Analysis of the Long-based Undulation Fin of Gymnchus Niloticus.The 9th International Conference on the Simulation of Adaptive Behavior.Roma,Italy,2006.
    [141]Li,F.,Hu,T.J.,Wang,G.M.,Shen,L.C.Locomotion of Gymnarchus Niloticus:Experiment and Kinematics.Journal of Bionics Engineering,2005.2(3):115-121.
    [142]Hu,T.J.,Li,F.,Wang,G.M.,Shen,L.C.Morpholocial Measurement and Analyses of Gymnarchus Niloticus.Journal of Bionics Engineering,2005.2(1):25-31.
    [143]Hu,T.J.,Shen,L.C.,Wang,G.M.A Novel CFD-Based Approach of Biopropulsor Allocation Optimization for Underwater Robots.International Conference on Mechanical Engineering and Mechanics.Nanjing,2005.331-336.
    [144]Hu,T.,Li,F.,Wang,G.,Shen,L.A Contour-detecting Algorithm for Undulation by the Long-based Dorsal Fin of Gymnarchus niloticus.Journal of National University of Defense Technology,2005.27(5):67-72.
    [145]Hu,T.J.,Wang,G.M.,Li,F.,Shen,L.C.A Novel Conceptual Fish-like Robot Inspired by Rhinecanthus Aculeatus.The 9th International Conference on Control,Automation,Robotics and Vision(ICARCV06).Singapore,2006.639-643.
    [146]Hu,T.J.,Li,F.,Wang,G.M.,Shen,L.C.Bionic Inspirations of Fish-like Robots from Rhinecanthus Aculeatus.IEEE International Conference on Mechatronics and Automation(IEEE ICMA06).Luoyang,2006.639-643.
    [147]章永华,何建慧,张世武,杨杰.仿生鱼鳍中形状记忆合金驱动器的水下变形精度分析.机器人,2007.29(4).
    [148]Zhang,Y.H.,Jia,L.B.,Zhang,S.W.,Yang,J.,Low,K.H.Computational Research on Modular Undulating Fin for Biorobotic Underwater Propulsor.Journal of Bionic Engineering,2007.
    [149]Kato,N.Hydrodynamic Characteritics of Mechanical Pectoral Fin.ASME J.Fluids Eng.,1999(121):605-613.
    [150]Kato,N.Control Performance of Fish Robot With Mechanical Pectoral Fins in Horizontal Plane.IEEE J.Oceanic Eng.,2000.25(1):121-129.
    [151]Fish,F.E.,Lauder,G.V.,Mittal,R.Conceptual Design for the Construction of a Biorobotic AUV Based on Biological Hydrodynamics.2003.
    [152]Aout,K.D.,Aerts,P.A Kinematic Comparison of Forward and Backward Swimming in the eel Anguilla Anguilla.The Journal of Experimental Biology,1999.202:1511-1521.
    [153]Cazalets,J.R.,Borde,M.,Clarac,F.Localization and Organization of the Central Pattern Generator for Hindlimb Locomotion in Newborn Rat.The Journal of Neuroscience,1995.15(7):4943-4951.
    [154]Cohen,A.H.,Lewis,M.A.Sensorimotor Integration in Lampreys and Robot Ⅰ:CPG Principles.Physiological Reviews,1996.76(3).
    [155]Marder,E.,Caiabrese,R.L.Principles of Rhythmic Motor Pattern Generation.Physiological Review,1996.76(3):687-717.
    [156]L.Hooper,S.Central Pattern Generators.http://www.els.net/elsonline/html/A0000032.html,2000.
    [157]MacKay-Lyons,M.Central Pattern Generation of Locomotion:A Review of the Evidence.Physical Therapy 2002.82(1):69-83.
    [158]Skinner,F.K.,B.Mulloney.Intersegmental coordination in invertevrates and vertebrates.Current Opinion in Neurobiology,1998.8:725-732.
    [159]S.Grillner.Neural Networks for Vertebrate Locomotion.Scientific American,1996:64-69.
    [160]S.Grillner,Ekeberg,O.Intrinsic function of a neuronal network—α vertebrate central pattern generator.Brain Research Reviews,1998.26:184-197.
    [161]S.Grillner,P.Wallen.Cellular bases of a vertebrate locomotor system -steering,intersegmental and segmental co-ordination and sensory control Brain Research,2002.40:92-106.
    [162]Cangiano,L.Mechanisms of Rhythm Generation in the Lamprey Locomotor Network.doctor thesis,2004.
    [163]Wadden,T.,J.Hellgren,A.Lansner,Grillner,S.Intersegmental coordination in the lamprey:simulations using a network model without segmental boundaries.Biological Cybernetics,1997.76:1-9.
    [164]Wallen,P.,Grillner,S.Central pattern generators and their interaction with sensory feedback.American Control 1997.
    [165]Williams,T.L.The Calculation of Frequency-Shift Functions for Chains of Coupled Oscillators,with Application to a Network Model of the Lamprey Locomotor Pattern Generator.J.of Computational Neuroscience,1997.4:47-55.
    [166]H.Kotaleski,J.,Lansner,A.,Grillner,S.Neural mechnisms potentially contributing to the intersegmental phase lag in lamprey Ⅱ:Hemisegmental oscillations produced by mutually coupled excitatory neurons.Biological Cybernetics,1999.81:299-315.
    [167]Y.Xintian,Nguyen,B.,Friesen,O.Sensory Feedback Can Coordinate the Swimming Activity of the Leech.Neuroscience,1999.19(11):4634-4643.
    [168]McCrea,D.A.Spinal circuitry of sensorimotor control of locomotion.Journal of Physiology,2001.533(1):41-50.
    [169]Feldman,J.L.,Grillner,S.Control of Vertebrate Respiration and Locomotion:A Brief Account.The Physiologist,1983.26(5):310-316.
    [170]Matsuoka,K.Mechanisms of frequency and pattern control in the neural rhythm generators.Biolog.Cybern.,1987.56:345-353.
    [171]Wilson,H.R.,Cowan,J.D.Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons.Biophys.,1972.12:1-24.
    [172]Ueta,T.,Chen,G.R.On Synchronization and Control of Coupled Wilson Cowan Neural Oscillators.International Journal of Bifurcation and Chaos,2003.13(1):163-175.
    [173]郑浩峻,张秀丽,关旭,汪劲松.基于生物中枢模式发生器原理的四足机器人.清华大学学报(自然科学版),2004.44(2):166-169.
    [174]He,J.,Lu,C.F.,Yin,S.T.The Design of CPG Control Module of the Bionic Mechanical Crab.Proceedings of IEEE International Conference on Robotics and Biomimetics.Kunming,China,2006.280-285.
    [175]Kimura,H.,Fukuoka,Y.Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot:'Tekken2'.International Conference on Intelligent Robots and Systems,2004.1:986_991.
    [176]Endo,G.,Morimoto,J.,Nakanishi,J.,Gordon,C.An Empirical Exploration of a Neural Oscillator for Biped Locomotion Control.Proceedings of the 2004IEEE International Conference on Robotics&Automation.2004.3036-3042.
    [177]Brauer,E.J.,Jung,R.,Wilson,D.,Abbas,J.J.Analog circuit model of lamprey unit pattern generator.Proceedings.Seventh Great Lakes Symposium on VLSI.1997.137 142.
    [178]Brauer,E.J.,Thompsen,B.,Jung,R.,Abbas,J.J.Neuromorphic aVLSI circuit of lamprey unit pattern generator.42nd Midwest Symposium on Circuits and Systems,1999.2:1095-1098.
    [179]Lewis,M.A.,Cummings,R.C.,Cohen,A.H.,Hartmann,M.Toward Biomorphic Control Using Custom aVLSI CPG Chips.2000 International Conference on Robotics and Automation(ICRA 2000).San Francisco,2000.
    [180]Kimura,H.,Akiyama,S.,Sakurama,K.Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator.Autonomous Robots,1999(7):247-258.
    [181]Bailey,S.A.Biomimetic control with a feedback coupled nonlinear oscillator: insect experiments,design tools,and hexapedal robot adaptation results,doctor of philosophy,stanford university,2004.
    [182]Ijspeert,A.J.,Crespi,A.,Cabelguen,J.M.Simulation and Robotics Studies of Salamander Locomotion.Neuroinformatics,2005.3(3):171-196.
    [183]卢振利,马书根,李斌,王越超.基于循环抑制CPG模型的蛇形机器人控制器.机械工程学报,2006.42(5):137-143.
    [184]王志东,秦允海,周林慧.仿生推进与操纵系统方案设计与运动仿真.计算机仿真,2004.21(11).
    [185]Blake,R.W.Swimming in the electric-eels and knifefishes.Can.J.Zool.,1983.61:1432-1441.
    [186]Drucker,E.G.,Lauder,G.V.Locomotor Forces on a Swimming Fish:Three-dimensional Vortex Wake Dynamics Quantified Using Digital Particle Image Velocimetry.the Journal of Experimental Biology,1999(202):2393-2412.
    [187]Nelson,M.E.,Maciver,M.A.Prey Capture in the Weakly Electric Fish Apteronotus Albifrons:Sensory Acquisition Strategies and Electrosensory Consequences.The Journal of Experimential Biology,1999(202):1195-1203.
    [188]Ashley-ross,M.A.Mechanical properties of the dorsal fin muscle of Seahorse(Hippocampus) and Pipefish(Syngnathus).Journal of experimental zoology,2002.293:561-577.
    [189]王军,江素菲.鱼类学买验.1997.
    [190]杨安峰.脊椎动物学,1992.
    [191]郭巧.仿生系统的运动感知与控制.北京:北京理工大学出版社,1999.
    [192]Wardle,C.S.,Videler,J.J.,Altringham,J.D.Tuning in to fish swimming waves:body form,swimming mode and muscle function,the Journal of Experimental Biology,1995.198:1629-1636.
    [193]Grillner,S.,Ekeberg,O.Intrinsic function of a neuronal network—α vertebrate central pattern generator.Brain Research Reviews,1998.26:184-197.
    [194]Triantafyllou,G.S.,Triantafyllou,M.S.,Grosenbaugh,M.A.Optimal thrust development in oscillating foils with application to fish propulsion.J.Fluids Struct.,1993(7):205-224.
    [195]Taylor,G,K.,Nudds,R.L.,Thomas,A.L.R.Flying and swimming animals cruise at a Stouhal number tuned for high power efficiency.Nature,2003.425:707-711.
    [196]Hedenstrom.A general law for animal locomotion? Trends in Ecology and Evolution.2004.19(5):217-219.
    [197]丛爽,李泽湘.实用运动控制技术.北京:电子工业出版社,2005.
    [198]Fitzgerald,A.E.,Kingsley,C.,Umans,S.D.电机学.北京:电子工业出版社,2004.
    [199]Li,Z.P.,Lewis,A.,Scarpetta,S.Mathematical Analysis and Simulations of the Neural Circuit for Locomotion in Lampreys.Physical Review Letters,2004.92(19):198106(1-4).
    [200]Kazuki,N.,Tesuya,A.,Yoshihito,A.Design of an artificial central pattern generator with feedback controller.Intelligent Automation and Soft Computing,2004.10(2):185-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700